
igraph Reference Manual

Gábor Csárdi, Department of Statistics, Harvard University
Tamás Nepusz, Department of Biological Physics, Eötvös Loránd University

Vincent Traag, Centre for Science and Technology Studies, Leiden University
Szabolcs Horvát, Department of Computer Science, Reykjavik University

Fabio Zanini, Lowy Cancer Research Centre, University of New South Wales
Daniel Noom, jitjit software development

igraph Reference Manual
by Gábor Csárdi, Tamás Nepusz, Vincent Traag, Szabolcs Horvát, Fabio Zanini, and Daniel Noom

0.10.11

This manual is for igraph, version 0.10.11.

Copyright (C) 2005-2019 Gábor Csárdi and Tamás Nepusz. Copyright (C) 2020-2023 igraph development team. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents
1. Introduction .. 1

igraph is free software ... 1
Citing igraph .. 2

2. Installation .. 3
Prerequisites ... 3
Installation ... 3

General build instructions ... 3
Specific instructions for Windows .. 4
Notable configuration options .. 5

Building the documentation .. 6
Notes for package maintainers ... 6

Auto-detection of dependencies ... 6
Shared and static builds .. 7
Cross-compiling .. 7
Additional notes .. 8

3. Tutorial .. 9
Compiling programs using igraph .. 9

Compiling with CMake .. 9
Compiling without CMake .. 10
Running the program ... 11

Creating your first graphs ... 11
Calculating various properties of graphs .. 12

4. Basic data types and interface .. 15
The igraph data model .. 15
General conventions of igraph functions .. 16
Atomic data types .. 16
The basic interface ... 16

Graph constructors and destructors ... 17
Basic query operations ... 19
Adding and deleting vertices and edges ... 27

Miscellaneous macros and helper functions .. 30
IGRAPH_VCOUNT_MAX — The maximum number of vertices supported in
igraph graphs. ... 30
IGRAPH_ECOUNT_MAX — The maximum number of edges supported in igraph
graphs. ... 30
igraph_expand_path_to_pairs — Helper function to convert a sequence
of vertex IDs describing a path into a "pairs" vector. .. 31
igraph_invalidate_cache — Invalidates the internal cache of an igraph
graph. .. 31
igraph_is_same_graph — Are two graphs identical as labelled graphs? 31

5. Error handling ... 33
Error handling basics .. 33
Error handlers .. 33

igraph_error_handler_t — The type of error handler functions. 33
igraph_error_handler_abort — Abort program in case of error. 34
igraph_error_handler_ignore — Ignore errors. 34
igraph_error_handler_printignore — Print and ignore errors. 34

Error codes .. 34
igraph_error_t — Return type for functions returning an error code. 34
igraph_error_type_t — Error code type. ... 34
igraph_strerror — Textual description of an error. 38

Warning messages .. 38
igraph_warning_handler_t — The type of igraph warning handler func-
tions. ... 38
igraph_set_warning_handler — Installs a warning handler. 38

iii

igraph Reference Manual

IGRAPH_WARNING — Triggers a warning. ... 39
IGRAPH_WARNINGF — Triggers a warning, with printf-like syntax. 39
igraph_warning — Reports a warning. .. 39
igraph_warningf — Reports a warning, printf-like version. 40
igraph_warning_handler_ignore — Ignores all warnings. 40
igraph_warning_handler_print — Prints all warnings to the standard
error. ... 40

Advanced topics .. 41
Writing error handlers ... 41
Error handling internals ... 41
Deallocating memory .. 44
Writing igraph functions with proper error handling ... 45
Fatal errors .. 45
Error handling and threads ... 48

6. Memory (de)allocation .. 49
igraph_malloc — Allocate memory that can be safely deallocated by igraph func-
tions. ... 49
igraph_calloc — Allocate memory that can be safely deallocated by igraph func-
tions. ... 49
igraph_realloc — Reallocate memory that can be safely deallocated by igraph
functions. ... 50
igraph_free — Deallocate memory that was allocated by igraph functions. 50

7. Data structure library: vector, matrix, other data types .. 51
About template types ... 51
Vectors .. 52

About igraph_vector_t objects .. 52
Constructors and destructors ... 52
Initializing elements ... 55
Accessing elements ... 56
Vector views ... 58
Copying vectors .. 58
Exchanging elements .. 60
Vector operations .. 61
Vector comparisons .. 64
Finding minimum and maximum .. 69
Vector properties ... 71
Searching for elements ... 74
Resizing operations .. 77
Complex vector operations .. 80
Sorting ... 83
Set operations on sorted vectors ... 84
Pointer vectors (igraph_vector_ptr_t) ... 85
Deprecated functions .. 92

Matrices ... 94
About igraph_matrix_t objects .. 94
Matrix constructors and destructors ... 94
Initializing elements ... 96
Accessing elements of a matrix ... 97
Matrix views ... 98
Copying matrices ... 99
Operations on rows and columns .. 100
Matrix operations ... 104
Matrix comparisons .. 108
Combining matrices ... 111
Finding minimum and maximum .. 112
Matrix properties ... 114
Searching for elements .. 116
Resizing operations .. 117

iv

igraph Reference Manual

Complex matrix operations .. 119
Deprecated functions .. 122

Sparse matrices .. 123
About sparse matrices .. 123
Creating sparse matrix objects .. 124
Query properties of a sparse matrix ... 127
Operations on sparse matrices .. 134
Operations on sparse matrix iterators ... 140
Operations that change the internal representation .. 143
Decompositions and solving linear systems .. 143
Eigenvalues and eigenvectors ... 150
Conversion to other data types ... 151
Writing to a file, or to the screen .. 152
Deprecated functions .. 153

Stacks .. 154
igraph_stack_init — Initializes a stack. ... 154
igraph_stack_destroy — Destroys a stack object. 154
igraph_stack_reserve — Reserve memory. .. 154
igraph_stack_empty — Decides whether a stack object is empty. 155
igraph_stack_size — Returns the number of elements in a stack. 155
igraph_stack_clear — Removes all elements from a stack. 155
igraph_stack_push — Places an element on the top of a stack. 156
igraph_stack_pop — Removes and returns an element from the top of a
stack. ... 156
igraph_stack_top — Query top element. .. 156

Double-ended queues .. 157
igraph_dqueue_init — Initialize a double ended queue (deque). 157
igraph_dqueue_destroy — Destroy a double ended queue. 157
igraph_dqueue_empty — Decide whether the queue is empty. 157
igraph_dqueue_full — Check whether the queue is full. 158
igraph_dqueue_clear — Remove all elements from the queue. 158
igraph_dqueue_size — Number of elements in the queue. 158
igraph_dqueue_head — Head of the queue. .. 159
igraph_dqueue_back — Tail of the queue. .. 159
igraph_dqueue_get — Access an element in a queue. 159
igraph_dqueue_pop — Remove the head. ... 160
igraph_dqueue_pop_back — Removes the tail. 160
igraph_dqueue_push — Appends an element. ... 160

Maximum and minimum heaps .. 161
igraph_heap_init — Initializes an empty heap object. 161
igraph_heap_init_array — Build a heap from an array. 161
igraph_heap_destroy — Destroys an initialized heap object. 161
igraph_heap_clear — Removes all elements from a heap. 162
igraph_heap_empty — Decides whether a heap object is empty. 162
igraph_heap_push — Add an element. ... 162
igraph_heap_top — Top element. .. 163
igraph_heap_delete_top — Removes and returns the top element. 163
igraph_heap_size — Number of elements in the heap. 163
igraph_heap_reserve — Reserves memory for a heap. 164

String vectors .. 164
igraph_strvector_init — Initializes a string vector. 164
igraph_strvector_init_copy — Initialization by copying. 165
igraph_strvector_destroy — Frees the memory allocated for the string
vector. .. 165
STR — Indexing string vectors. ... 165
igraph_strvector_get — Retrieves an element of a string vector. 166
igraph_strvector_set — Sets an element of the string vector from a
string. .. 166

v

igraph Reference Manual

igraph_strvector_set_len — Sets an element of the string vector given
a buffer and its size. ... 167
igraph_strvector_push_back — Adds an element to the back of a string
vector. .. 167
igraph_strvector_push_back_len — Adds a string of the given length
to the back of a string vector. .. 167
igraph_strvector_remove — Removes a single element from a string
vector. .. 168
igraph_strvector_remove_section — Removes a section from a string
vector. .. 168
igraph_strvector_append — Concatenates two string vectors. 168
igraph_strvector_merge — Moves the contents of a string vector to the
end of another. .. 169
igraph_strvector_clear — Removes all elements from a string vector. 169
igraph_strvector_resize — Resizes a string vector. 170
igraph_strvector_reserve — Reserves memory for a string vector. 170
igraph_strvector_resize_min — Deallocates the unused memory of a
string vector. ... 171
igraph_strvector_size — Returns the size of a string vector. 171
igraph_strvector_capacity — Returns the capacity of a string vector. 171
Deprecated functions .. 172

Lists of vectors, matrices and graphs ... 172
About igraph_vector_list_t objects ... 172
Constructors and destructors ... 173
Accessing elements ... 174
Vector properties ... 176
Resizing operations .. 177
Sorting and reordering .. 184

Adjacency lists .. 186
Adjacent vertices ... 187
Incident edges ... 190
Lazy adjacency list for vertices .. 192
Lazy incidence list for edges .. 195

Partial prefix sum trees ... 197
igraph_psumtree_init — Initializes a partial prefix sum tree. 197
igraph_psumtree_destroy — Destroys a partial prefix sum tree. 198
igraph_psumtree_size — Returns the size of the tree. 198
igraph_psumtree_get — Retrieves the value corresponding to an item in
the tree. .. 198
igraph_psumtree_sum — Returns the sum of the values of the leaves in the
tree. ... 199
igraph_psumtree_search — Finds an item in the tree, given a value. 199
igraph_psumtree_update — Updates the value associated to an item in the
tree. ... 200

8. Random numbers ... 201
About random numbers in igraph ... 201
The default random number generator ... 201

igraph_rng_default — Query the default random number generator. 201
igraph_rng_set_default — Set the default igraph random number gener-
ator. ... 201

Creating random number generators .. 202
igraph_rng_init — Initializes a random number generator. 202
igraph_rng_destroy — Deallocates memory associated with a random
number generator. .. 202
igraph_rng_seed — Seeds a random number generator. 202
igraph_rng_bits — The number of random bits that a random number gen-
erator can produces in a single round. ... 203

vi

igraph Reference Manual

igraph_rng_max — The maximum possible integer for a random number gen-
erator. .. 203
igraph_rng_name — The type of a random number generator. 203

Generating random numbers .. 204
igraph_rng_get_integer — Generate an integer random number from an
interval. .. 204
igraph_rng_get_unif01 — Samples uniformly from the unit interval. 204
igraph_rng_get_unif — Samples real numbers from a given interval. 204
igraph_rng_get_normal — Samples from a normal distribution. 205
igraph_rng_get_exp — Samples from an exponential distribution. 205
igraph_rng_get_gamma — Samples from a gamma distribution. 206
igraph_rng_get_binom — Samples from a binomial distribution. 206
igraph_rng_get_geom — Samples from a geometric distribution. 207
igraph_rng_get_pois — Samples from a Poisson distribution. 207

Supported random number generators .. 208
igraph_rngtype_mt19937 — The MT19937 random number generator. 208
igraph_rngtype_glibc2 — The random number generator introduced in
GNU libc 2. .. 208
igraph_rngtype_pcg32 — The PCG random number generator (32-bit ver-
sion). ... 209
igraph_rngtype_pcg64 — The PCG random number generator (64-bit ver-
sion). ... 209

Use cases ... 210
Normal (default) use ... 210
Reproducible simulations .. 210
Changing the default generator ... 210
Using multiple generators .. 210
Example ... 211

9. Graph generators .. 212
Deterministic graph generators ... 212

igraph_create — Creates a graph with the specified edges. 212
igraph_small — Shorthand to create a small graph, giving the edges as argu-
ments. .. 212
igraph_adjacency — Creates a graph from an adjacency matrix. 213
igraph_weighted_adjacency — Creates a graph from a weighted adja-
cency matrix. .. 214
igraph_sparse_adjacency — Creates a graph from a sparse adjacency
matrix. ... 215
igraph_sparse_weighted_adjacency — Creates a graph from a weight-
ed sparse adjacency matrix. ... 216
igraph_adjlist — Creates a graph from an adjacency list. 216
igraph_star — Creates a star graph, every vertex connects only to the center. .. 216
igraph_wheel — Creates a wheel graph, a union of a star and a cycle graph. 217
igraph_square_lattice — Arbitrary dimensional square lattices. 218
igraph_triangular_lattice — A triangular lattice with the given shape. .. 219
igraph_hexagonal_lattice — A hexagonal lattice with the given shape. ... 220
igraph_ring — Creates a cycle graph or a path graph. 221
igraph_kary_tree — Creates a k-ary tree in which almost all vertices have
k children. .. 222
igraph_symmetric_tree — Creates a symmetric tree with the specified
number of branches at each level. ... 222
igraph_regular_tree — Creates a regular tree. 223
igraph_full — Creates a full graph (directed or undirected, with or without
loops). .. 224
igraph_full_citation — Creates a full citation graph. 225
igraph_full_multipartite — Create a full multipartite graph. 225
igraph_turan — Create a Turán graph. .. 226

vii

igraph Reference Manual

igraph_realize_degree_sequence — Generates a graph with the given
degree sequence. .. 226
igraph_realize_bipartite_degree_sequence — Generates a bipar-
tite graph with the given bidegree sequence. ... 229
igraph_famous — Create a famous graph by simply providing its name. 230
igraph_lcf — Creates a graph from LCF notation. 232
igraph_lcf_vector — Creates a graph from LCF notation. 233
igraph_from_prufer — Generates a tree from a Prüfer sequence. 233
igraph_atlas — Create a small graph from the “Graph Atlas”. 234
igraph_de_bruijn — Generate a de Bruijn graph. 235
igraph_kautz — Generate a Kautz graph. ... 235
igraph_circulant — Creates a circulant graph. 236
igraph_generalized_petersen — Creates a Generalized Petersen
graph. ... 236
igraph_extended_chordal_ring — Create an extended chordal ring. 237

Games: Randomized graph generators ... 238
igraph_grg_game — Generates a geometric random graph. 238
igraph_barabasi_game — Generates a graph based on the Barabási-Albert
model. .. 238
igraph_erdos_renyi_game_gnm — Generates a random (Erd#s-Rényi)
graph with a fixed number of edges. ... 240
igraph_erdos_renyi_game_gnp — Generates a random (Erd#s-Rényi)
graph with fixed edge probabilities. .. 241
igraph_watts_strogatz_game — The Watts-Strogatz small-world mod-
el. .. 242
igraph_rewire_edges — Rewires the edges of a graph with constant proba-
bility. ... 243
igraph_rewire_directed_edges — Rewires the chosen endpoint of di-
rected edges. ... 243
igraph_degree_sequence_game — Generates a random graph with a giv-
en degree sequence. .. 244
igraph_k_regular_game — Generates a random graph where each vertex
has the same degree. .. 246
igraph_static_fitness_game — Non-growing random graph with edge
probabilities proportional to node fitness scores. .. 246
igraph_static_power_law_game — Generates a non-growing random
graph with expected power-law degree distributions. .. 247
igraph_forest_fire_game — Generates a network according to the “for-
est fire game”. ... 248
igraph_rewire — Randomly rewires a graph while preserving its degree se-
quence. ... 249
igraph_growing_random_game — Generates a growing random graph. 250
igraph_callaway_traits_game — Simulates a growing network with
vertex types. .. 251
igraph_establishment_game — Generates a graph with a simple growing
model with vertex types. ... 252
igraph_preference_game — Generates a graph with vertex types and con-
nection preferences. .. 252
igraph_asymmetric_preference_game — Generates a graph with
asymmetric vertex types and connection preferences. 253
igraph_recent_degree_game — Stochastic graph generator based on the
number of incident edges a node has gained recently. 254
igraph_barabasi_aging_game — Preferential attachment with aging of
vertices. .. 255
igraph_recent_degree_aging_game — Preferential attachment based
on the number of edges gained recently, with aging of vertices. 256
igraph_lastcit_game — Simulates a citation network, based on time
passed since the last citation. ... 257

viii

igraph Reference Manual

igraph_cited_type_game — Simulates a citation based on vertex types. 258
igraph_citing_cited_type_game — Simulates a citation network based
on vertex types. ... 259
igraph_sbm_game — Sample from a stochastic block model. 260
igraph_hsbm_game — Hierarchical stochastic block model. 261
igraph_hsbm_list_game — Hierarchical stochastic block model, more gen-
eral version. .. 261
igraph_dot_product_game — Generates a random dot product graph. 262
igraph_tree_game — Generates a random tree with the given number of
nodes. .. 263
igraph_correlated_game — Generates a random graph correlated to an
existing graph. ... 263
igraph_correlated_pair_game — Generates pairs of correlated random
graphs. ... 264
igraph_simple_interconnected_islands_game — Generates a ran-
dom graph made of several interconnected islands, each island being a random
graph. ... 265

Deprecated functions .. 265
igraph_erdos_renyi_game — Generates a random (Erd#s-Rényi) graph. 265
igraph_lattice — Arbitrary dimensional square lattices (deprecated). 266
igraph_tree — Creates a k-ary tree in which almost all vertices have k chil-
dren (deprecated alias). ... 266

10. Games on graphs .. 268
Microscopic update rules ... 268

igraph_deterministic_optimal_imitation — Adopt a strategy via
deterministic optimal imitation. .. 268
igraph_moran_process — The Moran process in a network setting. 269
igraph_roulette_wheel_imitation — Adopt a strategy via roulette
wheel selection. ... 271
igraph_stochastic_imitation — Adopt a strategy via stochastic imita-
tion with uniform selection. ... 272

Epidemic models ... 274
igraph_sir — Performs a number of SIR epidemics model runs on a graph. 274
igraph_sir_t — The result of one SIR model simulation. 274
igraph_sir_destroy — Deallocates memory associated with a SIR simula-
tion run. ... 275

11. Vertex and edge selectors and sequences, iterators .. 276
About selectors, iterators .. 276
Vertex selector constructors ... 276

igraph_vs_all — Vertex set, all vertices of a graph. 276
igraph_vs_adj — Adjacent vertices of a vertex. .. 277
igraph_vs_nonadj — Non-adjacent vertices of a vertex. 277
igraph_vs_none — Empty vertex set. .. 278
igraph_vs_1 — Vertex set with a single vertex. ... 278
igraph_vs_vector — Vertex set based on a vector. 279
igraph_vs_vector_small — Create a vertex set by giving its elements. 279
igraph_vs_vector_copy — Vertex set based on a vector, with copying. 280
igraph_vs_range — Vertex set, an interval of vertices. 280

Generic vertex selector operations ... 281
igraph_vs_copy — Creates a copy of a vertex selector. 281
igraph_vs_destroy — Destroy a vertex set. .. 281
igraph_vs_is_all — Check whether all vertices are included. 282
igraph_vs_size — Returns the size of the vertex selector. 282
igraph_vs_type — Returns the type of the vertex selector. 282

Immediate vertex selectors .. 282
igraph_vss_all — All vertices of a graph (immediate version). 282
igraph_vss_none — Empty vertex set (immediate version). 283
igraph_vss_1 — Vertex set with a single vertex (immediate version). 283

ix

igraph Reference Manual

igraph_vss_vector — Vertex set based on a vector (immediate version). 284
igraph_vss_range — An interval of vertices (immediate version). 284

Vertex iterators .. 284
igraph_vit_create — Creates a vertex iterator from a vertex selector. 284
igraph_vit_destroy — Destroys a vertex iterator. 285
Stepping over the vertices .. 285
IGRAPH_VIT_NEXT — Next vertex. ... 286
IGRAPH_VIT_END — Are we at the end? .. 286
IGRAPH_VIT_SIZE — Size of a vertex iterator. ... 286
IGRAPH_VIT_RESET — Reset a vertex iterator. ... 287
IGRAPH_VIT_GET — Query the current position. ... 287

Edge selector constructors ... 287
igraph_es_all — Edge set, all edges. ... 287
igraph_es_incident — Edges incident on a given vertex. 288
igraph_es_none — Empty edge selector. ... 288
igraph_es_1 — Edge selector containing a single edge. 289
igraph_es_vector — Handle a vector as an edge selector. 289
igraph_es_range — Edge selector, a sequence of edge IDs. 290
igraph_es_pairs — Edge selector, multiple edges defined by their endpoints
in a vector. ... 290
igraph_es_pairs_small — Edge selector, multiple edges defined by their
endpoints as arguments. .. 291
igraph_es_path — Edge selector, edge IDs on a path. 291
igraph_es_vector_copy — Edge set, based on a vector, with copying. 292

Immediate edge selectors .. 292
igraph_ess_all — Edge set, all edges (immediate version). 292
igraph_ess_none — Immediate empty edge selector. 293
igraph_ess_1 — Immediate version of the single edge edge selector. 293
igraph_ess_vector — Immediate vector view edge selector. 294
igraph_ess_range — Immediate version of the sequence edge selector. 294

Generic edge selector operations ... 294
igraph_es_as_vector — Transform edge selector into vector. 294
igraph_es_copy — Creates a copy of an edge selector. 295
igraph_es_destroy — Destroys an edge selector object. 295
igraph_es_is_all — Check whether an edge selector includes all edges. 295
igraph_es_size — Returns the size of the edge selector. 296
igraph_es_type — Returns the type of the edge selector. 296

Edge iterators .. 296
igraph_eit_create — Creates an edge iterator from an edge selector. 296
igraph_eit_destroy — Destroys an edge iterator. 297
Stepping over the edges ... 297
IGRAPH_EIT_NEXT — Next edge. ... 297
IGRAPH_EIT_END — Are we at the end? .. 297
IGRAPH_EIT_SIZE — Number of edges in the iterator. 298
IGRAPH_EIT_RESET — Reset an edge iterator. ... 298
IGRAPH_EIT_GET — Query an edge iterator. .. 298

Deprecated functions .. 299
igraph_es_seq — Edge selector, a sequence of edge IDs, with inclusive end-
points (deprecated). .. 299
igraph_ess_seq — Immediate version of the sequence edge selector, with in-
clusive endpoints. ... 299
igraph_vs_seq — Vertex set, an interval of vertices with inclusive endpoints
(deprecated). ... 300
igraph_vss_seq — An interval of vertices with inclusive endpoints (immedi-
ate version, deprecated). .. 300

12. Graph, vertex and edge attributes .. 302
The Attribute Handler Interface .. 302

x

igraph Reference Manual

igraph_attribute_table_t — Table of functions to perform operations
on attributes. ... 302
igraph_set_attribute_table — Attach an attribute table. 305
igraph_attribute_type_t — The possible types of the attributes. 305

Handling attribute combination lists .. 306
igraph_attribute_combination_init — Initialize attribute combina-
tion list. .. 306
igraph_attribute_combination_add — Add combination record to at-
tribute combination list. .. 307
igraph_attribute_combination_remove — Remove a record from an
attribute combination list. .. 307
igraph_attribute_combination_destroy — Destroy attribute combi-
nation list. .. 308
igraph_attribute_combination_type_t — The possible types of at-
tribute combinations. .. 308
igraph_attribute_combination — Initialize attribute combination list
and add records. .. 309

Accessing attributes from C ... 309
Query attributes ... 310
Set attributes ... 323
Remove attributes .. 335
Custom attribute combination functions ... 338

13. Structural properties of graphs .. 340
Basic properties ... 340

igraph_are_adjacent — Decides whether two vertices are adjacent. 340
Sparsifiers ... 340

igraph_spanner — Calculates a spanner of a graph with a given stretch fac-
tor. .. 340

(Shortest)-path related functions ... 341
igraph_distances — Length of the shortest paths between vertices. 341
igraph_distances_cutoff — Length of the shortest paths between ver-
tices, with cutoff. ... 342
igraph_distances_dijkstra — Weighted shortest path lengths between
vertices. .. 343
igraph_distances_dijkstra_cutoff — Weighted shortest path lengths
between vertices, with cutoff. ... 344
igraph_distances_bellman_ford — Weighted shortest path lengths be-
tween vertices, allowing negative weights. ... 345
igraph_distances_johnson — Weighted shortest path lengths between
vertices, using Johnson's algorithm. ... 346
igraph_distances_floyd_warshall — Weighted all-pairs shortest path
lengths with the Floyd-Warshall algorithm. .. 347
igraph_get_shortest_paths — Shortest paths from a vertex. 348
igraph_get_shortest_path — Shortest path from one vertex to another
one. ... 350
igraph_get_shortest_paths_dijkstra — Weighted shortest paths
from a vertex. ... 351
igraph_get_shortest_path_dijkstra — Weighted shortest path from
one vertex to another one (Dijkstra). ... 352
igraph_get_shortest_paths_bellman_ford — Weighted shortest
paths from a vertex, allowing negative weights. ... 353
igraph_get_shortest_path_bellman_ford — Weighted shortest path
from one vertex to another one (Bellman-Ford). .. 355
igraph_get_shortest_path_astar — A* gives the shortest path from
one vertex to another, with heuristic. ... 356
igraph_astar_heuristic_func_t — Distance estimator for A* algo-
rithm. ... 357

xi

igraph Reference Manual

igraph_get_all_shortest_paths — All shortest paths (geodesics) from
a vertex. ... 357
igraph_get_all_shortest_paths_dijkstra — All weighted shortest
paths (geodesics) from a vertex. ... 359
igraph_get_k_shortest_paths — k shortest paths between two ver-
tices. .. 360
igraph_get_all_simple_paths — List all simple paths from one source. .. 361
igraph_average_path_length — Calculates the average unweighted
shortest path length between all vertex pairs. .. 362
igraph_average_path_length_dijkstra — Calculates the average
weighted shortest path length between all vertex pairs. 363
igraph_path_length_hist — Create a histogram of all shortest path
lengths. .. 363
igraph_diameter — Calculates the diameter of a graph (longest geodesic). 364
igraph_diameter_dijkstra — Calculates the weighted diameter of a
graph using Dijkstra's algorithm. .. 365
igraph_girth — The girth of a graph is the length of the shortest cycle in it. 366
igraph_eccentricity — Eccentricity of some vertices. 367
igraph_eccentricity_dijkstra — Eccentricity of some vertices, using
weighted edges. ... 367
igraph_radius — Radius of a graph. .. 368
igraph_radius_dijkstra — Radius of a graph, using weighted edges. 369
igraph_graph_center — Central vertices of a graph. 369
igraph_graph_center_dijkstra — Central vertices of a graph, using
weighted edges. ... 370
igraph_pseudo_diameter — Approximation and lower bound of diame-
ter. ... 371
igraph_pseudo_diameter_dijkstra — Approximation and lower
bound of the diameter of a weighted graph. .. 372
igraph_voronoi — Voronoi partitioning of a graph. 373
igraph_vertex_path_from_edge_path — Converts a path of edge IDs
to the traversed vertex IDs. .. 374

Widest-path related functions ... 375
igraph_get_widest_path — Widest path from one vertex to another one. ... 375
igraph_get_widest_paths — Widest paths from a single vertex. 375
igraph_widest_path_widths_dijkstra — Widths of widest paths be-
tween vertices. ... 377
igraph_widest_path_widths_floyd_warshall — Widths of widest
paths between vertices. ... 378

Efficiency measures ... 379
igraph_global_efficiency — Calculates the global efficiency of a net-
work. ... 379
igraph_local_efficiency — Calculates the local efficiency around each
vertex in a network. ... 379
igraph_average_local_efficiency — Calculates the average local ef-
ficiency in a network. ... 380

Neighborhood of a vertex .. 381
igraph_neighborhood_size — Calculates the size of the neighborhood of
a given vertex. ... 381
igraph_neighborhood — Calculate the neighborhood of vertices. 382
igraph_neighborhood_graphs — Create graphs from the neighbor-
hood(s) of some vertex/vertices. ... 383

Local scan statistics .. 384
"Us" statistics .. 384
"Them" statistics .. 385
Pre-calculated subsets ... 387

Graph components ... 388

xii

igraph Reference Manual

igraph_subcomponent — The vertices in the same component as a given
vertex. .. 388
igraph_connected_components — Calculates the (weakly or strongly)
connected components in a graph. .. 389
igraph_clusters — Calculates the (weakly or strongly) connected compo-
nents in a graph (deprecated alias). ... 390
igraph_is_connected — Decides whether the graph is (weakly or strongly)
connected. ... 390
igraph_decompose — Decomposes a graph into connected components. 391
igraph_decompose_destroy — Frees the contents of a pointer vector hold-
ing graphs. .. 391
igraph_biconnected_components — Calculates biconnected compo-
nents. ... 392
igraph_articulation_points — Finds the articulation points in a graph. .. 393
igraph_bridges — Finds all bridges in a graph. .. 393
igraph_is_biconnected — Checks whether a graph is biconnected. 394

Degree sequences ... 394
igraph_is_graphical — Is there a graph with the given degree sequence? ... 394
igraph_is_bigraphical — Is there a bipartite graph with the given bi-de-
gree-sequence? .. 396

Centrality measures .. 397
igraph_closeness — Closeness centrality calculations for some vertices. 397
igraph_harmonic_centrality — Harmonic centrality for some vertices. ... 398
igraph_betweenness — Betweenness centrality of some vertices. 399
igraph_edge_betweenness — Betweenness centrality of the edges. 400
igraph_pagerank_algo_t — PageRank algorithm implementation. 401
igraph_pagerank — Calculates the Google PageRank for the specified ver-
tices. .. 401
igraph_personalized_pagerank — Calculates the personalized Google
PageRank for the specified vertices. .. 403
igraph_personalized_pagerank_vs — Calculates the personalized
Google PageRank for the specified vertices. ... 404
igraph_constraint — Burt's constraint scores. .. 405
igraph_maxdegree — The maximum degree in a graph (or set of vertices). 406
igraph_strength — Strength of the vertices, also called weighted vertex de-
gree. .. 407
igraph_eigenvector_centrality — Eigenvector centrality of the ver-
tices. .. 407
igraph_hub_and_authority_scores — Kleinberg's hub and authority
scores (HITS). ... 409
igraph_convergence_degree — Calculates the convergence degree of
each edge in a graph. ... 410

Range-limited centrality measures ... 411
igraph_closeness_cutoff — Range limited closeness centrality. 411
igraph_harmonic_centrality_cutoff — Range limited harmonic cen-
trality. .. 412
igraph_betweenness_cutoff — Range-limited betweenness centrality. 413
igraph_edge_betweenness_cutoff — Range-limited betweenness cen-
trality of the edges. .. 414

Subset-limited centrality measures .. 414
igraph_betweenness_subset — Betweenness centrality for a subset of
source and target vertices. ... 414
igraph_edge_betweenness_subset — Edge betweenness centrality for a
subset of source and target vertices. .. 415

Centralization .. 416
igraph_centralization — Calculate the centralization score from the
node level scores. .. 416

xiii

igraph Reference Manual

igraph_centralization_degree — Calculate vertex degree and graph
centralization. .. 417
igraph_centralization_betweenness — Calculate vertex between-
ness and graph centralization. .. 418
igraph_centralization_closeness — Calculate vertex closeness and
graph centralization. ... 419
igraph_centralization_eigenvector_centrality — Calculate
eigenvector centrality scores and graph centralization. 419
igraph_centralization_degree_tmax — Theoretical maximum for
graph centralization based on degree. .. 420
igraph_centralization_betweenness_tmax — Theoretical maxi-
mum for graph centralization based on betweenness. .. 421
igraph_centralization_closeness_tmax — Theoretical maximum
for graph centralization based on closeness. .. 422
igraph_centralization_eigenvector_centrality_tmax — The-
oretical maximum centralization for eigenvector centrality. 423

Similarity measures .. 424
igraph_bibcoupling — Bibliographic coupling. 424
igraph_cocitation — Cocitation coupling. .. 424
igraph_similarity_jaccard — Jaccard similarity coefficient for the giv-
en vertices. ... 425
igraph_similarity_jaccard_pairs — Jaccard similarity coefficient for
given vertex pairs. .. 426
igraph_similarity_jaccard_es — Jaccard similarity coefficient for a
given edge selector. .. 427
igraph_similarity_dice — Dice similarity coefficient. 428
igraph_similarity_dice_pairs — Dice similarity coefficient for given
vertex pairs. .. 428
igraph_similarity_dice_es — Dice similarity coefficient for a given
edge selector. .. 429
igraph_similarity_inverse_log_weighted — Vertex similarity
based on the inverse logarithm of vertex degrees. .. 430

Trees and forests ... 431
igraph_minimum_spanning_tree — Calculates one minimum spanning
tree of a graph. .. 431
igraph_minimum_spanning_tree_unweighted — Calculates one min-
imum spanning tree of an unweighted graph. .. 432
igraph_minimum_spanning_tree_prim — Calculates one minimum
spanning tree of a weighted graph. .. 433
igraph_random_spanning_tree — Uniformly samples the spanning trees
of a graph. .. 433
igraph_is_tree — Decides whether the graph is a tree. 434
igraph_is_forest — Decides whether the graph is a forest. 435
igraph_to_prufer — Converts a tree to its Prüfer sequence. 435

Transitivity or clustering coefficient .. 436
igraph_transitivity_undirected — Calculates the transitivity (clus-
tering coefficient) of a graph. ... 436
igraph_transitivity_local_undirected — The local transitivity
(clustering coefficient) of some vertices. .. 437
igraph_transitivity_avglocal_undirected — Average local tran-
sitivity (clustering coefficient). ... 438
igraph_transitivity_barrat — Weighted local transitivity of some ver-
tices, as defined by A. Barrat. .. 438
igraph_ecc — Edge clustering coefficient of some edges. 439

Directedness conversion .. 440
igraph_to_directed — Convert an undirected graph to a directed one. 440
igraph_to_undirected — Convert a directed graph to an undirected one. 441

Spectral properties .. 442

xiv

igraph Reference Manual

igraph_get_laplacian — Returns the Laplacian matrix of a graph. 442
igraph_get_laplacian_sparse — Returns the Laplacian of a graph in a
sparse matrix format. .. 443
igraph_laplacian_normalization_t — Normalization methods for a
Laplacian matrix. ... 443

Non-simple graphs: Multiple and loop edges .. 444
igraph_is_simple — Decides whether the input graph is a simple graph. 444
igraph_is_loop — Find the loop edges in a graph. 444
igraph_is_multiple — Find the multiple edges in a graph. 445
igraph_has_multiple — Check whether the graph has at least one multiple
edge. .. 445
igraph_count_multiple — The multiplicity of some edges in a graph. 446
igraph_count_multiple_1 — The multiplicity of a single edge in a graph. .. 447

Mixing patterns ... 447
igraph_assortativity_nominal — Assortativity of a graph based on
vertex categories. ... 447
igraph_assortativity — Assortativity based on numeric properties of
vertices. .. 448
igraph_assortativity_degree — Assortativity of a graph based on ver-
tex degree. .. 450
igraph_joint_type_distribution — Mixing matrix for vertex cate-
gories. .. 450
igraph_joint_degree_distribution — The joint degree distribution
of a graph. .. 452
igraph_joint_degree_matrix — The joint degree matrix of a graph. 453

K-cores and k-trusses ... 455
igraph_coreness — The coreness of the vertices in a graph. 455
igraph_trussness — Finding the "trussness" of the edges in a network. 455

Topological sorting, directed acyclic graphs ... 456
igraph_is_dag — Checks whether a graph is a directed acyclic graph
(DAG). ... 456
igraph_topological_sorting — Calculate a possible topological sorting
of the graph. ... 456
igraph_feedback_arc_set — Feedback arc set of a graph using exact or
heuristic methods. .. 457

Maximum cardinality search and chordal graphs ... 458
igraph_maximum_cardinality_search — Maximum cardinality
search. .. 458
igraph_is_chordal — Decides whether a graph is chordal. 459

Matchings ... 460
igraph_is_matching — Checks whether the given matching is valid for the
given graph. .. 460
igraph_is_maximal_matching — Checks whether a matching in a graph
is maximal. ... 460
igraph_maximum_bipartite_matching — Calculates a maximum
matching in a bipartite graph. .. 461

Unfolding a graph into a tree ... 462
igraph_unfold_tree — Unfolding a graph into a tree, by possibly multipli-
cating its vertices. .. 462

Other operations .. 463
igraph_density — Calculate the density of a graph. 463
igraph_reciprocity — Calculates the reciprocity of a directed graph. 463
igraph_diversity — Structural diversity index of the vertices. 464
igraph_is_mutual — Check whether some edges of a directed graph are mu-
tual. ... 465
igraph_avg_nearest_neighbor_degree — Average neighbor degree. ... 465
igraph_degree_correlation_vector — Degree correlation function. 467
igraph_get_adjacency — The adjacency matrix of a graph. 468

xv

igraph Reference Manual

igraph_get_adjacency_sparse — Returns the adjacency matrix of a
graph in a sparse matrix format. ... 469
igraph_get_stochastic — Stochastic adjacency matrix of a graph. 470
igraph_get_stochastic_sparse — The stochastic adjacency matrix of a
graph. ... 471
igraph_get_edgelist — The list of edges in a graph. 471
igraph_is_acyclic — Checks whether a graph is acyclic or not. 472

Deprecated functions .. 472
igraph_are_connected — Decides whether two vertices are adjacent (dep-
recated alias). .. 472
igraph_shortest_paths — Length of the shortest paths between vertices. ... 473
igraph_shortest_paths_dijkstra — Weighted shortest path lengths
between vertices (deprecated). .. 473
igraph_shortest_paths_bellman_ford — Weighted shortest path
lengths between vertices, allowing negative weights (deprecated). 473
igraph_shortest_paths_johnson — Weighted shortest path lengths be-
tween vertices, using Johnson's algorithm (deprecated). 474
igraph_get_stochastic_sparsemat — Stochastic adjacency matrix of a
graph (deprecated). ... 474
igraph_get_sparsemat — Converts an igraph graph to a sparse matrix
(deprecated). ... 475
igraph_laplacian — Returns the Laplacian matrix of a graph (deprecated). .. 475
igraph_hub_score — Kleinberg's hub scores. .. 476
igraph_authority_score — Kleinberg's authority scores. 477

14. Graph cycles .. 479
Eulerian cycles and paths .. 479

igraph_is_eulerian — Checks whether an Eulerian path or cycle exists. 479
igraph_eulerian_cycle — Finds an Eulerian cycle. 479
igraph_eulerian_path — Finds an Eulerian path. 480

Cycle bases ... 480
igraph_fundamental_cycles — Finds a fundamental cycle basis. 480
igraph_minimum_cycle_basis — Computes a minimum weight cycle ba-
sis. ... 481

15. Graph visitors .. 483
Breadth-first search .. 483

igraph_bfs — Breadth-first search. .. 483
igraph_bfs_simple — Breadth-first search, single-source version 484
igraph_bfshandler_t — Callback type for BFS function. 485

Depth-first search ... 486
igraph_dfs — Depth-first search. .. 486
igraph_dfshandler_t — Callback type for the DFS function. 487

Random walks ... 488
igraph_random_walk — Performs a random walk on a graph. 488

Deprecated functions .. 489
igraph_random_edge_walk — Performs a random walk on a graph and re-
turns the traversed edges. .. 489

16. Cliques and independent vertex sets ... 490
Cliques ... 490

igraph_is_complete — Decides whether the graph is complete. 490
igraph_cliques — Finds all or some cliques in a graph. 490
igraph_clique_size_hist — Counts cliques of each size in the graph. 491
igraph_cliques_callback — Calls a function for each clique in the
graph. ... 492
igraph_clique_handler_t — Type of clique handler functions. 492
igraph_largest_cliques — Finds the largest clique(s) in a graph. 493
igraph_maximal_cliques — Finds all maximal cliques in a graph. 493
igraph_maximal_cliques_count — Count the number of maximal
cliques in a graph. ... 494

xvi

igraph Reference Manual

igraph_maximal_cliques_file — Find maximal cliques and write them
to a file. ... 495
igraph_maximal_cliques_subset — Maximal cliques for a subset of
initial vertices. ... 496
igraph_maximal_cliques_hist — Counts the number of maximal
cliques of each size in a graph. .. 496
igraph_maximal_cliques_callback — Finds maximal cliques in a
graph and calls a function for each one. ... 497
igraph_clique_number — Finds the clique number of the graph. 498

Weighted cliques ... 498
igraph_weighted_cliques — Finds all cliques in a given weight range in
a vertex weighted graph. ... 498
igraph_largest_weighted_cliques — Finds the largest weight
clique(s) in a graph. ... 499
igraph_weighted_clique_number — Finds the weight of the largest
weight clique in the graph. .. 500

Independent vertex sets ... 501
igraph_independent_vertex_sets — Finds all independent vertex sets
in a graph. .. 501
igraph_largest_independent_vertex_sets — Finds the largest in-
dependent vertex set(s) in a graph. .. 501
igraph_maximal_independent_vertex_sets — Finds all maximal in-
dependent vertex sets of a graph. .. 502
igraph_independence_number — Finds the independence number of the
graph. ... 503

17. Graph isomorphism ... 504
The simple interface ... 504

igraph_isomorphic — Are two graphs isomorphic? 504
igraph_subisomorphic — Decide subgraph isomorphism. 505

The BLISS algorithm ... 505
igraph_bliss_sh_t — Splitting heuristics for Bliss. 506
igraph_bliss_info_t — Information about a Bliss run. 506
igraph_canonical_permutation — Canonical permutation using Bliss. ... 507
igraph_isomorphic_bliss — Graph isomorphism via Bliss. 507
igraph_count_automorphisms — Number of automorphisms using Bliss. .. 508
igraph_automorphism_group — Automorphism group generators using
Bliss. ... 509
Deprecated aliases .. 510

The VF2 algorithm ... 510
igraph_isomorphic_vf2 — Isomorphism via VF2. 510
igraph_count_isomorphisms_vf2 — Number of isomorphisms via
VF2. .. 511
igraph_get_isomorphisms_vf2 — Collect all isomorphic mappings of
two graphs. ... 512
igraph_get_isomorphisms_vf2_callback — The generic VF2 inter-
face ... 513
igraph_isohandler_t — Callback type, called when an isomorphism was
found ... 515
igraph_isocompat_t — Callback type, called to check whether two vertices
or edges are compatible .. 515
igraph_subisomorphic_vf2 — Decide subgraph isomorphism using VF2 .. 516
igraph_count_subisomorphisms_vf2 — Number of subgraph isomor-
phisms using VF2 .. 517
igraph_get_subisomorphisms_vf2 — Return all subgraph isomorphic
mappings. ... 518
igraph_get_subisomorphisms_vf2_callback — Generic VF2 func-
tion for subgraph isomorphism problems. ... 519
Deprecated aliases .. 520

xvii

igraph Reference Manual

The LAD algorithm .. 521
igraph_subisomorphic_lad — Check subgraph isomorphism with the
LAD algorithm .. 521

Functions for small graphs .. 522
igraph_isoclass — Determine the isomorphism class of small graphs. 522
igraph_isoclass_subgraph — The isomorphism class of a subgraph of a
graph. ... 523
igraph_isoclass_create — Creates a graph from the given isomorphism
class. .. 523
igraph_graph_count — The number of unlabelled graphs on the given
number of vertices. .. 524

Utility functions ... 524
igraph_permute_vertices — Permute the vertices. 524
igraph_simplify_and_colorize — Simplify the graph and compute
self-loop and edge multiplicities. .. 525

Deprecated functions .. 526
igraph_isomorphic_34 — Graph isomorphism for 3-4 vertices (deprecat-
ed). .. 526

18. Graph coloring ... 527
igraph_vertex_coloring_greedy — Computes a vertex coloring using a
greedy algorithm. ... 527
igraph_coloring_greedy_t — Ordering heuristics for greedy graph coloring. 527
igraph_is_perfect — Checks if the graph is perfect. 528

19. Graph motifs, dyad census and triad census ... 529
igraph_dyad_census — Dyad census, as defined by Holland and Leinhardt. 529
igraph_triad_census — Triad census, as defined by Davis and Leinhardt. 529
Finding triangles .. 531

igraph_adjacent_triangles — Count the number of triangles a vertex is
part of. ... 531
igraph_list_triangles — Find all triangles in a graph. 531

Graph motifs ... 532
igraph_motifs_randesu — Count the number of motifs in a graph. 532
igraph_motifs_randesu_no — Count the total number of motifs in a
graph. ... 533
igraph_motifs_randesu_estimate — Estimate the total number of mo-
tifs in a graph. ... 533
igraph_motifs_randesu_callback — Finds motifs in a graph and calls
a function for each of them. ... 534
igraph_motifs_handler_t — Callback type for igraph_motif-
s_randesu_callback. .. 535

20. Generating layouts for graph drawing ... 537
2D layout generators .. 537

igraph_layout_random — Places the vertices uniform randomly on a
plane. ... 537
igraph_layout_circle — Places the vertices uniformly on a circle in arbi-
trary order. .. 537
igraph_layout_star — Generates a star-like layout. 538
igraph_layout_grid — Places the vertices on a regular grid on the plane. 538
igraph_layout_graphopt — Optimizes vertex layout via the graphopt al-
gorithm. .. 539
igraph_layout_bipartite — Simple layout for bipartite graphs. 540
The DrL layout generator .. 540
igraph_layout_fruchterman_reingold — Places the vertices on a
plane according to the Fruchterman-Reingold algorithm. 544
igraph_layout_kamada_kawai — Places the vertices on a plane according
to the Kamada-Kawai algorithm. .. 546
igraph_layout_gem — Layout graph according to GEM algorithm. 547
igraph_layout_davidson_harel — Davidson-Harel layout algorithm. 548

xviii

igraph Reference Manual

igraph_layout_mds — Place the vertices on a plane using multidimensional
scaling. ... 549
igraph_layout_lgl — Force based layout algorithm for large graphs. 549

Layouts for trees and acyclic graphs ... 550
igraph_layout_reingold_tilford — Reingold-Tilford layout for tree
graphs. ... 550
igraph_layout_reingold_tilford_circular — Circular Rein-
gold-Tilford layout for trees. .. 551
igraph_roots_for_tree_layout — Roots suitable for a nice tree layout. .. 552
igraph_layout_sugiyama — Sugiyama layout algorithm for layered direct-
ed acyclic graphs. .. 553
igraph_layout_umap — Layout using Uniform Manifold Approximation
and Projection (UMAP). ... 554
igraph_layout_umap_compute_weights — Compute weights for a
UMAP layout starting from distances. ... 556

3D layout generators .. 557
igraph_layout_random_3d — Places the vertices uniform randomly in a
cube. .. 557
igraph_layout_sphere — Places vertices (more or less) uniformly on a
sphere. ... 557
igraph_layout_grid_3d — Places the vertices on a regular grid in the 3D
space. ... 558
igraph_layout_fruchterman_reingold_3d — 3D Fruchterman-Rein-
gold algorithm. .. 558
igraph_layout_kamada_kawai_3d — 3D version of the Kamada-Kawai
layout generator. .. 559
igraph_layout_umap_3d — 3D layout using UMAP. 560

Merging layouts ... 561
igraph_layout_merge_dla — Merges multiple layouts by using a DLA al-
gorithm. .. 561

21. Reading and writing graphs from and to files .. 563
Simple edge list and similar formats ... 563

igraph_read_graph_edgelist — Reads an edge list from a file and cre-
ates a graph. ... 563
igraph_write_graph_edgelist — Writes the edge list of a graph to a
file. .. 563
igraph_read_graph_ncol — Reads an .ncol file used by LGL. 564
igraph_write_graph_ncol — Writes the graph to a file in .ncol format. .. 565
igraph_read_graph_lgl — Reads a graph from an .lgl file. 566
igraph_write_graph_lgl — Writes the graph to a file in .lgl format. 567
igraph_read_graph_dimacs_flow — Read a graph in DIMACS format. ... 567
igraph_write_graph_dimacs_flow — Write a graph in DIMACS for-
mat. ... 568

Binary formats .. 569
igraph_read_graph_graphdb — Read a graph in the binary graph data-
base format. .. 569

GraphML format .. 570
igraph_read_graph_graphml — Reads a graph from a GraphML file. 570
igraph_write_graph_graphml — Writes the graph to a file in GraphML
format. ... 570

GML format ... 571
igraph_read_graph_gml — Read a graph in GML format. 571
igraph_write_graph_gml — Write the graph to a stream in GML format. ... 572

Pajek format ... 573
igraph_read_graph_pajek — Reads a file in Pajek format. 573
igraph_write_graph_pajek — Writes a graph to a file in Pajek format. 575

UCINET's DL file format .. 576
igraph_read_graph_dl — Reads a file in the DL format of UCINET. 576

xix

igraph Reference Manual

Graphviz format .. 576
igraph_write_graph_dot — Write the graph to a stream in DOT format. 576

LEDA format .. 577
igraph_write_graph_leda — Write a graph in LEDA native graph for-
mat. ... 577

Convenience functions for locale change .. 577
igraph_enter_safelocale — Temporarily set the C locale. 577
igraph_exit_safelocale — Temporarily set the C locale. 578

Deprecated functions .. 579
igraph_read_graph_dimacs — Read a graph in DIMACS format (depre-
cated alias). ... 579
igraph_write_graph_dimacs — Write a graph in DIMACS format (dep-
recated alias). .. 579

22. Maximum flows, minimum cuts and related measures ... 580
Maximum flows .. 580

igraph_maxflow — Maximum network flow between a pair of vertices. 580
igraph_maxflow_value — Maximum flow in a network with the push/rela-
bel algorithm. .. 581
igraph_dominator_tree — Calculates the dominator tree of a flowgraph. ... 582
igraph_maxflow_stats_t — Data structure holding statistics from the
push-relabel maximum flow solver. ... 583

Cuts and minimum cuts .. 583
igraph_st_mincut — Minimum cut between a source and a target vertex. 583
igraph_st_mincut_value — The minimum s-t cut in a graph. 584
igraph_all_st_cuts — List all edge-cuts between two vertices in a directed
graph ... 585
igraph_all_st_mincuts — All minimum s-t cuts of a directed graph. 586
igraph_mincut — Calculates the minimum cut in a graph. 586
igraph_mincut_value — The minimum edge cut in a graph. 587
igraph_gomory_hu_tree — Gomory-Hu tree of a graph. 588

Connectivity .. 589
igraph_st_edge_connectivity — Edge connectivity of a pair of ver-
tices. .. 589
igraph_edge_connectivity — The minimum edge connectivity in a
graph. ... 590
igraph_st_vertex_connectivity — The vertex connectivity of a pair of
vertices. .. 590
igraph_vertex_connectivity — The vertex connectivity of a graph. 591

Edge- and vertex-disjoint paths .. 592
igraph_edge_disjoint_paths — The maximum number of edge-disjoint
paths between two vertices. ... 592
igraph_vertex_disjoint_paths — Maximum number of vertex-disjoint
paths between two vertices. ... 593

Graph adhesion and cohesion ... 593
igraph_adhesion — Graph adhesion, this is (almost) the same as edge con-
nectivity. .. 593
igraph_cohesion — Graph cohesion, this is the same as vertex connectivity. .. 594

Cohesive blocks ... 595
igraph_cohesive_blocks — Identifies the hierarchical cohesive block
structure of a graph. ... 595

23. Vertex separators .. 596
igraph_is_separator — Would removing this set of vertices disconnect the
graph? .. 596
igraph_is_minimal_separator — Decides whether a set of vertices is a mini-
mal separator. .. 596
igraph_all_minimal_st_separators — List all vertex sets that are minimal
(s,t) separators for some s and t. ... 597

xx

igraph Reference Manual

igraph_minimum_size_separators — Find all minimum size separating ver-
tex sets. .. 597
igraph_even_tarjan_reduction — Even-Tarjan reduction of a graph. 598

24. Detecting community structure .. 600
Common functions related to community structure ... 600

igraph_modularity — Calculates the modularity of a graph with respect to
some clusters or vertex types. .. 600
igraph_modularity_matrix — Calculates the modularity matrix. 601
igraph_community_optimal_modularity — Calculate the community
structure with the highest modularity value. .. 602
igraph_community_to_membership — Creates a membership vector
from a community structure dendrogram. ... 603
igraph_reindex_membership — Makes the IDs in a membership vector
contiguous. ... 604
igraph_compare_communities — Compares community structures using
various metrics. ... 604
igraph_split_join_distance — Calculates the split-join distance of two
community structures. ... 606

Community structure based on statistical mechanics ... 607
igraph_community_spinglass — Community detection based on statisti-
cal mechanics. ... 607
igraph_community_spinglass_single — Community of a single node
based on statistical mechanics. ... 609

Community structure based on eigenvectors of matrices .. 610
igraph_community_leading_eigenvector — Leading eigenvector
community finding (proper version). ... 610
igraph_community_leading_eigenvector_callback_t — Call-
back for the leading eigenvector community finding method. 612
igraph_le_community_to_membership — Vertex membership from the
leading eigenvector community structure. ... 613

Walktrap: Community structure based on random walks ... 614
igraph_community_walktrap — Community finding using a random walk
based similarity measure. .. 614

Edge betweenness based community detection .. 615
igraph_community_edge_betweenness — Community finding based on
edge betweenness. .. 615
igraph_community_eb_get_merges — Calculating the merges, i.e. the
dendrogram for an edge betweenness community structure. 617

Community structure based on the optimization of modularity 618
igraph_community_fastgreedy — Finding community structure by
greedy optimization of modularity. .. 618
igraph_community_multilevel — Finding community structure by mul-
ti-level optimization of modularity. ... 619
igraph_community_leiden — Finding community structure using the Lei-
den algorithm. ... 620

Fluid communities ... 621
igraph_community_fluid_communities — Community detection based
on fluids interacting on the graph. ... 621

Label propagation .. 622
igraph_community_label_propagation — Community detection based
on label propagation. .. 622

The InfoMAP algorithm .. 624
igraph_community_infomap — Find community structure that minimizes
the expected description length of a random walker trajectory. 624

Voronoi communities ... 625
igraph_community_voronoi — Finds communities using Voronoi parti-
tioning. ... 625

25. Graphlets ... 627

xxi

igraph Reference Manual

Introduction ... 627
Performing graphlet decomposition ... 627

igraph_graphlets — Calculate graphlets basis and project the graph on it 627
igraph_graphlets_candidate_basis — Calculate a candidate
graphlets basis ... 628
igraph_graphlets_project — Project a graph on a graphlets basis 628

26. Hierarchical random graphs .. 630
Introduction ... 630
Representing HRGs .. 630

igraph_hrg_t — Data structure to store a hierarchical random graph. 630
igraph_hrg_init — Allocate memory for a HRG. 631
igraph_hrg_destroy — Deallocate memory for an HRG. 631
igraph_hrg_size — Returns the size of the HRG, the number of leaf nodes. ... 631
igraph_hrg_resize — Resize a HRG. ... 632

Fitting HRGs ... 632
igraph_hrg_fit — Fit a hierarchical random graph model to a network. 632
igraph_hrg_consensus — Calculate a consensus tree for a HRG. 633

HRG sampling .. 633
igraph_hrg_sample — Sample from a hierarchical random graph model. 633
igraph_hrg_game — Generate a hierarchical random graph. 634

Conversion to and from igraph graphs ... 634
igraph_from_hrg_dendrogram — Create a graph representation of the
dendrogram of a hierarchical random graph model. .. 634
igraph_hrg_create — Create a HRG from an igraph graph. 635

Predicting missing edges ... 635
igraph_hrg_predict — Predict missing edges in a graph, based on HRG
models. .. 635

Deprecated functions .. 636
igraph_hrg_dendrogram — Create a dendrogram from a hierarchical ran-
dom graph. ... 636

27. Embedding of graphs .. 637
Spectral embedding .. 637

igraph_adjacency_spectral_embedding — Adjacency spectral em-
bedding .. 637
igraph_laplacian_spectral_embedding — Spectral embedding of the
Laplacian of a graph .. 638
igraph_dim_select — Dimensionality selection. 639

28. Graph operators .. 641
Union and intersection .. 641

igraph_disjoint_union — Creates the union of two disjoint graphs. 641
igraph_disjoint_union_many — The disjoint union of many graphs. 641
igraph_join — Creates the join of two disjoint graphs. 642
igraph_union — Calculates the union of two graphs. 643
igraph_union_many — Creates the union of many graphs. 643
igraph_intersection — Collect the common edges from two graphs. 644
igraph_intersection_many — The intersection of more than two graphs. .. 645

Other set-like operators ... 646
igraph_difference — Calculates the difference of two graphs. 646
igraph_complementer — Creates the complementer of a graph. 646
igraph_compose — Calculates the composition of two graphs. 647

Miscellaneous operators .. 648
igraph_connect_neighborhood — Connects each vertex to its neighbor-
hood. ... 648
igraph_contract_vertices — Replace multiple vertices with a single
one. ... 648
igraph_graph_power — The kth power of a graph. 649
igraph_induced_subgraph — Creates a subgraph induced by the specified
vertices. .. 650

xxii

igraph Reference Manual

igraph_induced_subgraph_map — Creates an induced subraph and re-
turns the mapping from the original. ... 651
igraph_linegraph — Create the line graph of a graph. 652
igraph_simplify — Removes loop and/or multiple edges from the graph. 652
igraph_subgraph_from_edges — Creates a subgraph with the specified
edges and their endpoints. ... 653
igraph_reverse_edges — Reverses some edges of a directed graph. 653

Deprecated functions .. 654
igraph_subgraph_edges — Creates a subgraph with the specified edges
and their endpoints (deprecated alias). ... 654

29. Using BLAS, LAPACK and ARPACK for igraph matrices and graphs 655
BLAS interface in igraph ... 655

igraph_blas_ddot — Dot product of two vectors. 655
igraph_blas_dnrm2 — Euclidean norm of a vector. 655
igraph_blas_dgemv — Matrix-vector multiplication using BLAS, vector
version. .. 656
igraph_blas_dgemm — Matrix-matrix multiplication using BLAS. 656
igraph_blas_dgemv_array — Matrix-vector multiplication using BLAS,
array version. .. 657

LAPACK interface in igraph .. 658
Matrix factorization, solving linear systems .. 658
Eigenvalues and eigenvectors of matrices ... 660

ARPACK interface in igraph .. 664
Data structures .. 665
ARPACK solvers ... 670

30. Bipartite, i.e. two-mode graphs ... 673
Bipartite networks in igraph ... 673
Create two-mode networks .. 673

igraph_create_bipartite — Create a bipartite graph. 673
igraph_full_bipartite — Create a full bipartite network. 674
igraph_bipartite_game_gnm — Generate a random bipartite graph with a
fixed number of edges. ... 674
igraph_bipartite_game_gnp — Generates a random bipartite graph with
a fixed connection probability. ... 675

Bipartite adjacency matrices .. 676
igraph_biadjacency — Creates a bipartite graph from a bipartite adjacency
matrix. ... 676
igraph_get_biadjacency — Convert a bipartite graph into a bipartite adja-
cency matrix. .. 677

Project two-mode graphs ... 678
igraph_bipartite_projection_size — Calculate the number of ver-
tices and edges in the bipartite projections. ... 678
igraph_bipartite_projection — Create one or both projections of a bi-
partite (two-mode) network. ... 678

Other operations on bipartite graphs .. 679
igraph_is_bipartite — Check whether a graph is bipartite. 679

Deprecated functions .. 680
igraph_bipartite_game — Generate a bipartite random graph (similar to
Erd#s-Rényi). .. 680
igraph_incidence — Creates a bipartite graph from a bipartite adjacency
matrix (deprecated alias). .. 681
igraph_get_incidence — Convert a bipartite graph into a bipartite adja-
cency matrix (deprecated alias). .. 681

31. Advanced igraph programming ... 683
Using igraph in multi-threaded programs ... 683

IGRAPH_THREAD_SAFE — Specifies whether igraph was built in thread-safe
mode. ... 683
Thread-safe ARPACK library .. 683

xxiii

igraph Reference Manual

Thread-safety of random number generators ... 683
Progress handlers ... 683

About progress handlers ... 683
Setting up progress handlers .. 684
Invoking the progress handler .. 685
Writing progress handlers ... 686
Writing igraph functions with progress reporting .. 687
Multi-threaded programs .. 687

Status handlers .. 687
Status reporting .. 687
Setting up status handlers .. 687
Invoking the status handler .. 688

32. Non-graph related functions .. 691
igraph version number .. 691

igraph_version — The version of the igraph C library. 691
Running mean of a time series ... 691

igraph_running_mean — Calculates the running mean of a vector. 691
Random sampling from very long sequences .. 692

igraph_random_sample — Generates an increasing random sequence of in-
tegers. .. 692

Random sampling of spatial points ... 692
igraph_sample_sphere_surface — Sample points uniformly from the
surface of a sphere. .. 692
igraph_sample_sphere_volume — Sample points uniformly from the
volume of a sphere. .. 693
igraph_sample_dirichlet — Sample points from a Dirichlet distribution. .. 694

Convex hull of a set of points on a plane ... 694
igraph_convex_hull — Determines the convex hull of a given set of points
in the 2D plane. ... 694

Fitting power-law distributions to empirical data ... 695
igraph_plfit_result_t — Result of fitting a power-law distribution to a
vector. .. 695
igraph_power_law_fit — Fits a power-law distribution to a vector of num-
bers. ... 696
igraph_plfit_result_calculate_p_value — Calculates the p-value
of a fitted power-law model. .. 697

Comparing floats with a tolerance ... 698
igraph_cmp_epsilon — Compare two double-precision floats with a toler-
ance. .. 698
igraph_almost_equals — Compare two double-precision floats with a tol-
erance. ... 698
igraph_complex_almost_equals — Compare two complex numbers
with a tolerance. .. 699

33. Licenses for igraph and this manual ... 700
THE GNU GENERAL PUBLIC LICENSE .. 700

Preamble .. 700
GNU GENERAL PUBLIC LICENSE ... 700
How to Apply These Terms to Your New Programs ... 703

The GNU Free Documentation License ... 704
0. PREAMBLE ... 704
1. APPLICABILITY AND DEFINITIONS ... 705
2. VERBATIM COPYING .. 706
3. COPYING IN QUANTITY .. 706
4. MODIFICATIONS ... 706
5. COMBINING DOCUMENTS .. 708
6. COLLECTIONS OF DOCUMENTS ... 708
7. AGGREGATION WITH INDEPENDENT WORKS 708
8. TRANSLATION .. 708

xxiv

igraph Reference Manual

9. TERMINATION .. 709
10. FUTURE REVISIONS OF THIS LICENSE .. 709
G.1.1 ADDENDUM: How to use this License for your documents 709

Index ... 710

xxv

List of Examples
4.1. File examples/simple/creation.c .. 17
4.2. File examples/simple/igraph_copy.c .. 18
4.3. File examples/simple/igraph_is_directed.c .. 20
4.4. File examples/simple/igraph_get_eid.c .. 23
4.5. File examples/simple/igraph_get_eids.c .. 24
4.6. File examples/simple/igraph_neighbors.c .. 25
4.7. File examples/simple/igraph_degree.c .. 26
4.8. File examples/simple/creation.c .. 28
4.9. File examples/simple/creation.c .. 28
4.10. File examples/simple/igraph_delete_edges.c ... 29
4.11. File examples/simple/igraph_delete_vertices.c 29
4.12. File examples/simple/igraph_delete_vertices.c 30
7.1. File examples/simple/igraph_fisher_yates_shuffle.c 61
7.2. File examples/simple/igraph_vector_int_list_sort.c 67
7.3. File examples/simple/igraph_vector_int_list_sort.c 68
7.4. File examples/simple/igraph_sparsemat.c ... 123
7.5. File examples/simple/igraph_sparsemat3.c ... 123
7.6. File examples/simple/igraph_sparsemat4.c ... 123
7.7. File examples/simple/igraph_sparsemat6.c ... 124
7.8. File examples/simple/igraph_sparsemat7.c ... 124
7.9. File examples/simple/igraph_sparsemat8.c ... 124
7.10. File examples/simple/dqueue.c ... 157
7.11. File examples/simple/igraph_strvector.c ... 164
7.12. File examples/simple/adjlist.c ... 186
8.1. File examples/simple/random_seed.c ... 211
9.1. File examples/simple/igraph_create.c ... 212
9.2. File examples/simple/igraph_small.c ... 213
9.3. File examples/simple/igraph_adjacency.c ... 214
9.4. File examples/simple/igraph_weighted_adjacency.c 215
9.5. File examples/simple/igraph_star.c ... 217
9.6. File examples/simple/igraph_ring.c ... 221
9.7. File examples/simple/igraph_kary_tree.c ... 222
9.8. File examples/simple/igraph_symmetric_tree.c 223
9.9. File examples/simple/igraph_regular_tree.c ... 224
9.10. File examples/simple/igraph_full.c ... 225
9.11. File examples/simple/igraph_realize_degree_sequence.c 229
9.12. File examples/simple/igraph_lcf.c ... 233
9.13. File examples/simple/igraph_atlas.c ... 234
9.14. File examples/simple/igraph_grg_game.c ... 238
9.15. File examples/simple/igraph_barabasi_game.c 240
9.16. File examples/simple/igraph_barabasi_game2.c 240
9.17. File examples/simple/igraph_erdos_renyi_game_gnm.c 241
9.18. File examples/simple/igraph_erdos_renyi_game_gnp.c 242
9.19. File examples/simple/igraph_degree_sequence_game.c 245
10.1. File examples/simple/igraph_deterministic_optimal_imitation.c . 269
10.2. File examples/simple/igraph_roulette_wheel_imitation.c 272
10.3. File examples/simple/igraph_stochastic_imitation.c 274
11.1. File examples/simple/igraph_vs_nonadj.c ... 278
11.2. File examples/simple/igraph_vs_vector.c ... 279
11.3. File examples/simple/igraph_vs_seq.c ... 281
11.4. File examples/simple/igraph_es_pairs.c ... 291
11.5. File examples/simple/igraph_vs_seq.c ... 300
12.1. File examples/simple/igraph_attribute_combination.c 309
12.2. File examples/simple/cattributes.c ... 310
12.3. File examples/simple/cattributes2.c ... 310

xxvi

igraph Reference Manual

12.4. File examples/simple/cattributes3.c ... 310
12.5. File examples/simple/cattributes4.c ... 310
13.1. File examples/simple/distances.c ... 342
13.2. File examples/simple/distances.c ... 343
13.3. File examples/simple/distances.c ... 344
13.4. File examples/simple/distances.c ... 345
13.5. File examples/simple/bellman_ford.c ... 346
13.6. File examples/simple/igraph_get_shortest_paths.c 350
13.7. File examples/simple/igraph_get_shortest_paths_dijkstra.c 352
13.8. File examples/simple/igraph_get_all_shortest_paths_dijkstra.c . 360
13.9. File examples/simple/igraph_average_path_length.c 362
13.10. File examples/simple/igraph_grg_game.c ... 363
13.11. File examples/simple/igraph_diameter.c ... 365
13.12. File examples/simple/igraph_girth.c ... 367
13.13. File examples/simple/igraph_eccentricity.c 367
13.14. File examples/simple/igraph_radius.c ... 369
13.15. File examples/simple/igraph_decompose.c ... 391
13.16. File examples/simple/igraph_biconnected_components.c 393
13.17. File examples/simple/igraph_is_biconnected.c 394
13.18. File examples/simple/igraph_pagerank.c ... 403
13.19. File examples/simple/eigenvector_centrality.c 409
13.20. File examples/simple/centralization.c ... 417
13.21. File examples/simple/igraph_cocitation.c ... 424
13.22. File examples/simple/igraph_cocitation.c ... 425
13.23. File examples/simple/igraph_similarity.c ... 426
13.24. File examples/simple/igraph_similarity.c ... 427
13.25. File examples/simple/igraph_similarity.c ... 427
13.26. File examples/simple/igraph_similarity.c ... 428
13.27. File examples/simple/igraph_similarity.c ... 429
13.28. File examples/simple/igraph_similarity.c ... 430
13.29. File examples/simple/igraph_similarity.c ... 431
13.30. File examples/simple/igraph_minimum_spanning_tree.c 432
13.31. File examples/simple/igraph_minimum_spanning_tree.c 433
13.32. File examples/simple/igraph_kary_tree.c ... 435
13.33. File examples/simple/igraph_transitivity.c 437
13.34. File examples/simple/igraph_to_undirected.c 442
13.35. File examples/simple/igraph_get_laplacian.c 442
13.36. File examples/simple/igraph_get_laplacian_sparse.c 443
13.37. File examples/simple/igraph_is_loop.c ... 445
13.38. File examples/simple/igraph_is_multiple.c 445
13.39. File examples/simple/igraph_has_multiple.c 446
13.40. File examples/simple/igraph_assortativity_nominal.c 448
13.41. File examples/simple/igraph_assortativity_degree.c 450
13.42. File examples/simple/igraph_topological_sorting.c 457
13.43. File examples/simple/igraph_feedback_arc_set.c 458
13.44. File examples/simple/igraph_feedback_arc_set_ip.c 458
13.45. File examples/simple/igraph_maximum_bipartite_matching.c 460
13.46. File examples/simple/igraph_maximum_bipartite_matching.c 461
13.47. File examples/simple/igraph_maximum_bipartite_matching.c 462
13.48. File examples/simple/igraph_reciprocity.c 464
13.49. File examples/simple/igraph_avg_nearest_neighbor_degree.c 467
15.1. File examples/simple/igraph_bfs.c ... 484
15.2. File examples/simple/igraph_bfs_callback.c 484
15.3. File examples/simple/igraph_bfs_simple.c ... 485
16.1. File examples/simple/igraph_cliques.c ... 491
16.2. File examples/simple/igraph_maximal_cliques.c 494
16.3. File examples/simple/igraph_maximal_cliques.c 495
16.4. File examples/simple/igraph_independent_sets.c 501

xxvii

igraph Reference Manual

17.1. File examples/simple/igraph_isomorphic_vf2.c 511
17.2. File examples/simple/igraph_subisomorphic_lad.c 522
18.1. File examples/simple/igraph_coloring.c ... 527
19.1. File examples/simple/igraph_list_triangles.c 532
19.2. File examples/simple/igraph_motifs_randesu.c 533
19.3. File examples/simple/igraph_motifs_randesu.c 535
20.1. File examples/simple/igraph_layout_reingold_tilford.c 551
21.1. File examples/simple/igraph_read_graph_lgl.c 567
21.2. File examples/simple/igraph_write_graph_lgl.c 567
21.3. File examples/simple/igraph_read_graph_graphdb.c 570
21.4. File examples/simple/graphml.c ... 570
21.5. File examples/simple/graphml.c ... 571
21.6. File examples/simple/gml.c ... 572
21.7. File examples/simple/gml.c ... 573
21.8. File examples/simple/foreign.c ... 575
21.9. File examples/simple/igraph_write_graph_pajek.c 576
21.10. File examples/simple/igraph_read_graph_dl.c 576
21.11. File examples/simple/dot.c ... 577
21.12. File examples/simple/safelocale.c ... 578
22.1. File examples/simple/flow.c ... 581
22.2. File examples/simple/flow2.c ... 581
22.3. File examples/simple/dominator_tree.c ... 583
22.4. File examples/simple/igraph_all_st_mincuts.c 586
22.5. File examples/simple/igraph_mincut.c ... 587
22.6. File examples/simple/cohesive_blocks.c ... 595
23.1. File examples/simple/igraph_is_separator.c 596
23.2. File examples/simple/igraph_is_minimal_separator.c 597
23.3. File examples/simple/igraph_minimal_separators.c 597
23.4. File examples/simple/igraph_minimum_size_separators.c 598
23.5. File examples/simple/even_tarjan.c ... 599
24.1. File examples/simple/igraph_community_optimal_modularity.c 603
24.2. File examples/simple/igraph_community_leading_eigenvector.c 610
24.3. File examples/simple/walktrap.c ... 615
24.4. File examples/simple/igraph_community_edge_betweenness.c 616
24.5. File examples/simple/igraph_community_fastgreedy.c 619
24.6. File examples/simple/igraph_community_multilevel.c 620
24.7. File examples/simple/igraph_community_leiden.c 621
24.8. File examples/simple/igraph_community_label_propagation.c 624
28.1. File examples/simple/igraph_disjoint_union.c 641
28.2. File examples/simple/igraph_union.c ... 643
28.3. File examples/simple/igraph_intersection.c 645
28.4. File examples/simple/igraph_difference.c ... 646
28.5. File examples/simple/igraph_complementer.c 647
28.6. File examples/simple/igraph_compose.c ... 648
28.7. File examples/simple/igraph_simplify.c ... 653
29.1. File examples/simple/blas.c ... 655
29.2. File examples/simple/blas.c ... 656
29.3. File examples/simple/blas_dgemm.c ... 657
29.4. File examples/simple/igraph_lapack_dgesv.c 659
29.5. File examples/simple/igraph_lapack_dsyevr.c 661
29.6. File examples/simple/igraph_lapack_dgeev.c 662
29.7. File examples/simple/igraph_lapack_dgeevx.c 664
30.1. File examples/simple/igraph_bipartite_create.c 673
32.1. File examples/simple/igraph_version.c ... 691
32.2. File examples/simple/igraph_random_sample.c 692
32.3. File examples/simple/igraph_power_law_fit.c 697

xxviii

Chapter 1. Introduction
igraph is a library for creating and manipulating graphs. You can look at it in two ways: first, igraph
contains the implementation of quite a lot of graph algorithms. These include classic graph algorithms
like graph isomorphism, graph girth and connectivity and also the new wave graph algorithms like
transitivity, graph motifs and community structure detection. Skim through the table of contents or
the index of this book to get an impression of what is available.

Second, igraph provides a platform for developing and/or implementing graph algorithms. It has an
efficient data structure for representing graphs, and a number of other data structures like flexible
vectors, stacks, heaps, queues, adjacency lists that are useful for implementing graph algorithms. In
fact these data structures evolved along with the implementation of the classic and non-classic graph
algorithms which make up the major part of the igraph library. This way, they were fine-tuned and
checked for correctness several times.

Our main goal with developing igraph was to create a graph library which is efficient on large, but not
extremely large graphs. More precisely, it is assumed that the graph(s) fit into the physical memory of
the computer. Nowadays this means graphs with several million vertices and/or edges. Our definition
of efficient is that it runs fast, both in theory and (more importantly) in practice.

We believe that one of the big strengths of igraph is that it can be embedded into a higher-level lan-
guage or environment. Three such embeddings (or interfaces if you look at them another way) are
currently being developed by us: an R package, a Python extension module, and a Mathematica (Wol-
fram Language) package. Others are likely to come. High level languages such as R or Python make
it possible to use graph routines with much greater comfort, without actually writing a single line of C
code. They have some, usually very small, speed penalty compared to the C version, but add ease of
use and much flexibility. This manual, however, covers only the C library. If you want to use Python,
R or the Wolfram Language, please see the documentation written specifically for these interfaces and
come back here only if you are interested in some detail which is not covered in those documents.

We still consider igraph as a child project. It has much room for development and we are sure that it
will improve a lot in the near future. Any feedback we can get from the users is very important for us,
as most of the time these questions and comments guide us in what to add and what to improve.

igraph is open source and distributed under the terms of the GNU GPL version 2 or (at your option)
any later version. We strongly believe that all the algorithms used in science, let that be graph theory or
not, should have an efficient open-source implementation allowing use and modification for anyone.

igraph is free software
igraph library

Copyright (C) 2003-2004 Gábor Csárdi <csardi.gabor@gmail.com>

Copyright (C) 2005-2019 Gábor Csárdi <csardi.gabor@gmail.com> and Tamás Nepusz <ntamas@g-
mail.com>

Copyright (C) 2020-2023 The igraph development team

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc.

1

Introduction

Citing igraph
To cite igraph in publications, please use the following reference:

Gábor Csárdi, Tamás Nepusz: The igraph software package for complex network research. InterJour-
nal Complex Systems, 1695, 2006.

The igraph C library is assigned the DOI 10.5281/zenodo.3630268 [https://doi.org/10.5281/zeno-
do.3630268] on Zenodo.

2

https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.5281/zenodo.3630268

Chapter 2. Installation
This chapter describes building igraph from source code and installing it. The source archive of the
latest stable release is always available from the igraph website [https://igraph.org/c/#downloads].
igraph is also included in many Linux distributions, as well as several package managers such as vcp-
kg [https://vcpkg.io/] (convenient on Windows), MacPorts [https://www.macports.org/] (macOS) and
Homebrew [https://brew.sh/] (macOS), which provide an easier means of installation. If you decide
to use them, please consult their documentation on how to install packages.

Prerequisites
To build igraph from sources, you will need at least:

• CMake [https://cmake.org] 3.18 or later

• C and C++ compilers

Visual Studio 2015 and later are supported. Earlier Visual Studio versions may or may not work.

Certain features also require the following libraries:

• libxml2 [http://www.xmlsoft.org/], required for GraphML support

igraph bundles a number of libraries for convenience. However, it is preferable to use external versions
of these libraries, which may improve performance. These are:

• GMP [https://gmplib.org/] (the bundled alternative is Mini-GMP)

• GLPK [https://www.gnu.org/software/glpk/] (version 4.57 or later)

• ARPACK [https://www.caam.rice.edu/software/ARPACK/]

• plfit [https://github.com/ntamas/plfit]

• A library providing a BLAS [https://www.netlib.org/blas/] API (available by default on macOS;
OpenBLAS [https://www.openblas.net] is one option on other systems)

• A library providing a LAPACK [https://www.netlib.org/lapack/] API (available by default on ma-
cOS; OpenBLAS [https://openblas.net] is one option on other systems)

When building the development version of igraph, bison, flex and git are also required. Released
versions do not require these tools.

To run the tests, diff is also required.

Installation

General build instructions
igraph uses a CMake-based build system [https://cmake.org/cmake/help/latest/guide/user-interac-
tion/index.html]. To compile it,

• Enter the directory where the igraph sources are:

$ cd igraph

3

https://igraph.org/c/#downloads
https://igraph.org/c/#downloads
https://vcpkg.io/
https://vcpkg.io/
https://vcpkg.io/
https://www.macports.org/
https://www.macports.org/
https://brew.sh/
https://brew.sh/
https://cmake.org
https://cmake.org
http://www.xmlsoft.org/
http://www.xmlsoft.org/
https://gmplib.org/
https://gmplib.org/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://github.com/ntamas/plfit
https://github.com/ntamas/plfit
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.openblas.net
https://www.openblas.net
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://openblas.net
https://openblas.net
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html
https://cmake.org/cmake/help/latest/guide/user-interaction/index.html

Installation

• Create a new directory. This is where igraph will be built:

$ mkdir build
$ cd build

• Run CMake, which will automatically configure igraph, and report the configuration:

$ cmake ..

To set a non-default installation location, such as /opt/local, use:

cmake .. -DCMAKE_INSTALL_PREFIX=/opt/local

• Check the output carefully, and ensure that all features you need are enabled. If CMake could not
find certain libraries, some features such as GraphML support may have been automatically dis-
abled.

• There are several ways to adjust the configuration:

• Run ccmake . on Unix-like systems or cmake-gui on Windows for a convenient interface.

• Simply edit the CMakeCache.txt file. Some of the relevant options are listed below.

• Once the configuration has been adjusted, run cmake .. again.

• Once igraph has been successfully configured, it can be built, tested and installed using:

$ cmake --build .
$ cmake --build . --target check
$ cmake --install .

Specific instructions for Windows

Microsoft Visual Studio

With Visual Studio, the steps to build igraph are generally the same as above. However, since the
Visual Studio CMake generator is a multi-configuration one, we must specify the configuration (typ-
ically Release or Debug) with each build command using the --config option:

mkdir build
cd build
cmake ..
cmake --build . --config Release
cmake --build . --target check --config Release

When building the development version, bison and flex must be available on the system. win-
flexbison [https://github.com/lexxmark/winflexbison] for Bison version 3.x can be useful for this
purpose—make sure that the executables are in the system PATH. The easiest installation option
is probably by installing winflexbison3 from the Chocolatey package manager [https://choco-
latey.org/packages/winflexbison3].

vcpkg

Most external dependencies can be conveniently installed using vcpkg [https://github.com/mi-
crosoft/vcpkg#quick-start-windows]. Note that igraph bundles all dependencies except libxml2,
which is needed for GraphML support.

4

https://github.com/lexxmark/winflexbison
https://github.com/lexxmark/winflexbison
https://github.com/lexxmark/winflexbison
https://chocolatey.org/packages/winflexbison3
https://chocolatey.org/packages/winflexbison3
https://chocolatey.org/packages/winflexbison3
https://github.com/microsoft/vcpkg#quick-start-windows
https://github.com/microsoft/vcpkg#quick-start-windows
https://github.com/microsoft/vcpkg#quick-start-windows

Installation

In order to use vcpkg integrate it in the build environment by executing vcpkg.exe integrate
install on the command line. When configuring igraph, point CMake to the correct vcpkg.c-
make file using -DCMAKE_TOOLCHAIN_FILE=..., as instructed.

Additionally, it might be that you need to set the appropriate so-called triplet using -DVCPKG_TAR-
GET_TRIPLET when running cmake, for exampling, setting it to x64-windows when using shared
builds of packages or x64-windows-static when using static builds. Similarly, you also need
to specify this target triplet when installing packages. For example, to install libxml2 as a shared
library, use vcpkg.exe install libxml2:x64-windows and to install libxml2 as a static
library, use vcpkg.exe install libxml2:x64-windows-static. In addition, there is
the possibility to use a static library with dynamic runtime linking using the x64-windows-sta-
tic-md triplet.

MSYS2

MSYS2 can be installed from msys2.org [https://www.msys2.org/]. After installing MSYS2, ensure
that it is up to date by opening a terminal and running pacman -Syuu.

The instructions below assume that you want to compile for a 64-bit target.

Install the following packages using pacman -S.

• Minimal requirements: mingw-w64-x86_64-toolchain, mingw-w64-x86_64-cmake.

• Optional dependencies that enable certain features: mingw-w64-x86_64-gmp, mingw-w64-
x86_64-libxml2

• Optional external libraries for better performance: mingw-w64-x86_64-openblas, mingw-
w64-x86_64-arpack, mingw-w64-x86_64-glpk

• Only needed for running the tests: diffutils

• Required only when building the development version: git, bison, flex

The following command will install of these at once:

pacman -S \
 mingw-w64-x86_64-toolchain mingw-w64-x86_64-cmake \
 mingw-w64-x86_64-gmp mingw-w64-x86_64-libxml2 \
 mingw-w64-x86_64-openblas mingw-w64-x86_64-arpack \
 mingw-w64-x86_64-glpk diffutils git bison flex

In order to build igraph, follow the General build instructions above, paying attention to the follow-
ing:

• When using MSYS2, start the “MSYS2 MinGW 64-bit” terminal, and not the “MSYS2 MSYS” one.

• Be sure to install the mingw-w64-x86_64-cmake package and not the cmake one. The latter
will not work.

• When running cmake, pass the option -G"MSYS Makefiles".

• Note that ccmake is not currently available. cmake-gui can be used only if the mingw-w64-
x86_64-qt5 package is installed.

Notable configuration options
The following options may be set to ON or OFF. Some of them have an AUTO setting, which chooses
a reasonable default based on what libraries are available on the current system.

5

https://www.msys2.org/
https://www.msys2.org/

Installation

• igraph bundles some of its dependencies for convenience. The IGRAPH_USE_INTERNAL_XXX
flags control whether these should be used instead of external versions. Set them to ON to use the
bundled (“vendored”) versions. Generally, external versions are preferable as they may be newer
and usually provide better performance.

• IGRAPH_GLPK_SUPPORT: whether to make use of the GLPK [https://www.gnu.org/soft-
ware/glpk/] library. Some features, such as finding a minimum feedback arc set or finding commu-
nities through exact modularity optimization, require this.

• IGRAPH_GRAPHML_SUPPORT: whether to enable support for reading and writing GraphML
[http://graphml.graphdrawing.org/] files. Requires the libxml2 [http://xmlsoft.org/] library.

• IGRAPH_OPENMP_SUPPORT: whether to use OpenMP parallelization to accelerate certain func-
tions such as PageRank calculation. Compiler support is required.

• IGRAPH_ENABLE_LTO: whether to build igraph with link-time optimization, which improves
performance. Not supported with all compilers.

• IGRAPH_ENABLE_TLS: whether to enable thread-local storage. Required when using igraph from
multiple threads.

• IGRAPH_WARNINGS_AS_ERRORS: whether to treat compiler warnings as errors. We strive to
eliminate all compiler warnings during development so this switch is turned on by default. If your
compiler prints warnings for some parts of the code that we did not anticipate, you can turn off this
option to prevent the warnings from stopping the compilation.

• BUILD_SHARED_LIBS [https://cmake.org/cmake/help/latest/vari-
able/BUILD_SHARED_LIBS.html]: whether to build a shared library instead of a static one.

• BLA_VENDOR: controls which library to use for BLAS [https://cmake.org/cmake/help/lat-
est/module/FindBLAS.html] and LAPACK [https://cmake.org/cmake/help/latest/module/FindLA-
PACK.html] functionality.

• CMAKE_INSTALL_PREFIX [https://cmake.org/cmake/help/latest/variable/CMAKE_INSTAL-
L_PREFIX.html]: the location where igraph will be installed.

Building the documentation
Most users will not need to build the documentation, as the release tarball contains pre-built HTML
documentation in the doc directory.

To build the documentation for the development version, simply build the html, pdf or info targets
for the HTML, PDF and Info versions of the documentation, respectively.

$ cmake --build . --target html

Building the HTML documentation requires Python 3, xmlto and source-highlight. Building
the PDF documentation also requires xsltproc, xmllint and fop. Building the Texinfo docu-
mentation also requires the docbook2X package, xmllint and makeinfo.

Notes for package maintainers
This section is for people who package igraph for Linux distros or other package managers. Please
read it carefully before packaging igraph.

Auto-detection of dependencies
igraph bundles several of its dependencies (or simplified versions of its dependencies). During config-
uration time, it checks whether each dependency is present on the system. If yes, it uses it. Otherwise,

6

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://xmlsoft.org/
http://xmlsoft.org/
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindBLAS.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/module/FindLAPACK.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html

Installation

it falls back to the bundled (“vendored”) version. In order to make configuration as deterministic as
possible, you may want to disable this auto-detection. To do so, set each of the IGRAPH_USE_IN-
TERNAL_XXX options described above. Additionally, set BLA_VENDOR to use the BLAS and LA-
PACK implementations of your choice. This should be the same BLAS and LAPACK library that
igraph's other dependencies (e.g., ARPACK) are linked against.

For example, to force igraph to use external versions of all dependencies except plfit, and to use
OpenBLAS for BLAS/LAPACK, use

$ cmake .. \
 -DIGRAPH_USE_INTERNAL_BLAS=OFF \
 -DIGRAPH_USE_INTERNAL_LAPACK=OFF \
 -DIGRAPH_USE_INTERNAL_ARPACK=OFF \
 -DIGRAPH_USE_INTERNAL_GLPK=OFF \
 -DIGRAPH_USE_INTERNAL_GMP=OFF \
 -DIGRAPH_USE_INTERNAL_PLFIT=ON \
 -DBLA_VENDOR=OpenBLAS \
 -DIGRAPH_GRAPHML_SUPPORT=ON

Shared and static builds
On Windows, shared and static builds should not be installed in the same location. If you decide to
do so anyway, keep in mind the following: Both builds contain an igraph.lib file. The static one
should be renamed to avoid conflict. The headers from the static build are incompatible with the shared
library. The headers from the shared build may be used with the static library, but IGRAPH_STATIC
must be defined when compiling programs that will link to igraph statically.

These issues do not affect Unix-like systems.

Cross-compiling
When building igraph with an internal ARPACK, LAPACK or BLAS, it makes use of f2c, which
compiles and runs the arithchk program at build time to detect the floating point characteristics of
the current system. It writes the results into the arith.h header. However, running this program is
not possible when cross-compiling without providing a userspace emulator that can run executables
of the target platform on the host system. Therefore, when cross-compiling, you either need to provide
such an emulator with the CMAKE_CROSSCOMPILING_EMULATOR option, or you need to specify a
pre-generated version of the arith.h header file through the F2C_EXTERNAL_ARITH_HEADER
CMake option. An example version of this header follows for the x86_64 and arm64 target architecures
on macOS. Warning: Do not use this version of arith.h on other systems or architectures.

#define IEEE_8087
#define Arith_Kind_ASL 1
#define Long int
#define Intcast (int)(long)
#define Double_Align
#define X64_bit_pointers
#define NANCHECK
#define QNaN0 0x0
#define QNaN1 0x7ff80000

igraph also checks whether the endianness of uint64_t matches the endianness of double on
the platform being compiled. This is needed to ensure that certain functions in igraph's random num-
ber generator work properly. However, it is not possible to execute this check when cross-compiling
without an emulator, so in this case igraph simply assumes that the endianness matches (which is the
case for the vast majority of platforms anyway). The only case where you might run into problems is

7

Installation

when you cross-compile for Apple Silicon (arm64) from an Intel-based Mac, in which case CMake
might not realize that you are cross-compiling and will try to execute the check anyway. You can
work around this by setting IEEE754_DOUBLE_ENDIANNESS_MATCHES to ON explicitly before
invoking CMake.

Providing an emulator in CMAKE_CROSSCOMPILING_EMULATOR has the added benefit that you
can run the compiled unit tests on the host platform. We have experimented with cross-compiling
to 64-bit ARM CPUs (aarch64) on 64-bit Intel CPUs (amd64), and we can confirm that using
qemu-aarch64 works as a cross-compiling emulator in this setup.

Additional notes
• As of igraph 0.10, there is no tangible benefit to using an external GMP, as igraph does not yet use

GMP in any performance-critical way. The bundled Mini-GMP is sufficient.

• Link-time optimization noticeably improves the performance of some igraph functions. To enable
it, use -DIGRAPH_ENABLE_LTO=ON. The AUTO setting is also supported, and will enable link-
time optimization only if the current compiler supports it. Note that this is detected by CMake, and
the detection is not always accurate.

• We saw occasional hangs on Windows when igraph was built for a 32-bit target with MinGW and
linked to OpenBLAS. We believe this to be an issue with OpenBLAS, not igraph. On this platform,
you may want to opt for a different BLAS/LAPACK or the bundled BLAS/LAPACK.

8

Chapter 3. Tutorial
Compiling programs using igraph

The following short example program demonstrates the basic usage of the igraph library. Save it into
a file named igraph_test.c.

#include <igraph.h>

int main(void) {
 igraph_integer_t num_vertices = 1000;
 igraph_integer_t num_edges = 1000;
 igraph_real_t diameter;
 igraph_t graph;

 igraph_rng_seed(igraph_rng_default(), 42);

 igraph_erdos_renyi_game_gnm(
 &graph, num_vertices, num_edges,
 IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS
);

 igraph_diameter(
 &graph, &diameter,
 /* from = */ NULL, /* to = */ NULL,
 /* vertex_path = */ NULL, /* edge_path = */ NULL,
 IGRAPH_UNDIRECTED, /* unconn= */ true
);
 printf("Diameter of a random graph with average degree %g: %g\n",
 2.0 * igraph_ecount(&graph) / igraph_vcount(&graph),
 (double) diameter);

 igraph_destroy(&graph);

 return 0;
}

This example illustrates a couple of points:

• First, programs using the igraph library should include the igraph.h header file.

• Second, igraph uses the igraph_integer_t type for integers instead of int or long int, and it also uses
the igraph_real_t type for real numbers instead of double. Depending on how igraph was compiled,
and whether you are using a 32-bit or 64-bit system, igraph_integer_t may be a 32-bit or 64-bit
integer.

• Third, igraph graph objects are represented by the igraph_t data type.

• Fourth, the igraph_erdos_renyi_game_gnm() creates a graph and igraph_destroy()
destroys it, i.e. deallocates the memory associated to it.

For compiling this program you need a C compiler. Optionally, CMake [https://cmake.org] can be
used to automate the compilation.

Compiling with CMake
It is convenient to use CMake because it can automatically discover the necessary compilation flags
on all operating systems. Many IDEs support CMake, and can work with CMake projects directly.

9

https://cmake.org
https://cmake.org

Tutorial

To create a CMake project for this example program, create a file name CMakeLists.txt with
the following contents:

cmake_minimum_required(VERSION 3.18)
project(igraph_test)

find_package(igraph REQUIRED)

add_executable(igraph_test igraph_test.c)
target_link_libraries(igraph_test PUBLIC igraph::igraph)

To compile the project, create a new directory called build in the root of the igraph source tree,
and switch to it:

mkdir build
cd build

Run CMake to configure the project:

cmake ..

If igraph was installed at a non-standard location, specify its prefix using the -DCMAKE_PRE-
FIX_PATH=... option. The prefix must be the same directory that was specified as the
CMAKE_INSTALL_PREFIX when compiling igraph.

If configuration has succeeded, build the program using

cmake --build .

C++ must be enabled in igraph projects

Parts of igraph are implemented in C++; therefore, any CMake target that depends on igraph
should use the C++ linker. Furthermore, OpenMP support in igraph works correctly only if
C++ is enabled in the CMake project. The script that finds igraph on the host machine will
throw an error if C++ support is not enabled in the CMake project.

C++ support is enabled by default when no languages are explicitly specified in
CMake's project [https://cmake.org/cmake/help/latest/command/project.html] command,
e.g. project(igraph_test). If you do specify some languages explicitly, make sure
to also include CXX, e.g. project(igraph_test C CXX).

Compiling without CMake
On most Unix-like systems, the default C compiler is called cc. To compile the test program, you will
need a command similar to the following:

cc igraph_test.c -I/usr/local/include/igraph -L/usr/local/lib -ligraph -o igraph_test

The exact form depends on where igraph was installed on your system, whether it was compiled as
a shared or static library, and the external libraries it was linked to. The directory after the -I switch
is the one containing the igraph.h file, while the one following -L should contain the library file
itself, usually a file called libigraph.a (static library on macOS and Linux), libigraph.so
(shared library on Linux), libigraph.dylib (shared library on macOS), igraph.lib (static
library on Windows) or igraph.dll (shared library on Windows). If igraph was compiled as a
static library, it is also necessary to manually link to all of its dependencies.

10

https://cmake.org/cmake/help/latest/command/project.html
https://cmake.org/cmake/help/latest/command/project.html

Tutorial

If your system has the pkg-config utility you are likely to get the necessary compile options by issuing
the command

pkg-config --libs --cflags igraph

(if igraph was built as a shared library) or

pkg-config --static --libs --cflags igraph

(if igraph was built as a static library).

Running the program
On most systems, the executable can be run by simply typing its name like this:

./igraph_test

If you use dynamic linking and the igraph library is not installed in a standard place, you may need
to add its location to the LD_LIBRARY_PATH (Linux), DYLD_LIBRARY_PATH (macOS) or PATH
(Windows) environment variables. This is typically necessary on Windows systems.

Creating your first graphs
The functions generating graph objects are called graph generators. Stochastic (i.e. randomized) graph
generators are called “games”.

igraph can handle directed and undirected graphs. Most graph generators are able to create
both types of graphs and most other functions are usually also capable of handling both. E.g.,
igraph_get_shortest_paths(), which calculates shortest paths from a vertex to other ver-
tices, can calculate directed or undirected paths.

igraph has sophisticated ways for creating graphs. The simplest graphs are deterministic reg-
ular structures like star graphs (igraph_star()), ring graphs (igraph_ring()), lattices
(igraph_square_lattice()) or trees (igraph_kary_tree()).

The following example creates an undirected regular circular lattice, adds some random edges to it
and calculates the average length of shortest paths between all pairs of vertices in the graph before and
after adding the random edges. (The message is that some random edges can reduce path lengths a lot.)

#include <igraph.h>

int main(void) {
 igraph_t graph;
 igraph_vector_int_t dimvector;
 igraph_vector_int_t edges;
 igraph_vector_bool_t periodic;
 igraph_real_t avg_path_len;

 igraph_vector_int_init(&dimvector, 2);
 VECTOR(dimvector)[0]=30;
 VECTOR(dimvector)[1]=30;

 igraph_vector_bool_init(&periodic, 2);
 igraph_vector_bool_fill(&periodic, true);
 igraph_square_lattice(&graph, &dimvector, 0, IGRAPH_UNDIRECTED, /* mutual= */ false, &periodic);

11

Tutorial

 igraph_average_path_length(&graph, &avg_path_len, NULL, IGRAPH_UNDIRECTED, /* unconn= */ true);
 printf("Average path length (lattice): %g\n", (double) avg_path_len);

 igraph_rng_seed(igraph_rng_default(), 42); /* seed RNG before first use */
 igraph_vector_int_init(&edges, 20);
 for (igraph_integer_t i=0; i < igraph_vector_int_size(&edges); i++) {
 VECTOR(edges)[i] = RNG_INTEGER(0, igraph_vcount(&graph) - 1);
 }

 igraph_add_edges(&graph, &edges, NULL);
 igraph_average_path_length(&graph, &avg_path_len, NULL, IGRAPH_UNDIRECTED, /* unconn= */ true);
 printf("Average path length (randomized lattice): %g\n", (double) avg_path_len);

 igraph_vector_bool_destroy(&periodic);
 igraph_vector_int_destroy(&dimvector);
 igraph_vector_int_destroy(&edges);
 igraph_destroy(&graph);

 return 0;
}

This example illustrates some new points. igraph uses igraph_vector_t and its related types
(igraph_vector_int_t, igraph_vector_bool_t and so on) instead of plain C arrays. igraph_vector_t is su-
perior to regular arrays in almost every sense. Vectors are created by the igraph_vector_init()
function and, like graphs, they should be destroyed if not needed any more by calling igraph_vec-
tor_destroy() on them. A vector can be indexed by the VECTOR() function (right now it is a
macro). The elements of a vector are of type igraph_real_t for igraph_vector_t, and of type igraph_in-
teger_t for igraph_vector_int_t. As you might expect, igraph_vector_bool_t holds igraph_bool_t val-
ues. Vectors can be resized and most igraph functions returning the result in a vector automatically
resize it to the size they need.

igraph_square_lattice() takes an integer vector argument specifying the dimensions of the
lattice. In this example we generate a 30x30 two dimensional periodic lattice. See the documentation
of igraph_square_lattice() in the reference manual for the other arguments.

The vertices in a graph are identified by a vertex ID, an integer between 0 and N-1, where N is the
number of vertices in the graph. The vertex count can be retrieved using igraph_vcount(), as
in the example.

The igraph_add_edges() function simply takes a graph and a vector of vertex IDs defining the
new edges. The first edge is between the first two vertex IDs in the vector, the second edge is between
the second two, etc. This way we add ten random edges to the lattice.

Note that this example program may add loop edges, edges pointing a vertex to itself, or multiple
edges, more than one edge between the same pair of vertices. igraph_t can of course represent loops
and multiple edges, although some routines expect simple graphs, i.e. graphs which contain neither
of these. This is because some structural properties are ill-defined for non-simple graphs. Loop and
multi-edges can be removed by calling igraph_simplify().

Calculating various properties of graphs
In our next example we will calculate various centrality measures in a friendship graph. The friendship
graph is from the famous Zachary karate club study. (Do a web search on "Zachary karate" if you
want to know more about this.) Centrality measures quantify how central is the position of individual
vertices in the graph.

#include <igraph.h>

12

Tutorial

int main(void) {
 igraph_t graph;
 igraph_vector_int_t v;
 igraph_vector_int_t result;
 igraph_vector_t result_real;
 igraph_integer_t edges[] = { 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8,
 0,10, 0,11, 0,12, 0,13, 0,17, 0,19, 0,21, 0,31,
 1, 2, 1, 3, 1, 7, 1,13, 1,17, 1,19, 1,21, 1,30,
 2, 3, 2, 7, 2,27, 2,28, 2,32, 2, 9, 2, 8, 2,13,
 3, 7, 3,12, 3,13, 4, 6, 4,10, 5, 6, 5,10, 5,16,
 6,16, 8,30, 8,32, 8,33, 9,33, 13,33, 14,32, 14,33,
 15,32, 15,33, 18,32, 18,33, 19,33, 20,32, 20,33,
 22,32, 22,33, 23,25, 23,27, 23,32, 23,33, 23,29,
 24,25, 24,27, 24,31, 25,31, 26,29, 26,33, 27,33,
 28,31, 28,33, 29,32, 29,33, 30,32, 30,33, 31,32,
 31,33, 32,33 };

 igraph_vector_int_view(&v, edges, sizeof(edges) / sizeof(edges[0]));
 igraph_create(&graph, &v, 0, IGRAPH_UNDIRECTED);

 igraph_vector_int_init(&result, 0);
 igraph_vector_init(&result_real, 0);

 igraph_degree(&graph, &result, igraph_vss_all(), IGRAPH_ALL, IGRAPH_LOOPS);
 printf("Maximum degree is %10" IGRAPH_PRId ", vertex %2" IGRAPH_PRId ".\n",
 igraph_vector_int_max(&result),
 igraph_vector_int_which_max(&result));

 igraph_closeness(&graph, &result_real, NULL, NULL, igraph_vss_all(), IGRAPH_ALL,
 /* weights= */ NULL, /* normalized= */ false);
 printf("Maximum closeness is %10g, vertex %2" IGRAPH_PRId ".\n",
 (double) igraph_vector_max(&result_real),
 igraph_vector_which_max(&result_real));

 igraph_betweenness(&graph, &result_real, igraph_vss_all(),
 IGRAPH_UNDIRECTED, /* weights= */ NULL);
 printf("Maximum betweenness is %10g, vertex %2" IGRAPH_PRId ".\n",
 (double) igraph_vector_max(&result_real),
 igraph_vector_which_max(&result_real));

 igraph_vector_int_destroy(&result);
 igraph_vector_destroy(&result_real);
 igraph_destroy(&graph);

 return 0;
}

This example demonstrates some new operations. First of all, it shows a way to create a graph a list
of edges stored in a plain C array. Function igraph_vector_view() creates a view of a C array.
It does not copy any data, which means that you must not call igraph_vector_destroy() on
a vector created this way. This vector is then used to create the undirected graph.

Then the degree, closeness and betweenness centrality of the vertices is calculated and the highest
values are printed. Note that the vector result, into which these functions will write their result,
must be initialized first, and also that the functions resize it to be able to hold the result.

Notice that in order to print values of type igraph_integer_t, we used the IGRAPH_PRId format macro
constant. This macro is similar to the standard PRI constants defined in stdint.h, and expands to
the correct printf format specifier on each platform that igraph supports.

13

Tutorial

The igraph_vss_all() argument tells the functions to calculate the property for every vertex in
the graph. It is shorthand for a vertex selector, represented by type igraph_vs_t. Vertex selectors help
perform operations on a subset of vertices. You can read more about them in one of the following
chapters.

14

Chapter 4. Basic data types and
interface
The igraph data model

The igraph library can handle directed and undirected graphs. The igraph graphs are multisets of or-
dered (if directed) or unordered (if undirected) labeled pairs. The labels of the pairs plus the number
of vertices always starts with zero and ends with the number of edges minus one. In addition to that,
a table of metadata is also attached to every graph, its most important entries being the number of
vertices in the graph and whether the graph is directed or undirected.

Like the edges, the igraph vertices are also labeled by numbers between zero and the number of vertices
minus one. So, to summarize, a directed graph can be imagined like this:

 (vertices: 6,
 directed: yes,
 {
 (0,2),
 (2,2),
 (3,2),
 (3,3),
 (3,4),
 (3,4),
 (4,3),
 (4,1)
 }
)

Here the edges are ordered pairs or vertex ids, and the graph is a multiset of edges plus some metadata.

An undirected graph is like this:

 (vertices: 6,
 directed: no,
 {
 (0,2),
 (2,2),
 (2,3),
 (3,3),
 (3,4),
 (3,4),
 (3,4),
 (1,4)
 }
)

Here, an edge is an unordered pair of two vertex IDs. A graph is a multiset of edges plus metadata,
just like in the directed case.

It is possible to convert between directed and undirected graphs, see the igraph_to_directed()
and igraph_to_undirected() functions.

igraph aims to robustly support multigraphs, i.e. graphs which have more than one edge between some
pairs of vertices, as well as graphs with self-loops. Most functions which do not support such graphs

15

Basic data types and interface

will check their input and issue an error if it is not valid. Those rare functions which do not perform
this check clearly indicate this in their documentation. To eliminate multiple edges from a graph, you
can use igraph_simplify().

General conventions of igraph functions
igraph has a simple and consistent interface. Most functions check their input for validity and display
an informative error message when something goes wrong. In order to support this, the majority of
functions return an error code. In basic usage, this code can be ignored, as the default behaviour is
to abort the program immediately upon error. See the section on error handling for more information
on this topic.

Results are typically returned through output arguments, i.e. pointers to a data structure into which
the result will be written. In almost all cases, this data structure is expected to be pre-initialized. A
few simple functions communicate their result directly through their return value—these functions
can never encounter an error.

Atomic data types

igraph introduces a few aliases to standard C data types that are then used throughout the library.
The most important of these types is igraph_integer_t, which is an alias to either a 32-bit or a 64-
bit signed integer, depending on whether igraph was compiled in 32-bit or 64-bit mode. The size of
igraph_integer_t also influences the maximum number of vertices that an igraph graph can represent
as the number of vertices is stored in a variable of type igraph_integer_t.

Since the size of a variable of type igraph_integer_t may change depending on how igraph is compiled,
you cannot simply use %d or %ld as a placeholder for igraph integers in printf format strings.
igraph provides the IGRAPH_PRId macro, which maps to d, ld or lld depending on the size of
igraph_integer_t, and you must use this macro in printf format strings to avoid compiler warnings.

Similarly to how igraph_integer_t maps to the standard size signed integer in the library, igraph_uint_t
maps to a 32-bit or a 64-bit unsigned integer. It is guaranteed that the size of igraph_integer_t is the
same as the size of igraph_uint_t. igraph provides IGRAPH_PRIu as a format string placeholder for
variables of type igraph_uint_t.

Real numbers (i.e. quantities that can potentially be fractional or infinite) are represented with a type
named igraph_real_t. Currently igraph_real_t is always aliased to double, but it is still good practice
to use igraph_real_t in your own code for sake of consistency.

Boolean values are represented with a type named igraph_bool_t. It tries to be as small as possible
since it only needs to represent a truth value. For printing purposes, you can treat it as an integer and
use %d in format strings as a placeholder for an igraph_bool_t.

Upper and lower limits of igraph_integer_t and igraph_uint_t are provided by the constants named
IGRAPH_INTEGER_MIN, IGRAPH_INTEGER_MAX, IGRAPH_UINT_MIN and IGRAPH_UIN-
T_MAX.

The basic interface
This is the very minimal API in igraph. All the other functions use this minimal set for creating and
manipulating graphs.

16

Basic data types and interface

This is a very important principle since it makes possible to implement other data representations by
implementing only this minimal set.

This section lists all the functions and macros that are considered as part of the core API from the
point of view of the users of igraph. Some of these functions and macros have sensible default imple-
mentations that simply call some other core function (e.g., igraph_empty() calls igraph_emp-
ty_attrs() with a null attribute table pointer). If you wish to experiment with implementing an
alternative data type, the actual number of functions that you need to replace is lower as you can rely
on the same default implementations in most cases.

Graph constructors and destructors

igraph_empty — Creates an empty graph with some vertices
and no edges.

igraph_error_t igraph_empty(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed);

The most basic constructor, all the other constructors should call this to create a minimal graph object.
Our use of the term "empty graph" in the above description should be distinguished from the mathe-
matical definition of the empty or null graph. Strictly speaking, the empty or null graph in graph theory
is the graph with no vertices and no edges. However by "empty graph" as used in igraph we mean
a graph having zero or more vertices, but no edges.

Arguments:

graph: Pointer to a not-yet initialized graph object.

n: The number of vertices in the graph, a non-negative integer number is expected.

directed: Boolean; whether the graph is directed or not. Supported values are:

IGRAPH_DIRECTED The graph will be directed.

IGRAPH_UNDIRECTED The graph will be undirected.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|) for a graph with |V| vertices (and no edges).

Example 4.1. File examples/simple/creation.c

igraph_empty_attrs — Creates an empty graph with some ver-
tices, no edges and some graph attributes.

igraph_error_t igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void *attr);

Use this instead of igraph_empty() if you wish to add some graph attributes right after initial-
ization. This function is currently not very interesting for the ordinary user. Just supply 0 here or use
igraph_empty().

17

Basic data types and interface

This function does not set any vertex attributes. To create a graph which has vertex attributes, call
this function specifying 0 vertices, then use igraph_add_vertices() to add vertices and their
attributes.

Arguments:

graph: Pointer to a not-yet initialized graph object.

n: The number of vertices in the graph; a non-negative integer number is expected.

directed: Boolean; whether the graph is directed or not. Supported values are:

IGRAPH_DIRECTED Create a directed graph.

IGRAPH_UNDIRECTED Create an undirected graph.

attr: The graph attributes. Supply NULL if not graph attributes are to be set.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

See also:

igraph_empty() to create an empty graph without attributes; igraph_add_vertices()
and igraph_add_edges() to add vertices and edges, possibly with associated attributes.

Time complexity: O(|V|) for a graph with |V| vertices (and no edges).

igraph_copy — Creates an exact (deep) copy of a graph.

igraph_error_t igraph_copy(igraph_t *to, const igraph_t *from);

This function deeply copies a graph object to create an exact replica of it. The new replica should be
destroyed by calling igraph_destroy() on it when not needed any more.

You can also create a shallow copy of a graph by simply using the standard assignment operator, but
be careful and do not destroy a shallow replica. To avoid this mistake, creating shallow copies is not
recommended.

Arguments:

to: Pointer to an uninitialized graph object.

from: Pointer to the graph object to copy.

Returns:

Error code.

Time complexity: O(|V|+|E|) for a graph with |V| vertices and |E| edges.

Example 4.2. File examples/simple/igraph_copy.c

18

Basic data types and interface

igraph_destroy — Frees the memory allocated for a graph ob-
ject.

void igraph_destroy(igraph_t *graph);

This function should be called for every graph object exactly once.

This function invalidates all iterators (of course), but the iterators of a graph should be destroyed before
the graph itself anyway.

Arguments:

graph: Pointer to the graph to free.

Time complexity: operating system specific.

Basic query operations

igraph_vcount — The number of vertices in a graph.

igraph_integer_t igraph_vcount(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

Number of vertices.

Time complexity: O(1)

igraph_ecount — The number of edges in a graph.

igraph_integer_t igraph_ecount(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

Number of edges.

Time complexity: O(1)

igraph_is_directed — Is this a directed graph?

19

Basic data types and interface

igraph_bool_t igraph_is_directed(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

Logical value, true if the graph is directed, false otherwise.

Time complexity: O(1)

Example 4.3. File examples/simple/igraph_is_directed.c

igraph_edge — Returns the head and tail vertices of an edge.

igraph_error_t igraph_edge(
 const igraph_t *graph, igraph_integer_t eid,
 igraph_integer_t *from, igraph_integer_t *to
);

Arguments:

graph: The graph object.

eid: The edge ID.

from: Pointer to an igraph_integer_t. The tail (source) of the edge will be placed here.

to: Pointer to an igraph_integer_t. The head (target) of the edge will be placed here.

Returns:

Error code.

See also:

igraph_get_eid() for the opposite operation; igraph_edges() to get the endpoints of
several edges; IGRAPH_TO(), IGRAPH_FROM() and IGRAPH_OTHER() for a faster but non-
error-checked version.

Added in version 0.2.

Time complexity: O(1).

igraph_edges — Gives the head and tail vertices of a series of
edges.

igraph_error_t igraph_edges(const igraph_t *graph, igraph_es_t eids, igraph_vector_int_t *edges);

20

Basic data types and interface

Arguments:

graph: The graph object.

eids: Edge selector, the series of edges.

edges: Pointer to an initialized vector. The start and endpoints of each edge will be placed here.

Returns:

Error code.

See also:

igraph_get_edgelist() to get the endpoints of all edges; igraph_get_eids() for the
opposite operation; igraph_edge() for getting the endpoints of a single edge; IGRAPH_TO(),
IGRAPH_FROM() and IGRAPH_OTHER() for a faster but non-error-checked method.

Time complexity: O(k) where k is the number of edges in the selector.

IGRAPH_FROM — The source vertex of an edge.

#define IGRAPH_FROM(graph,eid)

Faster than igraph_edge(), but no error checking is done: eid is assumed to be valid.

Arguments:

graph: The graph.

eid: The edge ID.

Returns:

The source vertex of the edge.

See also:

igraph_edge() if error checking is desired.

IGRAPH_TO — The target vertex of an edge.

#define IGRAPH_TO(graph,eid)

Faster than igraph_edge(), but no error checking is done: eid is assumed to be valid.

Arguments:

graph: The graph object.

eid: The edge ID.

21

Basic data types and interface

Returns:

The target vertex of the edge.

See also:

igraph_edge() if error checking is desired.

IGRAPH_OTHER — The other endpoint of an edge.

#define IGRAPH_OTHER(graph,eid,vid)

Typically used with undirected edges when one endpoint of the edge is known, and the other endpoint
is needed. No error checking is done: eid and vid are assumed to be valid.

Arguments:

graph: The graph object.

eid: The edge ID.

vid: The vertex ID of one endpoint of an edge.

Returns:

The other endpoint of the edge.

See also:

IGRAPH_TO() and IGRAPH_FROM() to get the source and target of directed edges.

igraph_get_eid — Get the edge ID from the endpoints of an
edge.

igraph_error_t igraph_get_eid(const igraph_t *graph, igraph_integer_t *eid,
 igraph_integer_t from, igraph_integer_t to,
 igraph_bool_t directed, igraph_bool_t error);

For undirected graphs from and to are exchangeable.

Arguments:

graph: The graph object.

eid: Pointer to an integer, the edge ID will be stored here. If error is false and no edge
was found, -1 will be returned.

from: The starting point of the edge.

to: The end point of the edge.

directed: Logical constant, whether to search for directed edges in a directed graph. Ignored for
undirected graphs.

22

Basic data types and interface

error: Logical scalar, whether to report an error if the edge was not found. If it is false, then
-1 will be assigned to eid. Note that invalid vertex IDs in input arguments (from
or to) always trigger an error, regardless of this setting.

Returns:

Error code.

See also:

igraph_edge() for the opposite operation, igraph_get_all_eids_between() to re-
trieve all edge IDs between a pair of vertices.

Time complexity: O(log (d)), where d is smaller of the out-degree of from and in-degree of to if
directed is true. If directed is false, then it is O(log(d)+log(d2)), where d is the same as before
and d2 is the minimum of the out-degree of to and the in-degree of from.

Example 4.4. File examples/simple/igraph_get_eid.c

Added in version 0.2.

igraph_get_eids — Return edge IDs based on the adjacent ver-
tices.

igraph_error_t igraph_get_eids(const igraph_t *graph, igraph_vector_int_t *eids,
 const igraph_vector_int_t *pairs,
 igraph_bool_t directed, igraph_bool_t error);

The pairs of vertex IDs for which the edges are looked up are taken consecutively from the
pairs vector, i.e. VECTOR(pairs)[0] and VECTOR(pairs)[1] specify the first pair, VEC-
TOR(pairs)[2] and VECTOR(pairs)[3] the second pair, etc.

If you have a sequence of vertex IDs that describe a path on the graph, use igraph_ex-
pand_path_to_pairs() to convert them to a list of vertex pairs along the path.

If the error argument is true, then it is an error to specify pairs of vertices that are not connected.
Otherwise -1 is reported for vertex pairs without at least one edge between them.

If there are multiple edges in the graph, then these are ignored; i.e. for a given pair of vertex IDs,
igraph always returns the same edge ID, even if the pair appears multiple times in pairs.

Arguments:

graph: The input graph.

eids: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

pairs: Vector giving pairs of vertices to fetch the edges for.

directed: Logical scalar, whether to consider edge directions in directed graphs. This is ignored
for undirected graphs.

error: Logical scalar, whether it is an error to supply non-connected vertices. If false, then
-1 is returned for non-connected pairs.

23

Basic data types and interface

Returns:

Error code.

Time complexity: O(n log(d)), where n is the number of queried edges and d is the average degree
of the vertices.

See also:

igraph_get_eid() for a single edge.

Example 4.5. File examples/simple/igraph_get_eids.c

igraph_get_all_eids_between — Returns all edge IDs be-
tween a pair of vertices.

igraph_error_t igraph_get_all_eids_between(
 const igraph_t *graph, igraph_vector_int_t *eids,
 igraph_integer_t source, igraph_integer_t target, igraph_bool_t directed
);

For undirected graphs source and target are exchangeable.

Arguments:

graph: The input graph.

eids: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

source: The ID of the source vertex

target: The ID of the target vertex

directed: Logical scalar, whether to consider edge directions in directed graphs. This is ignored
for undirected graphs.

Returns:

Error code.

Time complexity: TODO

See also:

igraph_get_eid() for a single edge.

igraph_neighbors — Adjacent vertices to a vertex.

igraph_error_t igraph_neighbors(const igraph_t *graph, igraph_vector_int_t *neis, igraph_integer_t pnode,
 igraph_neimode_t mode);

24

Basic data types and interface

Arguments:

graph: The graph to work on.

neis: This vector will contain the result. The vector should be initialized beforehand and will be
resized. Starting from igraph version 0.4 this vector is always sorted, the vertex IDs are
in increasing order. If one neighbor is connected with multiple edges, the neighbor will
be returned multiple times.

pnode: The id of the node for which the adjacent vertices are to be searched.

mode: Defines the way adjacent vertices are searched in directed graphs. It can have the follow-
ing values: IGRAPH_OUT, vertices reachable by an edge from the specified vertex are
searched; IGRAPH_IN, vertices from which the specified vertex is reachable are searched;
IGRAPH_ALL, both kinds of vertices are searched. This parameter is ignored for undi-
rected graphs.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID. IGRAPH_EINVMODE: invalid mode argu-
ment. IGRAPH_ENOMEM: not enough memory.

Time complexity: O(d), d is the number of adjacent vertices to the queried vertex.

Example 4.6. File examples/simple/igraph_neighbors.c

igraph_incident — Gives the incident edges of a vertex.

igraph_error_t igraph_incident(const igraph_t *graph, igraph_vector_int_t *eids, igraph_integer_t pnode,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

eids: An initialized vector. It will be resized to hold the result.

pnode: A vertex ID.

mode: Specifies what kind of edges to include for directed graphs. IGRAPH_OUT means only
outgoing edges, IGRAPH_IN only incoming edges, IGRAPH_ALL both. This parameter
is ignored for undirected graphs.

Returns:

Error code. IGRAPH_EINVVID: invalid pnode argument, IGRAPH_EINVMODE: invalid mode
argument.

Added in version 0.2.

Time complexity: O(d), the number of incident edges to pnode.

igraph_degree — The degree of some vertices in a graph.

25

Basic data types and interface

igraph_error_t igraph_degree(const igraph_t *graph, igraph_vector_int_t *res,
 const igraph_vs_t vids,
 igraph_neimode_t mode, igraph_bool_t loops);

This function calculates the in-, out- or total degree of the specified vertices.

This function returns the result as a vector of igraph_integer_t values. In applications where
igraph_real_t is desired, use igraph_strength() with NULL weights.

Arguments:

graph: The graph.

res: Integer vector, this will contain the result. It should be initialized and will be resized to
be the appropriate size.

vids: Vertex selector, giving the vertex IDs of which the degree will be calculated.

mode: Defines the type of the degree for directed graphs. Valid modes are: IGRAPH_OUT, out-
degree; IGRAPH_IN, in-degree; IGRAPH_ALL, total degree (sum of the in- and out-de-
gree). This parameter is ignored for undirected graphs.

loops: Boolean, gives whether the self-loops should be counted.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID. IGRAPH_EINVMODE: invalid mode argu-
ment.

Time complexity: O(v) if loops is true, and O(v*d) otherwise. v is the number of vertices for which
the degree will be calculated, and d is their (average) degree.

See also:

igraph_strength() for the version that takes into account edge weights; igraph_de-
gree_1() to efficiently compute the degree of a single vertex; igraph_maxdegree() if you
only need the largest degree.

Example 4.7. File examples/simple/igraph_degree.c

igraph_degree_1 — The degree of of a single vertex in the
graph.

igraph_error_t igraph_degree_1(const igraph_t *graph, igraph_integer_t *deg,
 igraph_integer_t vid, igraph_neimode_t mode, igraph_bool_t loops);

This function calculates the in-, out- or total degree of a single vertex. For a single vertex, it is more
efficient than calling igraph_degree().

Arguments:

graph: The graph.

deg: Pointer to the integer where the computed degree will be stored.

26

Basic data types and interface

vid: The vertex for which the degree will be calculated.

mode: Defines the type of the degree for directed graphs. Valid modes are: IGRAPH_OUT, out-
degree; IGRAPH_IN, in-degree; IGRAPH_ALL, total degree (sum of the in- and out-de-
gree). This parameter is ignored for undirected graphs.

loops: Boolean, gives whether the self-loops should be counted.

Returns:

Error code.

See also:

igraph_degree() to compute the degree of several vertices at once.

Time complexity: O(1) if loops is true, and O(d) otherwise, where d is the degree.

Adding and deleting vertices and edges

igraph_add_edge — Adds a single edge to a graph.

igraph_error_t igraph_add_edge(igraph_t *graph, igraph_integer_t from, igraph_integer_t to);

For directed graphs the edge points from from to to.

Note that if you want to add many edges to a big graph, then it is inefficient to add them one by one, it
is better to collect them into a vector and add all of them via a single igraph_add_edges() call.

Arguments:

igraph: The graph.

from: The id of the first vertex of the edge.

to: The id of the second vertex of the edge.

Returns:

Error code.

See also:

igraph_add_edges() to add many edges, igraph_delete_edges() to remove edges
and igraph_add_vertices() to add vertices.

Time complexity: O(|V|+|E|), the number of edges plus the number of vertices.

igraph_add_edges — Adds edges to a graph object.

igraph_error_t igraph_add_edges(igraph_t *graph, const igraph_vector_int_t *edges,
 void *attr);

27

Basic data types and interface

The edges are given in a vector, the first two elements define the first edge (the order is from, to
for directed graphs). The vector should contain even number of integer numbers between zero and
the number of vertices in the graph minus one (inclusive). If you also want to add new vertices, call
igraph_add_vertices() first.

Arguments:

graph: The graph to which the edges will be added.

edges: The edges themselves.

attr: The attributes of the new edges. You can supply a null pointer here if you do not need
edge attributes.

Returns:

Error code: IGRAPH_EINVEVECTOR: invalid (odd) edges vector length, IGRAPH_EINVVID:
invalid vertex ID in edges vector.

This function invalidates all iterators.

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges in the
new, extended graph.

Example 4.8. File examples/simple/creation.c

igraph_add_vertices — Adds vertices to a graph.

igraph_error_t igraph_add_vertices(igraph_t *graph, igraph_integer_t nv, void *attr);

This function invalidates all iterators.

Arguments:

graph: The graph object to extend.

nv: Non-negative integer specifying the number of vertices to add.

attr: The attributes of the new vertices. You can supply a null pointer here if you do not need
vertex attributes.

Returns:

Error code: IGRAPH_EINVAL: invalid number of new vertices.

Time complexity: O(|V|) where |V| is the number of vertices in the new, extended graph.

Example 4.9. File examples/simple/creation.c

igraph_delete_edges — Removes edges from a graph.

igraph_error_t igraph_delete_edges(igraph_t *graph, igraph_es_t edges);

28

Basic data types and interface

The edges to remove are specified as an edge selector.

This function cannot remove vertices; vertices will be kept even if they lose all their edges.

This function invalidates all iterators.

Arguments:

graph: The graph to work on.

edges: The edges to remove.

Returns:

Error code.

Time complexity: O(|V|+|E|) where |V| and |E| are the number of vertices and edges in the original
graph, respectively.

Example 4.10. File examples/simple/igraph_delete_edges.c

igraph_delete_vertices — Removes some vertices (with all
their edges) from the graph.

igraph_error_t igraph_delete_vertices(igraph_t *graph, const igraph_vs_t vertices);

This function changes the IDs of the vertices (except in some very special cases, but these should not
be relied on anyway).

This function invalidates all iterators.

Arguments:

graph: The graph to work on.

vertices: The IDs of the vertices to remove, in a vector. The vector may contain the same ID
more than once.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

Example 4.11. File examples/simple/igraph_delete_vertices.c

igraph_delete_vertices_idx — Removes some vertices (with
all their edges) from the graph.

igraph_error_t igraph_delete_vertices_idx(

29

Basic data types and interface

 igraph_t *graph, const igraph_vs_t vertices, igraph_vector_int_t *idx,
 igraph_vector_int_t *invidx
);

This function changes the IDs of the vertices (except in some very special cases, but these should not
be relied on anyway). You can use the idx argument to obtain the mapping from old vertex IDs to
the new ones, and the newidx argument to obtain the reverse mapping.

This function invalidates all iterators.

Arguments:

graph: The graph to work on.

vertices: The IDs of the vertices to remove, in a vector. The vector may contain the same ID
more than once.

idx: An optional pointer to a vector that provides the mapping from the vertex IDs before
the removal to the vertex IDs after the removal, plus one. Zero is used to represent
vertices that were removed during the operation. You can supply NULL here if you
are not interested.

invidx: An optional pointer to a vector that provides the mapping from the vertex IDs after
the removal to the vertex IDs before the removal. You can supply NULL here if you
are not interested.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

Example 4.12. File examples/simple/igraph_delete_vertices.c

Miscellaneous macros and helper functions

IGRAPH_VCOUNT_MAX — The maximum number of ver-
tices supported in igraph graphs.

#define IGRAPH_VCOUNT_MAX

The value of this constant is one less than IGRAPH_INTEGER_MAX . When igraph is compiled in
32-bit mode, this means that you are limited to 231 – 2 (about 2.1 billion) vertices. In 64-bit mode, the
limit is 263 – 2 so you are much more likely to hit out-of-memory issues due to other reasons before
reaching this limit.

IGRAPH_ECOUNT_MAX — The maximum number of
edges supported in igraph graphs.

#define IGRAPH_ECOUNT_MAX

30

Basic data types and interface

The value of this constant is half of IGRAPH_INTEGER_MAX . When igraph is compiled in 32-bit
mode, this means that you are limited to approximately 230 (about 1.07 billion) vertices. In 64-bit
mode, the limit is approximately 262 so you are much more likely to hit out-of-memory issues due to
other reasons before reaching this limit.

igraph_expand_path_to_pairs — Helper function
to convert a sequence of vertex IDs describing a path
into a "pairs" vector.

igraph_error_t igraph_expand_path_to_pairs(igraph_vector_int_t* path);

This function is useful when you have a sequence of vertex IDs in a graph and you would like to
retrieve the IDs of the edges between them. The function duplicates all but the first and the last ele-
ments in the vector, effectively converting the path into a vector of vertex IDs that can be passed to
igraph_get_eids().

Arguments:

path: the input vector. It will be modified in-place and it will be resized as needed. When the
vector contains less than two vertex IDs, it will be cleared.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory to expand the vector.

igraph_invalidate_cache — Invalidates the inter-
nal cache of an igraph graph.

void igraph_invalidate_cache(const igraph_t* graph);

igraph graphs cache some basic properties about themselves in an internal data structure. This function
invalidates the contents of the cache and forces a recalculation of the cached properties the next time
they are needed.

You should not need to call this function during normal usage; however, we might ask you to call
this function explicitly if we suspect that you are running into a bug in igraph's cache handling.
A tell-tale sign of an invalid cache entry is that the result of a cached igraph function (such as
igraph_is_dag() or igraph_is_simple()) is different before and after a cache invalidation.

Arguments:

graph: The graph whose cache is to be invalidated.

Time complexity: O(1).

igraph_is_same_graph — Are two graphs identical
as labelled graphs?

31

Basic data types and interface

igraph_error_t igraph_is_same_graph(const igraph_t *graph1, const igraph_t *graph2, igraph_bool_t *res);

Two graphs are considered to be the same if they have the same vertex and edge sets. Graphs which
are the same may have multiple different representations in igraph, hence the need for this function.

This function verifies that the two graphs have the same directedness, the same number of vertices,
and that they contain precisely the same edges (regardless of their ordering) when written in terms of
vertex indices. Graph attributes are not taken into account.

This concept is different from isomorphism. For example, the graphs 0-1, 2-1 and 1-2, 0-1
are considered the same because they only differ in the ordering of their edge lists and the ordering
of vertices in an undirected edge. However, they are not the same as 0-2, 1-2, even though they
are isomorphic to it. Note that this latter graph contains the edge 0-2 while the former two do not
— thus their edge sets differ.

Arguments:

graph1: The first graph object.

graph2: The second graph object.

res: The result will be stored here.

Returns:

Error code.

Time complexity: O(E), the number of edges in the graphs.

See also:

igraph_isomorphic() to test if two graphs are isomorphic.

32

Chapter 5. Error handling

Error handling basics
igraph functions can run into various problems preventing them from normal operation. The user
might have supplied invalid arguments, e.g. a non-square matrix when a square-matrix was expected,
or the program has run out of memory while some more memory allocation is required, etc.

By default igraph aborts the program when it runs into an error. While this behavior might be good
enough for smaller programs, it is without doubt avoidable in larger projects. Please read further if
your project requires more sophisticated error handling. You can safely skip the rest of this chapter
otherwise.

Error handlers
If igraph runs into an error - an invalid argument was supplied to a function, or we've ran out of
memory - the control is transferred to the error handler function.

The default error handler is igraph_error_handler_abort which prints an error message and
aborts the program.

The igraph_set_error_handler() function can be used to set a new error handler function
of type igraph_error_handler_t; see the documentation of this type for details.

There are two other predefined error handler functions, igraph_error_handler_ignore and
igraph_error_handler_printignore. These deallocate the temporarily allocated memory
(more about this later) and return with the error code. The latter also prints an error message. If you
use these error handlers you need to take care about possible errors yourself by checking the return
value of (almost) every non-void igraph function.

Independently of the error handler installed, all functions in the library do their best to leave their
arguments semantically unchanged if an error happens. By semantically we mean that the implemen-
tation of an object supplied as an argument might change, but its “meaning” in most cases does not.
The rare occasions when this rule is violated are documented in this manual.

igraph_error_handler_t — The type of error han-
dler functions.

typedef void igraph_error_handler_t (const char *reason, const char *file,
 int line, igraph_error_t igraph_errno);

This is the type of the error handler functions.

Arguments:

reason: Textual description of the error.

file: The source file in which the error is noticed.

line: The number of the line in the source file which triggered the error

igraph_errno: The igraph error code.

33

Error handling

igraph_error_handler_abort — Abort program in
case of error.

IGRAPH_EXPORT igraph_error_handler_t igraph_error_handler_abort;

The default error handler, prints an error message and aborts the program.

igraph_error_handler_ignore — Ignore errors.

IGRAPH_EXPORT igraph_error_handler_t igraph_error_handler_ignore;

This error handler frees the temporarily allocated memory and returns with the error code.

igraph_error_handler_printignore — Print and
ignore errors.

IGRAPH_EXPORT igraph_error_handler_t igraph_error_handler_printignore;

Frees temporarily allocated memory, prints an error message to the standard error and returns with
the error code.

Error codes
Every igraph function which can fail return a single integer error code. Some functions are very simple
and cannot run into any error, these may return other types, or void as well. The error codes are defined
by the igraph_error_type_t enumeration.

igraph_error_t — Return type for functions return-
ing an error code.

typedef igraph_error_type_t igraph_error_t;

This type is used as the return type of igraph functions that return an error code. It is a type alias
because igraph_error_t used to be an int, and was used slightly differenly than igraph_error_type_t.

igraph_error_type_t — Error code type.

typedef enum {
 IGRAPH_SUCCESS = 0,
 IGRAPH_FAILURE = 1,
 IGRAPH_ENOMEM = 2,
 IGRAPH_PARSEERROR = 3,
 IGRAPH_EINVAL = 4,
 IGRAPH_EXISTS = 5,
 IGRAPH_EINVEVECTOR = 6,
 IGRAPH_EINVVID = 7,

34

Error handling

 IGRAPH_NONSQUARE = 8,
 IGRAPH_EINVMODE = 9,
 IGRAPH_EFILE = 10,
 IGRAPH_UNIMPLEMENTED = 12,
 IGRAPH_INTERRUPTED = 13,
 IGRAPH_DIVERGED = 14,
 IGRAPH_ARPACK_PROD = 15, /* unused, reserved */
 IGRAPH_ARPACK_NPOS = 16,
 IGRAPH_ARPACK_NEVNPOS = 17,
 IGRAPH_ARPACK_NCVSMALL = 18,
 IGRAPH_ARPACK_NONPOSI = 19,
 IGRAPH_ARPACK_WHICHINV = 20,
 IGRAPH_ARPACK_BMATINV = 21,
 IGRAPH_ARPACK_WORKLSMALL = 22,
 IGRAPH_ARPACK_TRIDERR = 23,
 IGRAPH_ARPACK_ZEROSTART = 24,
 IGRAPH_ARPACK_MODEINV = 25,
 IGRAPH_ARPACK_MODEBMAT = 26,
 IGRAPH_ARPACK_ISHIFT = 27,
 IGRAPH_ARPACK_NEVBE = 28,
 IGRAPH_ARPACK_NOFACT = 29,
 IGRAPH_ARPACK_FAILED = 30,
 IGRAPH_ARPACK_HOWMNY = 31,
 IGRAPH_ARPACK_HOWMNYS = 32,
 IGRAPH_ARPACK_EVDIFF = 33,
 IGRAPH_ARPACK_SHUR = 34,
 IGRAPH_ARPACK_LAPACK = 35,
 IGRAPH_ARPACK_UNKNOWN = 36,
 IGRAPH_ENEGLOOP = 37,
 IGRAPH_EINTERNAL = 38,
 IGRAPH_ARPACK_MAXIT = 39,
 IGRAPH_ARPACK_NOSHIFT = 40,
 IGRAPH_ARPACK_REORDER = 41,
 IGRAPH_EDIVZERO = 42,
 IGRAPH_GLP_EBOUND = 43,
 IGRAPH_GLP_EROOT = 44,
 IGRAPH_GLP_ENOPFS = 45,
 IGRAPH_GLP_ENODFS = 46,
 IGRAPH_GLP_EFAIL = 47,
 IGRAPH_GLP_EMIPGAP = 48,
 IGRAPH_GLP_ETMLIM = 49,
 IGRAPH_GLP_ESTOP = 50,
 IGRAPH_EATTRIBUTES = 51,
 IGRAPH_EATTRCOMBINE = 52,
 IGRAPH_ELAPACK = 53,
 IGRAPH_EDRL IGRAPH_DEPRECATED_ENUMVAL = 54,
 IGRAPH_EOVERFLOW = 55,
 IGRAPH_EGLP = 56,
 IGRAPH_CPUTIME = 57,
 IGRAPH_EUNDERFLOW = 58,
 IGRAPH_ERWSTUCK = 59,
 IGRAPH_STOP = 60,
 IGRAPH_ERANGE = 61,
 IGRAPH_ENOSOL = 62
} igraph_error_type_t;

35

Error handling

These are the possible values returned by igraph functions. Note that these are interesting only if
you defined an error handler with igraph_set_error_handler(). Otherwise the program is
aborted and the function causing the error never returns.

Values:

IGRAPH_SUCCESS: The function successfully completed its task.

IGRAPH_FAILURE: Something went wrong. You'll almost never meet this error as
normally more specific error codes are used.

IGRAPH_ENOMEM: There wasn't enough memory to allocate on the heap.

IGRAPH_PARSEERROR: A parse error was found in a file.

IGRAPH_EINVAL: A parameter's value is invalid. E.g. negative number was spec-
ified as the number of vertices.

IGRAPH_EXISTS: A graph/vertex/edge attribute is already installed with the given
name.

IGRAPH_EINVEVECTOR: Invalid vector of vertex IDs. A vertex ID is either negative or
bigger than the number of vertices minus one.

IGRAPH_EINVVID: Invalid vertex ID, negative or too big.

IGRAPH_NONSQUARE: A non-square matrix was received while a square matrix was
expected.

IGRAPH_EINVMODE: Invalid mode parameter.

IGRAPH_EFILE: A file operation failed. E.g. a file doesn't exist, or the user has
no rights to open it.

IGRAPH_UNIMPLEMENTED: Attempted to call an unimplemented or disabled (at com-
pile-time) function.

IGRAPH_DIVERGED: A numeric algorithm failed to converge.

IGRAPH_ARPACK_PROD: Matrix-vector product failed (not used any more).

IGRAPH_ARPACK_NPOS: N must be positive.

IGRAPH_ARPACK_NEVNPOS: NEV must be positive.

IGRAPH_ARPACK_NCVSMALL: NCV must be bigger.

IGRAPH_ARPACK_NONPOSI: Maximum number of iterations should be positive.

IGRAPH_ARPACK_WHICHINV: Invalid WHICH parameter.

IGRAPH_ARPACK_BMATINV: Invalid BMAT parameter.

IGRAPH_ARPACK_WORKLS-
MALL:

WORKL is too small.

IGRAPH_ARPACK_TRIDERR: LAPACK error in tridiagonal eigenvalue calculation.

IGRAPH_ARPACK_ZEROSTART: Starting vector is zero.

IGRAPH_ARPACK_MODEINV: MODE is invalid.

IGRAPH_ARPACK_MODEBMAT: MODE and BMAT are not compatible.

36

Error handling

IGRAPH_ARPACK_ISHIFT: ISHIFT must be 0 or 1.

IGRAPH_ARPACK_NEVBE: NEV and WHICH='BE' are incompatible.

IGRAPH_ARPACK_NOFACT: Could not build an Arnoldi factorization.

IGRAPH_ARPACK_FAILED: No eigenvalues to sufficient accuracy.

IGRAPH_ARPACK_HOWMNY: HOWMNY is invalid.

IGRAPH_ARPACK_HOWMNYS: HOWMNY='S' is not implemented.

IGRAPH_ARPACK_EVDIFF: Different number of converged Ritz values.

IGRAPH_ARPACK_SHUR: Error from calculation of a real Schur form.

IGRAPH_ARPACK_LAPACK: LAPACK (dtrevc) error for calculating eigenvectors.

IGRAPH_ARPACK_UNKNOWN: Unknown ARPACK error.

IGRAPH_ENEGLOOP: Negative loop detected while calculating shortest paths.

IGRAPH_EINTERNAL: Internal error, likely a bug in igraph.

IGRAPH_EDIVZERO: Big integer division by zero.

IGRAPH_GLP_EBOUND: GLPK error (GLP_EBOUND).

IGRAPH_GLP_EROOT: GLPK error (GLP_EROOT).

IGRAPH_GLP_ENOPFS: GLPK error (GLP_ENOPFS).

IGRAPH_GLP_ENODFS: GLPK error (GLP_ENODFS).

IGRAPH_GLP_EFAIL: GLPK error (GLP_EFAIL).

IGRAPH_GLP_EMIPGAP: GLPK error (GLP_EMIPGAP).

IGRAPH_GLP_ETMLIM: GLPK error (GLP_ETMLIM).

IGRAPH_GLP_ESTOP: GLPK error (GLP_ESTOP).

IGRAPH_EATTRIBUTES: Attribute handler error. The user is not expected to find this;
it is signalled if some igraph function is not using the attribute
handler interface properly.

IGRAPH_EATTRCOMBINE: Unimplemented attribute combination method for the given at-
tribute type.

IGRAPH_ELAPACK: A LAPACK call resulted in an error.

IGRAPH_EDRL: Internal error in the DrL layout generator; not used any more
(replaced by IGRAPH_EINTERNAL).

IGRAPH_EOVERFLOW: Integer or double overflow.

IGRAPH_EGLP: Internal GLPK error.

IGRAPH_CPUTIME: CPU time exceeded.

IGRAPH_EUNDERFLOW: Integer or double underflow.

IGRAPH_ERWSTUCK: Random walk got stuck.

IGRAPH_ERANGE: Maximum vertex or edge count exceeded.

37

Error handling

IGRAPH_ENOSOL: Input problem has no solution.

igraph_strerror — Textual description of an error.

 const char* igraph_strerror(const igraph_error_t igraph_errno);

This is a simple utility function, it gives a short general textual description for an igraph error code.

Arguments:

igraph_errno: The igraph error code.

Returns:

pointer to the textual description of the error code.

Warning messages
igraph also supports warning messages in addition to error messages. Warning messages typically do
not terminate the program, but they are usually crucial to the user.

igraph warnings are handled similarly to errors. There is a separate warning handler func-
tion that is called whenever an igraph function triggers a warning. This handler can be
set by the igraph_set_warning_handler() function. There are two predefined simple
warning handlers, igraph_warning_handler_ignore() and igraph_warning_han-
dler_print(), the latter being the default.

To trigger a warning, igraph functions typically use the IGRAPH_WARNING() macro, the
igraph_warning() function, or if more flexibility is needed, igraph_warningf().

igraph_warning_handler_t — The type of igraph
warning handler functions.

typedef void igraph_warning_handler_t (const char *reason, const char *file, int line);

Currently it is defined to have the same type as igraph_error_handler_t, although the last
(error code) argument is not used.

igraph_set_warning_handler — Installs a warning
handler.

 igraph_warning_handler_t* igraph_set_warning_handler(igraph_warning_handler_t* new_handler);

Install the supplied warning handler function.

Arguments:

new_handler: The new warning handler function to install. Supply a null pointer here to uninstall
the current warning handler, without installing a new one.

38

Error handling

Returns:

The current warning handler function.

IGRAPH_WARNING — Triggers a warning.

#define IGRAPH_WARNING(reason)

This is the usual way of triggering a warning from an igraph function. It calls igraph_warning().

Arguments:

reason: The warning message.

IGRAPH_WARNINGF — Triggers a warning, with printf-
like syntax.

#define IGRAPH_WARNINGF

igraph functions can use this macro when they notice a warning and want to pass on extra information
to the user about what went wrong. It calls igraph_warningf() with the proper parameters and
no error code.

Arguments:

reason: Textual description of the warning, a template string with the same syntax as the standard
printf C library function.

...: The additional arguments to be substituted into the template string.

igraph_warning — Reports a warning.

 void igraph_warning(const char *reason, const char *file, int line);

Call this function if you want to trigger a warning from within a function that uses igraph.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning.

igraph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

Returns:

The supplied error code.

39

Error handling

igraph_warningf — Reports a warning, printf-like
version.

IGRAPH_FUNCATTR_PRINTFLIKE(1,4)
IGRAPH_EXPORT void igraph_warningf(const char *reason, const char *file, int line, ...);

This function is similar to igraph_warning(), but uses a printf-like syntax. It substitutes the
additional arguments into the reason template string and calls igraph_warning().

Arguments:

reason: Textual description of the warning, a template string with the same syntax as
the standard printf C library function.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning.

igraph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

...: The additional arguments to be substituted into the template string.

igraph_warning_handler_ignore — Ignores all
warnings.

void igraph_warning_handler_ignore(const char *reason, const char *file, int line);

This warning handler function simply ignores all warnings.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning..

igraph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

igraph_warning_handler_print — Prints all warn-
ings to the standard error.

void igraph_warning_handler_print(const char *reason, const char *file, int line);

This warning handler function simply prints all warnings to the standard error.

Arguments:

40

Error handling

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning..

igraph_errno: Warnings could have potentially error codes as well, but this is currently not
used in igraph.

Advanced topics

Writing error handlers
The contents of the rest of this chapter might be useful only for those who want to create an interface
to igraph from another language, or use igraph from a GUI application. Most readers can safely skip
to the next chapter.

You can write and install error handlers simply by defining a function of type igraph_error_han-
dler_t and calling igraph_set_error_handler(). This feature is useful for interface writ-
ers, as igraph will have the chance to signal errors the appropriate way. For example, the R interface
uses R's native printing facilities to communicate errors, while the Python interface converts them into
Python exceptions.

The two main tasks of the error handler are to report the error (i.e. print the error message) and ensure
proper resource cleanup. This is ensured by calling IGRAPH_FINALLY_FREE(), which deallocates
some of the temporary memory to avoid memory leaks. Note that this may invalidate the error mes-
sage buffer reason passed to the error handler. Do not access it after having called IGRAPH_FI-
NALLY_FREE().

As of igraph 0.10, temporary memory is dellocated in stages, through multiple calls to the error han-
dler (and indirectly to IGRAPH_FINALLY_FREE()). Therefore, error handlers that do not abort the
program immediately are expected to return. The error handler should not perform a longjmp, as
this may lead to some of the memory not getting freed.

igraph_set_error_handler — Sets a new error handler.

 igraph_error_handler_t* igraph_set_error_handler(igraph_error_handler_t* new_handler);

Installs a new error handler. If called with NULL, it installs the default error handler (which is currently
igraph_error_handler_abort).

Arguments:

new_handler: The error handler function to install.

Returns:

The old error handler function. This should be saved and restored if new_handler is not needed
any more.

Error handling internals
If an error happens, the functions in the library call the IGRAPH_ERROR() macro with a textual
description of the error and an igraph error code. This macro calls (through the igraph_error()

41

Error handling

function) the installed error handler. Another useful macro is IGRAPH_CHECK(). This checks the
return value of its argument, which is normally a function call, and calls IGRAPH_ERROR() if it is
not IGRAPH_SUCCESS.

IGRAPH_ERROR — Triggers an error.

#define IGRAPH_ERROR(reason, igraph_errno)

igraph functions usually use this macro when they notice an error. It calls igraph_error() with
the proper parameters and if that returns the macro returns the "calling" function as well, with the error
code. If for some (suspicious) reason you want to call the error handler without returning from the
current function, call igraph_error() directly.

Arguments:

reason: Textual description of the error. This should be something more descriptive than
the text associated with the error code. E.g. if the error code is IGRAPH_EIN-
VAL, its associated text (see igraph_strerror()) is "Invalid value" and
this string should explain which parameter was invalid and maybe why.

igraph_errno: The igraph error code.

IGRAPH_ERRORF — Triggers an error, with printf-like syntax.

#define IGRAPH_ERRORF

igraph functions can use this macro when they notice an error and want to pass on extra information
to the user about what went wrong. It calls igraph_errorf() with the proper parameters and
if that returns the macro returns the "calling" function as well, with the error code. If for some (sus-
picious) reason you want to call the error handler without returning from the current function, call
igraph_errorf() directly.

Arguments:

reason: Textual description of the error, a template string with the same syntax as
the standard printf C library function. This should be something more de-
scriptive than the text associated with the error code. E.g. if the error code is
IGRAPH_EINVAL, its associated text (see igraph_strerror()) is "In-
valid value" and this string should explain which parameter was invalid and
maybe what was expected and what was recieved.

igraph_errno: The igraph error code.

...: The additional arguments to be substituted into the template string.

igraph_error — Reports an error.

 igraph_error_t igraph_error(const char *reason, const char *file, int line,
 igraph_error_t igraph_errno);

igraph functions usually call this function (most often via the IGRAPH_ERROR macro) if they notice
an error. It calls the currently installed error handler function with the supplied arguments.

42

Error handling

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

line: The number of line in the source file which triggered the error.

igraph_errno: The igraph error code.

Returns:

the error code (if it returns)

See also:

igraph_errorf().

igraph_errorf — Reports an error, printf-like version.

IGRAPH_FUNCATTR_PRINTFLIKE(1,5)
IGRAPH_EXPORT igraph_error_t igraph_errorf(const char *reason, const char *file, int line,
 igraph_error_t igraph_errno, ...);

Arguments:

reason: Textual description of the error, interpreted as a printf format string.

file: The source file in which the error was noticed.

line: The line in the source file which triggered the error.

igraph_errno: The igraph error code.

...: Additional parameters, the values to substitute into the format string.

See also:

igraph_error().

IGRAPH_CHECK — Checks the return value of a function call.

#define IGRAPH_CHECK(expr)

Arguments:

expr: An expression, usually a function call. It is guaranteed to be evaluated only once.

Executes the expression and checks its value. If this is not IGRAPH_SUCCESS, it calls IGRAPH_ER-
ROR with the value as the error code. Here is an example usage:

43

Error handling

 IGRAPH_CHECK(vector_push_back(&v, 100));

There is only one reason to use this macro when writing igraph functions. If the user installs an
error handler which returns to the auxiliary calling code (like igraph_error_handler_ignore
and igraph_error_handler_printignore), and the igraph function signalling the error is
called from another igraph function then we need to make sure that the error is propagated back to
the auxiliary (i.e. non-igraph) calling function. This is achieved by using IGRAPH_CHECK on every
igraph call which can return an error code.

IGRAPH_CHECK_CALLBACK — Checks the return value of a call-
back.

#define IGRAPH_CHECK_CALLBACK(expr, code)

Identical to IGRAPH_CHECK, but treats IGRAPH_STOP as a normal (non-erroneous) return code.
This macro is used in some igraph functions that allow the user to hook into a long-running calculation
with a callback function. When the user-defined callback function returns IGRAPH_SUCCESS, the
calculation will proceed normally. Returning IGRAPH_STOP from the callback will terminate the
calculation without reporting an error. Returning any other value from the callback is treated as an
error code, and igraph will trigger the necessary cleanup functions before exiting the function.

Note that IGRAPH_CHECK_CALLBACK does not handle IGRAPH_STOP by any means except re-
turning it in the variable pointed to by code. It is the responsibility of the caller to handle IGRAPH_S-
TOP accordingly.

Arguments:

expr: An expression, usually a call to a user-defined callback function. It is guaranteed to be eval-
uated only once.

code: Pointer to an optional variable of type igraph_error_t; the value of this variable will be set
to the error code if it is not a null pointer.

Deallocating memory
If a function runs into an error (and the program is not aborted) the error handler should deallocate all
temporary memory. This is done by storing the address and the destroy function of all temporary ob-
jects in a stack. The IGRAPH_FINALLY function declares an object as temporary by placing its ad-
dress in the stack. If an igraph function returns with success it calls IGRAPH_FINALLY_CLEAN()
with the number of objects to remove from the stack. If an error happens however, the error handler
should call IGRAPH_FINALLY_FREE() to deallocate each object added to the stack. This means
that the temporary objects allocated in the calling function (and etc.) will be freed as well.

IGRAPH_FINALLY — Registers an object for deallocation.

#define IGRAPH_FINALLY(func, ptr)

This macro places the address of an object, together with the address of its destructor in a stack. This
stack is used if an error happens to deallocate temporarily allocated objects to prevent memory leaks.
After manual deallocation, objects are removed from the stack using IGRAPH_FINALLY_CLEAN().

Arguments:

func: The function which is normally called to destroy the object.

44

Error handling

ptr: Pointer to the object itself.

IGRAPH_FINALLY_CLEAN — Signals clean deallocation of ob-
jects.

 void IGRAPH_FINALLY_CLEAN(int num);

Removes the specified number of objects from the stack of temporarily allocated objects. It is typically
called immediately after manually destroying the objects:

igraph_vector_t vector;
igraph_vector_init(&vector, 10);
IGRAPH_FINALLY(igraph_vector_destroy, &vector);
// use vector
igraph_vector_destroy(&vector);
IGRAPH_FINALLY_CLEAN(1);

Arguments:

num: The number of objects to remove from the bookkeeping stack.

IGRAPH_FINALLY_FREE — Deallocates objects registered at the
current level.

 void IGRAPH_FINALLY_FREE(void);

Calls the destroy function for all objects in the current level of the stack of temporarily allocated
objects, i.e. up to the nearest mark set by IGRAPH_FINALLY_ENTER(). This function must only be
called from an error handler. It is not appropriate to use it instead of destroying each unneeded object
of a function, as it destroys the temporary objects of the caller function (and so on) as well.

Writing igraph functions with proper error handling
There are some simple rules to keep in order to have functions behaving well in erroneous situa-
tions. First, check the arguments of the functions and call IGRAPH_ERROR() if they are invalid.
Second, call IGRAPH_FINALLY on each dynamically allocated object and call IGRAPH_FINAL-
LY_CLEAN() with the proper argument before returning. Third, use IGRAPH_CHECK on all igraph
function calls which can generate errors.

The size of the stack used for this bookkeeping is fixed, and small. If you want to allocate several
objects, write a destroy function which can deallocate all of these. See the adjlist.c file in the
igraph source for an example.

For some functions these mechanisms are simply not flexible enough. These functions should define
their own error handlers and restore the error handler before they return.

Fatal errors
In some rare situations, igraph may encounter an internal error that cannot be fully handled. In this
case, it will call the current fatal error handler. The default fatal error handler simply prints the error
and aborts the program.

45

Error handling

Fatal error handlers do not return. Typically, they might abort the the program immediately, or in
the case of the high-level igraph interfaces, they might return to the top level using a longjmp().
The fatal error handler is only called when a serious error has occurred, and as a result igraph may
be in an inconsistent state. The purpose of returning to the top level is to give the user a chance to
save their work instead of aborting immediately. However, the program session should be restarted
as soon as possible.

Most projects that use igraph will use the default fatal error handler.

igraph_fatal_handler_t — The type of igraph fatal error han-
dler functions.

typedef void igraph_fatal_handler_t (const char *reason, const char *file, int line);

Functions of this type must not return. Typically they call abort() or do a longjmp().

Arguments:

reason: Textual description of the error.

file: The source file in which the error is noticed.

line: The number of the line in the source file which triggered the error.

igraph_set_fatal_handler — Installs a fatal error handler.

 igraph_fatal_handler_t* igraph_set_fatal_handler(igraph_fatal_handler_t* new_handler);

Installs the supplied fatal error handler function.

Fatal error handler functions must not return. Typically, the fatal error handler would either call
abort() or longjmp().

Arguments:

new_handler: The new fatal error handler function to install. Supply a null pointer here to unin-
stall the current fatal error handler, without installing a new one.

Returns:

The current fatal error handler function.

igraph_fatal_handler_abort — Abort program in case of fa-
tal error.

IGRAPH_EXPORT igraph_fatal_handler_t igraph_fatal_handler_abort;

The default fatal error handler, prints an error message and aborts the program.

IGRAPH_FATAL — Triggers a fatal error.

46

Error handling

#define IGRAPH_FATAL(reason)

This is the usual way of triggering a fatal error from an igraph function. It calls igraph_fatal().

Use this macro only in situations where the error cannot be handled. The normal way to handle errors
is IGRAPH_ERROR().

Arguments:

reason: The error message.

IGRAPH_FATALF — Triggers a fatal error, with printf-like syntax.

#define IGRAPH_FATALF

igraph functions can use this macro when a fatal error occurs and want to pass on extra information
to the user about what went wrong. It calls igraph_fatalf() with the proper parameters.

Arguments:

reason: Textual description of the error, a template string with the same syntax as the standard
printf C library function.

...: The additional arguments to be substituted into the template string.

IGRAPH_ASSERT — igraph-specific replacement for assert().

#define IGRAPH_ASSERT(condition)

This macro is like the standard assert(), but instead of calling abort(), it calls igraph_fa-
tal(). This allows for returning the control to the calling program, e.g. returning to the top level in
a high-level igraph interface.

Unlike assert(), IGRAPH_ASSERT() is not disabled when the NDEBUG macro is defined.

This macro is meant for internal use by igraph.

Since a typical fatal error handler does a longjmp(), avoid using this macro in C++ code. With
most compilers, destructor will not be called when longjmp() leaves the current scope.

Arguments:

condition: The condition to be checked.

igraph_fatal — Triggers a fatal error.

 IGRAPH_FUNCATTR_NORETURN void igraph_fatal(const char *reason, const char *file, int line);

This function triggers a fatal error. Typically it is called indirectly through IGRAPH_FATAL() or
IGRAPH_ASSERT().

47

Error handling

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

line: The number of line in the source file which triggered the error.

igraph_fatalf — Triggers a fatal error, printf-like syntax.

IGRAPH_FUNCATTR_PRINTFLIKE(1,4)
IGRAPH_EXPORT IGRAPH_FUNCATTR_NORETURN void igraph_fatalf(const char *reason, const char *file, int line, ...);

This function is similar to igraph_fatal(), but uses a printf-like syntax. It substitutes the addi-
tional arguments into the reason template string and calls igraph_fatal().

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

line: The number of line in the source file which triggered the error.

...: The additional arguments to be substituted into the template string.

Error handling and threads
It is likely that the igraph error handling method is not thread-safe, mainly because of the static global
stack which is used to store the address of the temporarily allocated objects. This issue might be
addressed in a later version of igraph.

48

Chapter 6. Memory (de)allocation

igraph_malloc — Allocate memory that can
be safely deallocated by igraph functions.

void *igraph_malloc(size_t size);

This function behaves like malloc(), but it ensures that at least one byte is allocated even when the
caller asks for zero bytes.

Arguments:

size: Number of bytes to be allocated. Zero is treated as one byte.

Returns:

Pointer to the piece of allocated memory; NULL if the allocation failed.

See also:

igraph_calloc(), igraph_realloc(), igraph_free()

igraph_calloc — Allocate memory that can
be safely deallocated by igraph functions.

void *igraph_calloc(size_t count, size_t size);

This function behaves like calloc(), but it ensures that at least one byte is allocated even when the
caller asks for zero bytes.

Arguments:

count: Number of items to be allocated.

size: Size of a single item to be allocated.

Returns:

Pointer to the piece of allocated memory; NULL if the allocation failed.

See also:

igraph_malloc(), igraph_realloc(), igraph_free()

49

Memory (de)allocation

igraph_realloc — Reallocate memory that
can be safely deallocated by igraph func-
tions.

void *igraph_realloc(void* ptr, size_t size);

This function behaves like realloc(), but it ensures that at least one byte is allocated even when
the caller asks for zero bytes.

Arguments:

ptr: The pointer to reallocate.

size: Number of bytes to be allocated.

Returns:

Pointer to the piece of allocated memory; NULL if the allocation failed.

See also:

igraph_free(), igraph_malloc()

igraph_free — Deallocate memory that was
allocated by igraph functions.

void igraph_free(void *ptr);

This function exposes the free() function used internally by igraph.

Arguments:

ptr: Pointer to the piece of memory to be deallocated.

Time complexity: platform dependent, ideally it should be O(1).

See also:

igraph_calloc(), igraph_malloc(), igraph_realloc()

50

Chapter 7. Data structure library:
vector, matrix, other data types
About template types

Some of the container types listed in this section are defined for many base types. This is similar
to templates in C++ and generics in Ada, but it is implemented via preprocessor macros since the
C language cannot handle it. Here is the list of template types and the all base types they currently
support:

vector Vector is currently defined for igraph_real_t, igraph_integer_t
(int), char (char), igraph_bool_t (bool) and igraph_complex_t
(complex). The default is igraph_real_t.

matrix Matrix is currently defined for igraph_real_t, igraph_integer_t
(int), char (char), igraph_bool_t (bool) and igraph_complex_t
(complex). The default is igraph_real_t.

array3 Array3 is currently defined for igraph_real_t, igraph_integer_t
(int), char (char) and igraph_bool_t (bool). The default is
igraph_real_t.

stack Stack is currently defined for igraph_real_t, igraph_integer_t
(int), char (char), igraph_bool_t (bool) and void* (ptr). The de-
fault is igraph_real_t.

double-ended queue Dqueue is currently defined for igraph_real_t, igraph_integer_t
(int), char (char) and igraph_bool_t (bool). The default is
igraph_real_t.

heap Heap is currently defined for igraph_real_t, igraph_integer_t (int),
char (char). In addition both maximum and minimum heaps are
available. The default is the igraph_real_t maximum heap.

list of vectors Lists of vectors are currently defined for vectors holding
igraph_real_t and igraph_integer_t (int). The default is igraph_re-
al_t.

list of matrices Lists of matrices are currently defined for matrices holding
igraph_real_t only.

The name of the base element (in parentheses) is added to the function names, except for the default
type.

Some examples:

• igraph_vector_t is a vector of igraph_real_t elements. Its functions are igraph_vector_init,
igraph_vector_destroy, igraph_vector_sort, etc.

• igraph_vector_bool_t is a vector of igraph_bool_t elements; initialize it with igraph_vec-
tor_bool_init, destroy it with igraph_vector_bool_destroy, etc.

• igraph_heap_t is a maximum heap with igraph_real_t elements. The corresponding functions are
igraph_heap_init, igraph_heap_pop, etc.

• igraph_heap_min_t is a minimum heap with igraph_real_t elements. The corresponding functions
are called igraph_heap_min_init, igraph_heap_min_pop, etc.

51

Data structure library: vec-
tor, matrix, other data types

• igraph_heap_int_t is a maximum heap with igraph_integer_t elements. Its functions have the
igraph_heap_int_ prefix.

• igraph_heap_min_int_t is a minimum heap containing igraph_integer_t elements. Its functions have
the igraph_heap_min_int_ prefix.

• igraph_vector_list_t is a list of (floating-point) vectors; each element in this data structure is an
igraph_vector_t. Similarly, igraph_matrix_list_t is a list of (floating-point) matrices; each element
in this data structure is an igraph_matrix_t.

• igraph_vector_int_list_t is a list of integer vectors; each element in this data structure is an
igraph_vector_int_t.

Note that the VECTOR and the MATRIX macros can be used on all vector and matrix types. VECTOR
cannot be used on lists of vectors, though, only on the individial vectors in the list.

Vectors

About igraph_vector_t objects
The igraph_vector_t data type is a simple and efficient interface to arrays containing numbers. It is
something similar to (but much simpler than) the vector template in the C++ standard library.

There are multiple variants of igraph_vector_t; the basic variant stores doubles, but there is al-
so igraph_vector_int_t for integers (of type igraph_integer_t), igraph_vector_bool_t for
booleans (of type igraph_bool_t) and so on. Vectors are used extensively in igraph; all functions
that expect or return a list of numbers use igraph_vector_t or igraph_vector_int_t to achieve this. In-
teger vectors are typically used when the vector is supposed to hold vertex or edge identifiers, while
igraph_vector_t is used when the vector is expected to hold fractional numbers or infinities.

The igraph_vector_t type and its variants usually use O(n) space to store n elements. Sometimes they
use more, this is because vectors can shrink, but even if they shrink, the current implementation does
not free a single bit of memory.

The elements in an igraph_vector_t object and its variants are indexed from zero, we follow the usual
C convention here.

The elements of a vector always occupy a single block of memory, the starting address of this memory
block can be queried with the VECTOR macro. This way, vector objects can be used with standard
mathematical libraries, like the GNU Scientific Library.

Almost all of the functions described below for igraph_vector_t also exist for all the other vector
type variants. These variants are not documented separately; you can simply replace vector with
vector_int, vector_bool or something similar if you need a function for another variant. For
instance, to initialize a vector of type igraph_vector_int_t, you need to use igraph_vector_in-
t_init() and not igraph_vector_init().

Constructors and destructors
igraph_vector_t objects have to be initialized before using them, this is analogous to calling a
constructor on them. There are a number of igraph_vector_t constructors, for your convenience.
igraph_vector_init() is the basic constructor, it creates a vector of the given length, filled
with zeros. igraph_vector_init_copy() creates a new identical copy of an already existing
and initialized vector. igraph_vector_init_array() creates a vector by copying a regular
C array. igraph_vector_init_range() creates a vector containing a regular sequence with
increment one.

igraph_vector_view() is a special constructor, it allows you to handle a regular C array as a
vector without copying its elements.

52

Data structure library: vec-
tor, matrix, other data types

If a igraph_vector_t object is not needed any more, it should be destroyed to free its allocated memory
by calling the igraph_vector_t destructor, igraph_vector_destroy().

Note that vectors created by igraph_vector_view() are special, you must not call
igraph_vector_destroy() on these.

igraph_vector_init — Initializes a vector object (constructor).

igraph_error_t igraph_vector_init(igraph_vector_t* v, igraph_integer_t size);

Every vector needs to be initialized before it can be used, and there are a number of initialization
functions or otherwise called constructors. This function constructs a vector of the given size and
initializes each entry to 0. Note that igraph_vector_null() can be used to set each element of
a vector to zero. However, if you want a vector of zeros, it is much faster to use this function than to
create a vector and then invoke igraph_vector_null().

Every vector object initialized by this function should be destroyed (ie. the memory allocated for it
should be freed) when it is not needed anymore, the igraph_vector_destroy() function is
responsible for this.

Arguments:

v: Pointer to a not yet initialized vector object.

size: The size of the vector.

Returns:

error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, the amount of “time” required to allocate O(n) ele-
ments, n is the number of elements.

igraph_vector_init_array — Initializes a vector from an ordi-
nary C array (constructor).

igraph_error_t igraph_vector_init_array(
 igraph_vector_t *v, const igraph_real_t *data, igraph_integer_t length);

Arguments:

v: Pointer to an uninitialized vector object.

data: A regular C array.

length: The length of the C array.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system specific, usually O(length).

53

Data structure library: vec-
tor, matrix, other data types

igraph_vector_init_copy — Initializes a vector from another
vector object (constructor).

igraph_error_t igraph_vector_init_copy(
 igraph_vector_t *to, const igraph_vector_t *from
);

The contents of the existing vector object will be copied to the new one.

Arguments:

to: Pointer to a not yet initialized vector object.

from: The original vector object to copy.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, usually O(n), n is the size of the vector.

igraph_vector_init_range — Initializes a vector with a range.

igraph_error_t igraph_vector_init_range(igraph_vector_t *v, igraph_real_t from, igraph_real_t to);

The vector will contain the numbers start, start+1, ..., end-1. Note that the range is closed from
the left and open from the right, according to C conventions.

Arguments:

v: Pointer to an uninitialized vector object.

start: The lower limit in the range (inclusive).

end: The upper limit in the range (exclusive).

Returns:

Error code: IGRAPH_ENOMEM: out of memory.

Time complexity: O(n), the number of elements in the vector.

igraph_vector_destroy — Destroys a vector object.

void igraph_vector_destroy(igraph_vector_t* v);

All vectors initialized by igraph_vector_init() should be properly destroyed by this func-
tion. A destroyed vector needs to be reinitialized by igraph_vector_init(), igraph_vec-
tor_init_array() or another constructor.

54

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: Pointer to the (previously initialized) vector object to destroy.

Time complexity: operating system dependent.

Initializing elements

igraph_vector_null — Sets each element in the vector to zero.

void igraph_vector_null(igraph_vector_t* v);

Note that igraph_vector_init() sets the elements to zero as well, so it makes no sense to call
this function on a just initialized vector. Thus if you want to construct a vector of zeros, then you
should use igraph_vector_init().

Arguments:

v: The vector object.

Time complexity: O(n), the size of the vector.

igraph_vector_fill — Fill a vector with a constant element.

void igraph_vector_fill(igraph_vector_t* v, igraph_real_t e);

Sets each element of the vector to the supplied constant.

Arguments:

vector: The vector to work on.

e: The element to fill with.

Time complexity: O(n), the size of the vector.

igraph_vector_range — Updates a vector to store a range.

igraph_error_t igraph_vector_range(igraph_vector_t *v, igraph_real_t from, igraph_real_t to);

Sets the elements of the vector to contain the numbers start, start+1, ..., end-1. Note that the
range is closed from the left and open from the right, according to C conventions. The vector will be
resized to fit the range.

Arguments:

v: The vector to update.

start: The lower limit in the range (inclusive).

end: The upper limit in the range (exclusive).

Returns:

55

Data structure library: vec-
tor, matrix, other data types

Error code: IGRAPH_ENOMEM: out of memory.

Time complexity: O(n), the number of elements in the vector.

Accessing elements
The simplest and most performant way to access an element of a vector is to use the VECTOR macro.
This macro can be used both for querying and setting igraph_vector_t elements. If you need a func-
tion, igraph_vector_get() queries and igraph_vector_set() sets an element of a vec-
tor. igraph_vector_get_ptr() returns the address of an element.

igraph_vector_tail() returns the last element of a non-empty vector. There is no
igraph_vector_head() function however, as it is easy to write VECTOR(v)[0] instead.

VECTOR — Accessing an element of a vector.

#define VECTOR(v)

Usage:

 VECTOR(v)[0]

to access the first element of the vector, you can also use this in assignments, like:

 VECTOR(v)[10]=5;

Note that there are no range checks right now.

Arguments:

v: The vector object.

Time complexity: O(1).

igraph_vector_get — Access an element of a vector.

igraph_real_t igraph_vector_get(const igraph_vector_t* v, igraph_integer_t pos);

Unless you need a function, consider using the VECTOR macro instead for better performance.

Arguments:

v: The igraph_vector_t object.

pos: The position of the element, the index of the first element is zero.

Returns:

The desired element.

See also:

igraph_vector_get_ptr() and the VECTOR macro.

Time complexity: O(1).

56

Data structure library: vec-
tor, matrix, other data types

igraph_vector_get_ptr — Get the address of an element of a
vector.

igraph_real_t* igraph_vector_get_ptr(const igraph_vector_t* v, igraph_integer_t pos);

Unless you need a function, consider using the VECTOR macro instead for better performance.

Arguments:

v: The igraph_vector_t object.

pos: The position of the element, the position of the first element is zero.

Returns:

Pointer to the desired element.

See also:

igraph_vector_get() and the VECTOR macro.

Time complexity: O(1).

igraph_vector_set — Assignment to an element of a vector.

void igraph_vector_set(igraph_vector_t* v, igraph_integer_t pos, igraph_real_t value);

Unless you need a function, consider using the VECTOR macro instead for better performance.

Arguments:

v: The igraph_vector_t element.

pos: Position of the element to set.

value: New value of the element.

See also:

igraph_vector_get().

igraph_vector_tail — Returns the last element in a vector.

igraph_real_t igraph_vector_tail(const igraph_vector_t *v);

It is an error to call this function on an empty vector, the result is undefined.

Arguments:

v: The vector object.

57

Data structure library: vec-
tor, matrix, other data types

Returns:

The last element.

Time complexity: O(1).

Vector views

igraph_vector_view — Handle a regular C array as a
igraph_vector_t.

const igraph_vector_t* igraph_vector_view(const igraph_vector_t *v,
 const igraph_real_t *data, igraph_integer_t length);

This is a special igraph_vector_t constructor. It allows to handle a regular C array as a igraph_vector_t
temporarily. Be sure that you don't ever call the destructor (igraph_vector_destroy()) on
objects created by this constructor.

Arguments:

v: Pointer to an uninitialized igraph_vector_t object.

data: Pointer, the C array. It may not be NULL, except when length is zero.

length: The length of the C array.

Returns:

Pointer to the vector object, the same as the v parameter, for convenience.

Time complexity: O(1)

Copying vectors

igraph_vector_copy_to — Copies the contents of a vector to a
C array.

void igraph_vector_copy_to(const igraph_vector_t *v, igraph_real_t *to);

The C array should have sufficient length.

Arguments:

v: The vector object.

to: The C array.

Time complexity: O(n), n is the size of the vector.

igraph_vector_update — Update a vector from another one.

58

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_vector_update(igraph_vector_t *to,
 const igraph_vector_t *from);

After this operation the contents of to will be exactly the same as that of from. The vector to will
be resized if it was originally shorter or longer than from.

Arguments:

to: The vector to update.

from: The vector to update from.

Returns:

Error code.

Time complexity: O(n), the number of elements in from.

igraph_vector_append — Append a vector to another one.

igraph_error_t igraph_vector_append(igraph_vector_t *to,
 const igraph_vector_t *from);

The target vector will be resized (except when from is empty).

Arguments:

to: The vector to append to.

from: The vector to append, it is kept unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements in the new vector.

igraph_vector_swap — Swap all elements of two vectors.

igraph_error_t igraph_vector_swap(igraph_vector_t *v1, igraph_vector_t *v2);

Arguments:

v1: The first vector.

v2: The second vector.

Returns:

Error code.

Time complexity: O(1).

59

Data structure library: vec-
tor, matrix, other data types

Exchanging elements

igraph_vector_swap_elements — Swap two elements in a vec-
tor.

igraph_error_t igraph_vector_swap_elements(igraph_vector_t *v,
 igraph_integer_t i, igraph_integer_t j);

Note that currently no range checking is performed.

Arguments:

v: The input vector.

i: Index of the first element.

j: Index of the second element (may be the same as the first one).

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(1).

igraph_vector_reverse — Reverse the elements of a vector.

igraph_error_t igraph_vector_reverse(igraph_vector_t *v);

The first element will be last, the last element will be first, etc.

Arguments:

v: The input vector.

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(n), the number of elements.

igraph_vector_shuffle — Shuffles a vector in-place using the
Fisher-Yates method.

igraph_error_t igraph_vector_shuffle(igraph_vector_t *v);

The Fisher-Yates shuffle ensures that every permutation is equally probable when using a proper
randomness source. Of course this does not apply to pseudo-random generators as the cycle of these
generators is less than the number of possible permutations of the vector if the vector is long enough.

Arguments:

v: The vector object.

60

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(n), n is the number of elements in the vector.

References:

(Fisher & Yates 1963) R. A. Fisher and F. Yates. Statistical Tables for Biological, Agri-
cultural and Medical Research. Oliver and Boyd, 6th edition, 1963,
page 37.

(Knuth 1998) D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, 3rd edition, 1998, page
145.

Example 7.1. File examples/simple/
igraph_fisher_yates_shuffle.c

igraph_vector_permute — Permutes the elements of a vector
in place according to an index vector.

igraph_error_t igraph_vector_permute(igraph_vector_t* v, const igraph_vector_int_t* index);

This function takes a vector v and a corresponding index vector ind, and permutes the elements of v
such that v[ind[i]] is moved to become v[i] after the function is executed.

It is an error to call this function with an index vector that does not represent a valid permutation. Each
element in the index vector must be between 0 and the length of the vector minus one (inclusive), and
each such element must appear only once. The function does not attempt to validate the index vector.

The index vector that this function takes is compatible with the index vector returned from
igraph_vector_qsort_ind(); passing in the index vector from igraph_vector_q-
sort_ind() will sort the original vector.

As a special case, this function allows the index vector to be shorter than the vector being permuted,
in which case the elements whose indices do not occur in the index vector will be removed from the
vector.

Arguments:

v: the vector to permute

ind: the index vector

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: O(n), the size of the vector.

Vector operations

igraph_vector_add_constant — Add a constant to the vector.

61

Data structure library: vec-
tor, matrix, other data types

void igraph_vector_add_constant(igraph_vector_t *v, igraph_real_t plus);

plus is added to every element of v. Note that overflow might happen.

Arguments:

v: The input vector.

plus: The constant to add.

Time complexity: O(n), the number of elements.

igraph_vector_scale — Multiplies all elements of a vector by a
constant.

void igraph_vector_scale(igraph_vector_t *v, igraph_real_t by);

Arguments:

v: The vector.

by: The constant.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(n), the number of elements in a vector.

igraph_vector_add — Add two vectors.

igraph_error_t igraph_vector_add(igraph_vector_t *v1,
 const igraph_vector_t *v2);

Add the elements of v2 to v1, the result is stored in v1. The two vectors must have the same length.

Arguments:

v1: The first vector, the result will be stored here.

v2: The second vector, its contents will be unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements.

igraph_vector_sub — Subtract a vector from another one.

62

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_vector_sub(igraph_vector_t *v1,
 const igraph_vector_t *v2);

Subtract the elements of v2 from v1, the result is stored in v1. The two vectors must have the same
length.

Arguments:

v1: The first vector, to subtract from. The result is stored here.

v2: The vector to subtract, it will be unchanged.

Returns:

Error code.

Time complexity: O(n), the length of the vectors.

igraph_vector_mul — Multiply two vectors.

igraph_error_t igraph_vector_mul(igraph_vector_t *v1,
 const igraph_vector_t *v2);

v1 will be multiplied by v2, elementwise. The two vectors must have the same length.

Arguments:

v1: The first vector, the result will be stored here.

v2: The second vector, it is left unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements.

igraph_vector_div — Divide a vector by another one.

igraph_error_t igraph_vector_div(igraph_vector_t *v1,
 const igraph_vector_t *v2);

v1 is divided by v2, elementwise. They must have the same length. If the base type of the vector can
generate divide by zero errors then please make sure that v2 contains no zero if you want to avoid
trouble.

Arguments:

v1: The dividend. The result is also stored here.

v2: The divisor, it is left unchanged.

Returns:

Error code.

63

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(n), the length of the vectors.

igraph_vector_floor — Transform a real vector to an integer
vector by flooring each element.

igraph_error_t igraph_vector_floor(const igraph_vector_t *from, igraph_vector_int_t *to);

Flooring means rounding down to the nearest integer.

Arguments:

from: The original real vector object.

to: Pointer to an initialized integer vector. The result will be stored here.

Returns:

Error code: IGRAPH_ENOMEM: out of memory

Time complexity: O(n), where n is the number of elements in the vector.

Vector comparisons

igraph_vector_all_e — Are all elements equal?

igraph_bool_t igraph_vector_all_e(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Checks element-wise equality of two vectors. For vectors containing floating point values, consider
using igraph_matrix_all_almost_e().

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

True if the elements in the lhs are all equal to the corresponding elements in rhs. Returns false
if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_almost_e — Are all elements almost
equal?

igraph_bool_t igraph_vector_all_almost_e(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs,
 igraph_real_t eps);

Checks if the elements of two vectors are equal within a relative tolerance.

64

Data structure library: vec-
tor, matrix, other data types

Arguments:

lhs: The first vector.

rhs: The second vector.

eps: Relative tolerance, see igraph_almost_equals() for details.

Returns:

True if the two vectors are almost equal, false if there is at least one differing element or if the
vectors are not of the same size.

igraph_vector_all_l — Are all elements less?

igraph_bool_t igraph_vector_all_l(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

True if the elements in the lhs are all less than the corresponding elements in rhs. Returns false
if the lengths of the vectors don't match. If any element is NaN, it will return false.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_g — Are all elements greater?

igraph_bool_t igraph_vector_all_g(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

True if the elements in the lhs are all greater than the corresponding elements in rhs. Returns
false if the lengths of the vectors don't match. If any element is NaN, it will return false.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_le — Are all elements less or equal?

65

Data structure library: vec-
tor, matrix, other data types

igraph_bool_t
igraph_vector_all_le(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

True if the elements in the lhs are all less than or equal to the corresponding elements in rhs.
Returns false if the lengths of the vectors don't match. If any element is NaN, it will return false.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_ge — Are all elements greater or equal?

igraph_bool_t
igraph_vector_all_ge(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

True if the elements in the lhs are all greater than or equal to the corresponding elements in rhs.
Returns false if the lengths of the vectors don't match. If any element is NaN, it will return false.

Time complexity: O(n), the length of the vectors.

igraph_vector_zapsmall — Replaces small elements of a vec-
tor by exact zeros.

igraph_error_t igraph_vector_zapsmall(igraph_vector_t *v, igraph_real_t tol);

Vector elements which are smaller in magnitude than the given absolute tolerance will be replaced by
exact zeros. The default tolerance corresponds to two-thirds of the representable digits of igraph_re-
al_t, i.e. DBL_EPSILON^(2/3) which is approximately 10^-10.

Arguments:

v: The vector to process, it will be changed in-place.

tol: Tolerance value. Numbers smaller than this in magnitude will be replaced by zeros. Pass in
zero to use the default tolerance. Must not be negative.

66

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

See also:

igraph_vector_all_almost_e() and igraph_almost_equals() to perform com-
parisons with relative tolerances.

igraph_vector_lex_cmp — Lexicographical comparison of two
vectors (type-safe variant).

int igraph_vector_lex_cmp(
 const igraph_vector_t *lhs, const igraph_vector_t *rhs
);

If the elements of two vectors match but one is shorter, the shorter one comes first. Thus {1, 3} comes
after {1, 2, 3}, but before {1, 3, 4}.

This function is typically used together with igraph_vector_list_sort().

Arguments:

lhs: Pointer to the first vector.

rhs: Pointer to the second vector.

Returns:

-1 if lhs is lexicographically smaller, 0 if lhs and rhs are equal, else 1.

See also:

igraph_vector_lex_cmp_untyped() for an untyped variant of this function, or
igraph_vector_colex_cmp() to compare vectors starting from the last element.

Time complexity: O(n), the number of elements in the smaller vector.

Example 7.2. File examples/simple/
igraph_vector_int_list_sort.c

igraph_vector_lex_cmp_untyped — Lexicographical compari-
son of two vectors (non-type-safe).

int igraph_vector_lex_cmp_untyped(const void *lhs, const void *rhs);

If the elements of two vectors match but one is shorter, the shorter one comes first. Thus {1, 3} comes
after {1, 2, 3}, but before {1, 3, 4}.

This function is typically used together with igraph_vector_ptr_sort().

67

Data structure library: vec-
tor, matrix, other data types

Arguments:

lhs: Pointer to a pointer to the first vector (interpreted as an igraph_vector_t **).

rhs: Pointer to a pointer to the second vector (interpreted as an igraph_vector_t **).

Returns:

-1 if lhs is lexicographically smaller, 0 if lhs and rhs are equal, else 1.

See also:

igraph_vector_lex_cmp() for a type-safe variant of this function, or igraph_vec-
tor_colex_cmp_untyped() to compare vectors starting from the last element.

Time complexity: O(n), the number of elements in the smaller vector.

igraph_vector_colex_cmp — Colexicographical comparison of
two vectors.

int igraph_vector_colex_cmp(
 const igraph_vector_t *lhs, const igraph_vector_t *rhs
);

This comparison starts from the last element of both vectors and moves backward. If the elements of
two vectors match but one is shorter, the shorter one comes first. Thus {1, 2} comes after {3, 2, 1},
but before {0, 1, 2}.

This function is typically used together with igraph_vector_list_sort().

Arguments:

lhs: Pointer to a pointer to the first vector.

rhs: Pointer to a pointer to the second vector.

Returns:

-1 if lhs in reverse order is lexicographically smaller than the reverse of rhs, 0 if lhs and rhs
are equal, else 1.

See also:

igraph_vector_colex_cmp_untyped() for an untyped variant of this function, or
igraph_vector_lex_cmp() to compare vectors starting from the first element.

Time complexity: O(n), the number of elements in the smaller vector.

Example 7.3. File examples/simple/
igraph_vector_int_list_sort.c

igraph_vector_colex_cmp_untyped — Colexicographical
comparison of two vectors.

68

Data structure library: vec-
tor, matrix, other data types

int igraph_vector_colex_cmp_untyped(const void *lhs, const void *rhs);

This comparison starts from the last element of both vectors and moves backward. If the elements of
two vectors match but one is shorter, the shorter one comes first. Thus {1, 2} comes after {3, 2, 1},
but before {0, 1, 2}.

This function is typically used together with igraph_vector_ptr_sort().

Arguments:

lhs: Pointer to a pointer to the first vector (interpreted as an igraph_vector_t **).

rhs: Pointer to a pointer to the second vector (interpreted as an igraph_vector_t **).

Returns:

-1 if lhs in reverse order is lexicographically smaller than the reverse of rhs, 0 if lhs and rhs
are equal, else 1.

See also:

igraph_vector_colex_cmp() for a type-safe variant of this function, igraph_vec-
tor_lex_cmp_untyped() to compare vectors starting from the first element.

Time complexity: O(n), the number of elements in the smaller vector.

Finding minimum and maximum

igraph_vector_min — Smallest element of a vector.

igraph_real_t igraph_vector_min(const igraph_vector_t* v);

The vector must not be empty.

Arguments:

v: The input vector.

Returns:

The smallest element of v, or NaN if any element is NaN.

Time complexity: O(n), the number of elements.

igraph_vector_max — Largest element of a vector.

igraph_real_t igraph_vector_max(const igraph_vector_t* v);

The vector must not be empty.

Arguments:

v: The vector object.

69

Data structure library: vec-
tor, matrix, other data types

Returns:

The maximum element of v, or NaN if any element is NaN.

Time complexity: O(n), the number of elements.

igraph_vector_which_min — Index of the smallest element.

igraph_integer_t igraph_vector_which_min(const igraph_vector_t* v);

The vector must not be empty. If the smallest element is not unique, then the index of the first is
returned. If the vector contains NaN values, the index of the first NaN value is returned.

Arguments:

v: The input vector.

Returns:

Index of the smallest element.

Time complexity: O(n), the number of elements.

igraph_vector_which_max — Gives the index of the maximum
element of the vector.

igraph_integer_t igraph_vector_which_max(const igraph_vector_t* v);

The vector must not be empty. If the largest element is not unique, then the index of the first is returned.
If the vector contains NaN values, the index of the first NaN value is returned.

Arguments:

v: The vector object.

Returns:

The index of the first maximum element.

Time complexity: O(n), n is the size of the vector.

igraph_vector_minmax — Minimum and maximum elements of
a vector.

void igraph_vector_minmax(const igraph_vector_t *v,
 igraph_real_t *min, igraph_real_t *max);

Handy if you want to have both the smallest and largest element of a vector. The vector is only traversed
once. The vector must be non-empty. If a vector contains at least one NaN, both min and max will
be NaN.

70

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The input vector. It must contain at least one element.

min: Pointer to a base type variable, the minimum is stored here.

max: Pointer to a base type variable, the maximum is stored here.

Time complexity: O(n), the number of elements.

igraph_vector_which_minmax — Index of the minimum and
maximum elements.

void igraph_vector_which_minmax(const igraph_vector_t *v,
 igraph_integer_t *which_min, igraph_integer_t *which_max);

Handy if you need the indices of the smallest and largest elements. The vector is traversed only once.
The vector must be non-empty. If the minimum or maximum is not unique, the index of the first
minimum or the first maximum is returned, respectively. If a vector contains at least one NaN, both
which_min and which_max will point to the first NaN value.

Arguments:

v: The input vector. It must contain at least one element.

which_min: The index of the minimum element will be stored here.

which_max: The index of the maximum element will be stored here.

Time complexity: O(n), the number of elements.

Vector properties

igraph_vector_empty — Decides whether the size of the vector
is zero.

igraph_bool_t igraph_vector_empty(const igraph_vector_t* v);

Arguments:

v: The vector object.

Returns:

True if the size of the vector is zero and false otherwise.

Time complexity: O(1).

igraph_vector_size — Returns the size (=length) of the vector.

igraph_integer_t igraph_vector_size(const igraph_vector_t* v);

71

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The vector object

Returns:

The size of the vector.

Time complexity: O(1).

igraph_vector_capacity — Returns the allocated capacity of
the vector.

igraph_integer_t igraph_vector_capacity(const igraph_vector_t*v);

Note that this might be different from the size of the vector (as queried by igraph_vec-
tor_size()), and specifies how many elements the vector can hold, without reallocation.

Arguments:

v: Pointer to the (previously initialized) vector object to query.

Returns:

The allocated capacity.

See also:

igraph_vector_size().

Time complexity: O(1).

igraph_vector_sum — Calculates the sum of the elements in
the vector.

igraph_real_t igraph_vector_sum(const igraph_vector_t *v);

For the empty vector 0.0 is returned.

Arguments:

v: The vector object.

Returns:

The sum of the elements.

Time complexity: O(n), the size of the vector.

igraph_vector_prod — Calculates the product of the elements
in the vector.

72

Data structure library: vec-
tor, matrix, other data types

igraph_real_t igraph_vector_prod(const igraph_vector_t *v);

For the empty vector one (1) is returned.

Arguments:

v: The vector object.

Returns:

The product of the elements.

Time complexity: O(n), the size of the vector.

igraph_vector_isininterval — Checks if all elements of a
vector are in the given interval.

igraph_bool_t igraph_vector_isininterval(const igraph_vector_t *v,
 igraph_real_t low,
 igraph_real_t high);

Arguments:

v: The vector object.

low: The lower limit of the interval (inclusive).

high: The higher limit of the interval (inclusive).

Returns:

True if the vector is empty or all vector elements are in the interval, false otherwise. If any element
is NaN, it will return false.

Time complexity: O(n), the number of elements in the vector.

igraph_vector_maxdifference — The maximum absolute dif-
ference of m1 and m2.

igraph_real_t igraph_vector_maxdifference(const igraph_vector_t *m1,
 const igraph_vector_t *m2);

The element with the largest absolute value in m1 - m2 is returned. Both vectors must be non-empty,
but they not need to have the same length, the extra elements in the longer vector are ignored. If any
value is NaN in the shorter vector, the result will be NaN.

Arguments:

m1: The first vector.

m2: The second vector.

73

Data structure library: vec-
tor, matrix, other data types

Returns:

The maximum absolute difference of m1 and m2.

Time complexity: O(n), the number of elements in the shorter vector.

igraph_vector_is_nan — Check for each element if it is NaN.

igraph_error_t igraph_vector_is_nan(const igraph_vector_t *v, igraph_vector_bool_t *is_nan);

Arguments:

v: The igraph_vector_t object to check.

is_nan: The resulting boolean vector indicating for each element whether it is NaN or not.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory. Note that this function never returns
an error if the vector is_nan will already be large enough.

Time complexity: O(n), the number of elements.

igraph_vector_is_any_nan — Check if any element is NaN.

igraph_bool_t igraph_vector_is_any_nan(const igraph_vector_t *v);

Arguments:

v: The igraph_vector_t object to check.

Returns:

1 if any element is NaN, 0 otherwise.

Time complexity: O(n), the number of elements.

Searching for elements

igraph_vector_contains — Linear search in a vector.

igraph_bool_t igraph_vector_contains(const igraph_vector_t *v,
 igraph_real_t e);

Check whether the supplied element is included in the vector, by linear search.

Arguments:

v: The input vector.

74

Data structure library: vec-
tor, matrix, other data types

e: The element to look for.

Returns:

true if the element is found and false otherwise.

Time complexity: O(n), the length of the vector.

igraph_vector_search — Searches in a vector from a given
position.

igraph_bool_t igraph_vector_search(const igraph_vector_t *v,
 igraph_integer_t from, igraph_real_t what, igraph_integer_t *pos);

The supplied element what is searched in vector v, starting from element index from. If found then
the index of the first instance (after from) is stored in pos.

Arguments:

v: The input vector.

from: The index to start searching from. No range checking is performed.

what: The element to find.

pos: If not NULL then the index of the found element is stored here.

Returns:

Boolean, true if the element was found, false otherwise.

Time complexity: O(m), the number of elements to search, the length of the vector minus the from
argument.

igraph_vector_binsearch — Finds an element by binary
searching a sorted vector.

igraph_bool_t igraph_vector_binsearch(const igraph_vector_t *v,
 igraph_real_t what, igraph_integer_t *pos);

It is assumed that the vector is sorted. If the specified element (what) is not in the vector, then the
position of where it should be inserted (to keep the vector sorted) is returned. If the vector contains
any NaN values, the returned value is undefined and pos may point to any position.

Arguments:

v: The igraph_vector_t object.

what: The element to search for.

pos: Pointer to an igraph_integer_t. This is set to the position of an instance of what in the vector
if it is present. If v does not contain what then pos is set to the position to which it should
be inserted (to keep the the vector sorted of course).

75

Data structure library: vec-
tor, matrix, other data types

Returns:

True if what is found in the vector, false otherwise.

Time complexity: O(log(n)), n is the number of elements in v.

igraph_vector_binsearch_slice — Finds an element by bina-
ry searching a sorted slice of a vector.

igraph_bool_t igraph_vector_binsearch_slice(const igraph_vector_t *v,
 igraph_real_t what, igraph_integer_t *pos, igraph_integer_t start, igraph_integer_t end);

It is assumed that the indicated slice of the vector, from start to end, is sorted. If the specified
element (what) is not in the slice of the vector, then the position of where it should be inserted (to
keep the slice sorted) is returned. Note that this means that the returned index will point inside the slice
(including its endpoints), but will not evaluate values outside the slice. If the indicated slice contains
any NaN values, the returned value is undefined and pos may point to any position within the slice.

Arguments:

v: The igraph_vector_t object.

what: The element to search for.

pos: Pointer to an igraph_integer_t. This is set to the position of an instance of what in the slice
of the vector if it is present. If v does not contain what then pos is set to the position to
which it should be inserted (to keep the the vector sorted).

start: The start position of the slice to search (inclusive).

end: The end position of the slice to search (exclusive).

Returns:

True if what is found in the vector, false otherwise.

Time complexity: O(log(n)), n is the number of elements in the slice of v, i.e. end - start.

igraph_vector_binsearch2 — Binary search, without return-
ing the index.

igraph_bool_t igraph_vector_binsearch2(const igraph_vector_t *v,
 igraph_real_t what);

It is assumed that the vector is sorted.

Arguments:

v: The igraph_vector_t object.

what: The element to search for.

Returns:

76

Data structure library: vec-
tor, matrix, other data types

True if what is found in the vector, false otherwise.

Time complexity: O(log(n)), n is the number of elements in v.

Resizing operations

igraph_vector_clear — Removes all elements from a vector.

void igraph_vector_clear(igraph_vector_t* v);

This function simply sets the size of the vector to zero, it does not free any allocated memory. For that
you have to call igraph_vector_destroy().

Arguments:

v: The vector object.

Time complexity: O(1).

igraph_vector_reserve — Reserves memory for a vector.

igraph_error_t igraph_vector_reserve(igraph_vector_t* v, igraph_integer_t capacity);

igraph vectors are flexible, they can grow and shrink. Growing however occasionally needs the data
in the vector to be copied. In order to avoid this, you can call this function to reserve space for future
growth of the vector.

Note that this function does not change the size of the vector. Let us see a small example to clarify
things: if you reserve space for 100 elements and the size of your vector was (and still is) 60, then you
can surely add additional 40 elements to your vector before it will be copied.

Arguments:

v: The vector object.

capacity: The new allocated size of the vector.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, should be around O(n), n is the new allocated size of
the vector.

igraph_vector_resize — Resize the vector.

igraph_error_t igraph_vector_resize(igraph_vector_t* v, igraph_integer_t new_size);

Note that this function does not free any memory, just sets the size of the vector to the given one. It
can on the other hand allocate more memory if the new size is larger than the previous one. In this
case the newly appeared elements in the vector are not set to zero, they are uninitialized.

77

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The vector object

new_size: The new size of the vector.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory. Note that this function never returns
an error if the vector is made smaller.

See also:

igraph_vector_reserve() for allocating memory for future extensions of a vector.
igraph_vector_resize_min() for deallocating the unnneded memory for a vector.

Time complexity: O(1) if the new size is smaller, operating system dependent if it is larger. In the
latter case it is usually around O(n), n is the new size of the vector.

igraph_vector_resize_min — Deallocate the unused memory
of a vector.

void igraph_vector_resize_min(igraph_vector_t*v);

This function attempts to deallocate the unused reserved storage of a vector. If it succeeds,
igraph_vector_size() and igraph_vector_capacity() will be the same. The data in
the vector is always preserved, even if deallocation is not successful.

Arguments:

v: Pointer to an initialized vector.

See also:

igraph_vector_resize(), igraph_vector_reserve().

Time complexity: operating system dependent, O(n) at worst.

igraph_vector_push_back — Appends one element to a vec-
tor.

igraph_error_t igraph_vector_push_back(igraph_vector_t* v, igraph_real_t e);

This function resizes the vector to be one element longer and sets the very last element in the vector
to e.

Arguments:

v: The vector object.

e: The element to append to the vector.

78

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: operating system dependent. What is important is that a sequence of n subsequent
calls to this function has time complexity O(n), even if there hadn't been any space reserved for the
new elements by igraph_vector_reserve(). This is implemented by a trick similar to the C
++ vector class: each time more memory is allocated for a vector, the size of the additionally allocat-
ed memory is the same as the vector's current length. (We assume here that the time complexity of
memory allocation is at most linear.)

igraph_vector_pop_back — Removes and returns the last ele-
ment of a vector.

igraph_real_t igraph_vector_pop_back(igraph_vector_t* v);

It is an error to call this function with an empty vector.

Arguments:

v: The vector object.

Returns:

The removed last element.

Time complexity: O(1).

igraph_vector_insert — Inserts a single element into a vec-
tor.

igraph_error_t igraph_vector_insert(
 igraph_vector_t *v, igraph_integer_t pos, igraph_real_t value);

Note that this function does not do range checking. Insertion will shift the elements from the position
given to the end of the vector one position to the right, and the new element will be inserted in the
empty space created at the given position. The size of the vector will increase by one.

Arguments:

v: The vector object.

pos: The position where the new element is to be inserted.

value: The new element to be inserted.

igraph_vector_remove — Removes a single element from a
vector.

void igraph_vector_remove(igraph_vector_t *v, igraph_integer_t elem);

Note that this function does not do range checking.

79

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The vector object.

elem: The position of the element to remove.

Time complexity: O(n-elem), n is the number of elements in the vector.

igraph_vector_remove_section — Deletes a section from a
vector.

void igraph_vector_remove_section(
 igraph_vector_t *v, igraph_integer_t from, igraph_integer_t to);

Arguments:

v: The vector object.

from: The position of the first element to remove.

to: The position of the first element not to remove.

Time complexity: O(n-from), n is the number of elements in the vector.

Complex vector operations

igraph_vector_complex_real — Gives the real part of a com-
plex vector.

igraph_error_t igraph_vector_complex_real(const igraph_vector_complex_t *v,
 igraph_vector_t *real);

Arguments:

v: Pointer to a complex vector.

real: Pointer to an initialized vector. The result will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the vector.

igraph_vector_complex_imag — Gives the imaginary part of a
complex vector.

igraph_error_t igraph_vector_complex_imag(const igraph_vector_complex_t *v,
 igraph_vector_t *imag);

80

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: Pointer to a complex vector.

real: Pointer to an initialized vector. The result will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the vector.

igraph_vector_complex_realimag — Gives the real and imag-
inary parts of a complex vector.

igraph_error_t igraph_vector_complex_realimag(const igraph_vector_complex_t *v,
 igraph_vector_t *real,
 igraph_vector_t *imag);

Arguments:

v: Pointer to a complex vector.

real: Pointer to an initialized vector. The real part will be stored here.

imag: Pointer to an initialized vector. The imaginary part will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the vector.

igraph_vector_complex_create — Creates a complex vector
from a real and imaginary part.

igraph_error_t igraph_vector_complex_create(igraph_vector_complex_t *v,
 const igraph_vector_t *real,
 const igraph_vector_t *imag);

Arguments:

v: Pointer to an uninitialized complex vector.

real: Pointer to the real part of the complex vector.

imag: Pointer to the imaginary part of the complex vector.

Returns:

Error code.

81

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(n), n is the number of elements in the vector.

igraph_vector_complex_create_polar — Creates a complex
matrix from a magnitude and an angle.

igraph_error_t igraph_vector_complex_create_polar(igraph_vector_complex_t *v,
 const igraph_vector_t *r,
 const igraph_vector_t *theta);

Arguments:

m: Pointer to an uninitialized complex vector.

r: Pointer to a real vector containing magnitudes.

theta: Pointer to a real vector containing arguments (phase angles).

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the vector.

igraph_vector_complex_all_almost_e — Are all elements al-
most equal?

igraph_bool_t igraph_vector_complex_all_almost_e(const igraph_vector_complex_t *lhs,
 const igraph_vector_complex_t *rhs,
 igraph_real_t eps);

Checks if the elements of two complex vectors are equal within a relative tolerance.

Arguments:

lhs: The first vector.

rhs: The second vector.

eps: Relative tolerance, see igraph_complex_almost_equals() for details.

Returns:

True if the two vectors are almost equal, false if there is at least one differing element or if the
vectors are not of the same size.

igraph_vector_complex_zapsmall — Replaces small ele-
ments of a complex vector by exact zeros.

igraph_error_t igraph_vector_complex_zapsmall(igraph_vector_complex_t *v, igraph_real_t tol);

82

Data structure library: vec-
tor, matrix, other data types

Similarly to igraph_vector_zapsmall(), small elements will be replaced by zeros. The op-
eration is performed separately on the real and imaginary parts of the numbers. This way, complex
numbers with a large real part and tiny imaginary part will effectively be transformed to real num-
bers. The default tolerance corresponds to two-thirds of the representable digits of igraph_real_t, i.e.
DBL_EPSILON^(2/3) which is approximately 10^-10.

Arguments:

v: The vector to process, it will be changed in-place.

tol: Tolerance value. Real and imaginary parts smaller than this in magnitude will be replaced by
zeros. Pass in zero to use the default tolerance. Must not be negative.

Returns:

Error code.

See also:

igraph_vector_complex_all_almost_e() and igraph_complex_almost_e-
quals() to perform comparisons with relative tolerances.

Sorting

igraph_vector_sort — Sorts the elements of the vector into
ascending order.

void igraph_vector_sort(igraph_vector_t *v);

If the vector contains any NaN values, the resulting ordering of NaN values is undefined and may
appear anywhere in the vector.

Arguments:

v: Pointer to an initialized vector object.

Time complexity: O(n log n) for n elements.

igraph_vector_reverse_sort — Sorts the elements of the
vector into descending order.

void igraph_vector_reverse_sort(igraph_vector_t *v);

If the vector contains any NaN values, the resulting ordering of NaN values is undefined and may
appear anywhere in the vector.

Arguments:

v: Pointer to an initialized vector object.

Time complexity: O(n log n) for n elements.

83

Data structure library: vec-
tor, matrix, other data types

igraph_vector_qsort_ind — Returns a permutation of indices
that sorts a vector.

igraph_error_t igraph_vector_qsort_ind(const igraph_vector_t *v,
 igraph_vector_int_t *inds, igraph_order_t order);

Takes an unsorted array v as input and computes an array of indices inds such that v[inds[i]], with
i increasing from 0, is an ordered array (either ascending or descending, depending on \v order). The
order of indices for identical elements is not defined. If the vector contains any NaN values, the or-
dering of NaN values is undefined.

Arguments:

v: the array to be sorted

inds: the output array of indices. This must be initialized, but will be resized

order: whether the output array should be sorted in ascending or descending order. Use
IGRAPH_ASCENDING for ascending and IGRAPH_DESCENDING for descending order.

Returns:

Error code.

This routine uses igraph's built-in qsort routine. Algorithm: 1) create an array of pointers to the ele-
ments of v. 2) Pass this array to qsort. 3) after sorting the difference between the pointer value and the
first pointer value gives its original position in the array. Use this to set the values of inds.

Set operations on sorted vectors

igraph_vector_intersect_sorted — Calculates the intersec-
tion of two sorted vectors.

igraph_error_t igraph_vector_intersect_sorted(const igraph_vector_t *v1,
 const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in both vectors are stored in the result vector. All three vectors must
be initialized.

Instead of the naive intersection which takes O(n), this function uses the set intersection method of
Ricardo Baeza-Yates, which is more efficient when one of the vectors is significantly smaller than the
other, and gives similar performance on average when the two vectors are equal.

The algorithm keeps the multiplicities of the elements: if an element appears k1 times in the first vector
and k2 times in the second, the result will include that element min(k1, k2) times.

Reference: Baeza-Yates R: A fast set intersection algorithm for sorted sequences. In: Lecture
Notes in Computer Science, vol. 3109/2004, pp. 400--408, 2004. Springer Berlin/Heidelberg. ISBN:
978-3-540-22341-2.

Arguments:

v1: the first vector

v2: the second vector

84

Data structure library: vec-
tor, matrix, other data types

result: the result vector, which will also be sorted.

Time complexity: O(m log(n)) where m is the size of the smaller vector and n is the size of the larger
one.

igraph_vector_difference_sorted — Calculates the differ-
ence between two sorted vectors (considered as sets).

igraph_error_t igraph_vector_difference_sorted(const igraph_vector_t *v1,
 const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in only the first vector but not the second are stored in the result
vector. All three vectors must be initialized.

Arguments:

v1: the first vector

v2: the second vector

result: the result vector

Pointer vectors (igraph_vector_ptr_t)
The igraph_vector_ptr_t data type is very similar to the igraph_vector_t type, but it stores gener-
ic pointers instead of real numbers.

This type has the same space complexity as igraph_vector_t, and most implemented operations
work the same way as for igraph_vector_t.

The same VECTOR macro used for ordinary vectors can be used for pointer vectors as well, please
note that a typeless generic pointer will be provided by this macro and you may need to cast it to a
specific pointer before starting to work with it.

Pointer vectors may have an associated item destructor function which takes a pointer and returns
nothing. The item destructor will be called on each item in the pointer vector when it is destroyed by
igraph_vector_ptr_destroy() or igraph_vector_ptr_destroy_all(), or when
its elements are freed by igraph_vector_ptr_free_all(). Note that the semantics of an item
destructor does not coincide with C++ destructors; for instance, when a pointer vector is resized to a
smaller size, the extra items will not be destroyed automatically! Nevertheless, item destructors may
become handy in many cases; for instance, a vector of graphs generated by some function can be
destroyed with a single call to igraph_vector_ptr_destroy_all() if the item destructor is
set to igraph_destroy().

igraph_vector_ptr_init — Initialize a pointer vector (con-
structor).

igraph_error_t igraph_vector_ptr_init(igraph_vector_ptr_t* v, igraph_integer_t size);

This is the constructor of the pointer vector data type. All pointer vectors constructed this way should
be destroyed via calling igraph_vector_ptr_destroy().

Arguments:

85

Data structure library: vec-
tor, matrix, other data types

v: Pointer to an uninitialized igraph_vector_ptr_t object, to be created.

size: Integer, the size of the pointer vector.

Returns:

Error code: IGRAPH_ENOMEM if out of memory

Time complexity: operating system dependent, the amount of “time” required to allocate size ele-
ments.

igraph_vector_ptr_init_copy — Initializes a pointer vector
from another one (constructor).

igraph_error_t igraph_vector_ptr_init_copy(igraph_vector_ptr_t *to, const igraph_vector_ptr_t *from);

This function creates a pointer vector by copying another one. This is shallow copy, only the pointers
in the vector will be copied.

It is potentially dangerous to copy a pointer vector with an associated item destructor. The copied
vector will inherit the item destructor, which may cause problems when both vectors are destroyed as
the items might get destroyed twice. Make sure you know what you are doing when copying a pointer
vector with an item destructor, or unset the item destructor on one of the vectors later.

Arguments:

to: Pointer to an uninitialized pointer vector object.

from: A pointer vector object.

Returns:

Error code: IGRAPH_ENOMEM if out of memory

Time complexity: O(n) if allocating memory for n elements can be done in O(n) time.

igraph_vector_ptr_destroy — Destroys a pointer vector.

void igraph_vector_ptr_destroy(igraph_vector_ptr_t* v);

The destructor for pointer vectors.

Arguments:

v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) bytes, n is the
number of elements allocated for the pointer vector (not necessarily the number of elements in the
vector).

igraph_vector_ptr_free_all — Frees all the elements of a
pointer vector.

86

Data structure library: vec-
tor, matrix, other data types

void igraph_vector_ptr_free_all(igraph_vector_ptr_t* v);

If an item destructor is set for this pointer vector, this function will first call the destructor on all
elements of the vector and then free all the elements using igraph_free(). If an item destructor
is not set, the elements will simply be freed.

Arguments:

v: Pointer to the pointer vector whose elements will be freed.

Time complexity: operating system dependent, the “time” required to call the destructor n times and
then deallocate O(n) pointers, each pointing to a memory area of arbitrary size. n is the number of
elements in the pointer vector.

igraph_vector_ptr_destroy_all — Frees all the elements
and destroys the pointer vector.

void igraph_vector_ptr_destroy_all(igraph_vector_ptr_t* v);

This function is equivalent to igraph_vector_ptr_free_all() followed by igraph_vec-
tor_ptr_destroy().

Arguments:

v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) pointers, each
pointing to a memory area of arbitrary size, plus the “time” required to deallocate O(n) bytes, n being
the number of elements allocated for the pointer vector (not necessarily the number of elements in
the vector).

igraph_vector_ptr_size — Gives the number of elements in
the pointer vector.

igraph_integer_t igraph_vector_ptr_size(const igraph_vector_ptr_t* v);

Arguments:

v: The pointer vector object.

Returns:

The size of the object, i.e. the number of pointers stored.

Time complexity: O(1).

igraph_vector_ptr_clear — Removes all elements from a
pointer vector.

void igraph_vector_ptr_clear(igraph_vector_ptr_t* v);

87

Data structure library: vec-
tor, matrix, other data types

This function resizes a pointer to vector to zero length. Note that the pointed objects are not deallocated,
you should call igraph_free() on them, or make sure that their allocated memory is freed in
some other way, you'll get memory leaks otherwise. If you have set up an item destructor earlier, the
destructor will be called on every element.

Note that the current implementation of this function does not deallocate the memory required for
storing the pointers, so making a pointer vector smaller this way does not give back any memory. This
behavior might change in the future.

Arguments:

v: The pointer vector to clear.

Time complexity: O(1).

igraph_vector_ptr_push_back — Appends an element to the
back of a pointer vector.

igraph_error_t igraph_vector_ptr_push_back(igraph_vector_ptr_t* v, void* e);

Arguments:

v: The pointer vector.

e: The new element to include in the pointer vector.

Returns:

Error code.

See also:

igraph_vector_push_back() for the corresponding operation of the ordinary vector type.

Time complexity: O(1) or O(n), n is the number of elements in the vector. The pointer vector imple-
mentation ensures that n subsequent push_back operations need O(n) time to complete.

igraph_vector_ptr_pop_back — Removes and returns the last
element of a pointer vector.

void *igraph_vector_ptr_pop_back(igraph_vector_ptr_t *v);

It is an error to call this function with an empty vector.

Arguments:

v: The pointer vector.

Returns:

The removed last element.

88

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(1).

igraph_vector_ptr_insert — Inserts a single element into a
pointer vector.

igraph_error_t igraph_vector_ptr_insert(igraph_vector_ptr_t* v, igraph_integer_t pos, void* e);

Note that this function does not do range checking. Insertion will shift the elements from the position
given to the end of the vector one position to the right, and the new element will be inserted in the
empty space created at the given position. The size of the vector will increase by one.

Arguments:

v: The pointer vector object.

pos: The position where the new element is inserted.

e: The inserted element

igraph_vector_ptr_get — Access an element of a pointer vec-
tor.

void *igraph_vector_ptr_get(const igraph_vector_ptr_t* v, igraph_integer_t pos);

Arguments:

v: Pointer to a pointer vector.

pos: The index of the pointer to return.

Returns:

The pointer at pos position.

Time complexity: O(1).

igraph_vector_ptr_set — Assign to an element of a pointer
vector.

void igraph_vector_ptr_set(igraph_vector_ptr_t* v, igraph_integer_t pos, void* value);

Arguments:

v: Pointer to a pointer vector.

pos: The index of the pointer to update.

value: The new pointer to set in the vector.

Time complexity: O(1).

89

Data structure library: vec-
tor, matrix, other data types

igraph_vector_ptr_resize — Resizes a pointer vector.

igraph_error_t igraph_vector_ptr_resize(igraph_vector_ptr_t* v, igraph_integer_t newsize);

Note that if a vector is made smaller the pointed object are not deallocated by this function and the
item destructor is not called on the extra elements.

Arguments:

v: A pointer vector.

newsize: The new size of the pointer vector.

Returns:

Error code.

Time complexity: O(1) if the vector if made smaller. Operating system dependent otherwise, the
amount of “time” needed to allocate the memory for the vector elements.

igraph_vector_ptr_sort — Sorts the pointer vector based on
an external comparison function.

void igraph_vector_ptr_sort(igraph_vector_ptr_t *v, int (*compar)(const void*, const void*));

Sometimes it is necessary to sort the pointers in the vector based on the property of the element being
referenced by the pointer. This function allows us to sort the vector based on an arbitrary external
comparison function which accepts two void * pointers p1 and p2 and returns an integer less than,
equal to or greater than zero if the first argument is considered to be respectively less than, equal
to, or greater than the second. p1 and p2 will point to the pointer in the vector, so they have to be
double-dereferenced if one wants to get access to the underlying object the address of which is stored
in v.

Arguments:

v: The pointer vector to be sorted.

compar: A qsort-compatible comparison function. It must take pointers to the elements of the
pointer vector. For example, if the pointer vector contains igraph_vector_t *
pointers, then the comparison function must interpret its arguments as igraph_vec-
tor_t **.

igraph_vector_ptr_sort_ind — Returns a permutation of in-
dices that sorts a vector of pointers.

igraph_error_t igraph_vector_ptr_sort_ind(igraph_vector_ptr_t *v,
 igraph_vector_int_t *inds, cmp_t *cmp);

Takes an unsorted array v as input and computes an array of indices inds such that v[inds[i]], with
i increasing from 0, is an ordered array (either ascending or descending, depending on \v order). The
order of indices for identical elements is not defined.

90

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: the array to be sorted

inds: the output array of indices. This must be initialized, but will be resized

cmp: a comparator function that takes two elements of the pointer vector being sorted (these are
constant pointers on their own) and returns a negative value if the item "pointed to" by the
first pointer is smaller than the item "pointed to" by the second pointer, a positive value if
it is larger, or zero if the two items are equal

Returns:

Error code.

This routine uses the C library qsort routine. Algorithm: 1) create an array of pointers to the elements
of v. 2) Pass this array to qsort. 3) after sorting the difference between the pointer value and the first
pointer value gives its original position in the array. Use this to set the values of inds.

igraph_vector_ptr_permute — Permutes the elements of a
pointer vector in place according to an index vector.

igraph_error_t igraph_vector_ptr_permute(igraph_vector_ptr_t* v, const igraph_vector_int_t* index);

This function takes a vector v and a corresponding index vector ind, and permutes the elements of v
such that v[ind[i]] is moved to become v[i] after the function is executed.

It is an error to call this function with an index vector that does not represent a valid permutation. Each
element in the index vector must be between 0 and the length of the vector minus one (inclusive), and
each such element must appear only once. The function does not attempt to validate the index vector.

The index vector that this function takes is compatible with the index vector returned from
igraph_vector_ptr_sort_ind(); passing in the index vector from igraph_vector_p-
tr_sort_ind() will sort the original vector.

As a special case, this function allows the index vector to be shorter than the vector being permuted,
in which case the elements whose indices do not occur in the index vector will be removed from the
vector.

Arguments:

v: the vector to permute

ind: the index vector

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: O(n), the size of the vector.

igraph_vector_ptr_get_item_destructor — Gets the cur-
rent item destructor for this pointer vector.

91

Data structure library: vec-
tor, matrix, other data types

igraph_finally_func_t* igraph_vector_ptr_get_item_destructor(const igraph_vector_ptr_t *v);

The item destructor is a function which will be called on every non-null pointer stored in this vector
when igraph_vector_ptr_destroy(), igraph_vector_ptr_destroy_all() or igraph_vec-
tor_ptr_free_all() is called.

Returns:

The current item destructor.

Time complexity: O(1).

igraph_vector_ptr_set_item_destructor — Sets the item
destructor for this pointer vector.

igraph_finally_func_t* igraph_vector_ptr_set_item_destructor(
 igraph_vector_ptr_t *v, igraph_finally_func_t *func);

The item destructor is a function which will be called on every non-null pointer stored in this vector
when igraph_vector_ptr_destroy(), igraph_vector_ptr_destroy_all() or igraph_vec-
tor_ptr_free_all() is called.

Returns:

The old item destructor.

Time complexity: O(1).

IGRAPH_VECTOR_PTR_SET_ITEM_DESTRUCTOR — Sets the item
destructor for this pointer vector (macro version).

#define IGRAPH_VECTOR_PTR_SET_ITEM_DESTRUCTOR(v, func)

This macro is expanded to igraph_vector_ptr_set_item_destructor(), the only dif-
ference is that the second argument is automatically cast to an igraph_finally_func_t*. The
cast is necessary in most cases as the destructor functions we use (such as igraph_vector_de-
stroy()) take a pointer to some concrete igraph data type, while igraph_finally_func_t
expects void*

Deprecated functions

igraph_vector_copy — Initializes a vector from another vector
object (deprecated alias).

igraph_error_t igraph_vector_copy(igraph_vector_t *to,
 const igraph_vector_t *from);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use
igraph_vector_init_copy() instead.

92

Data structure library: vec-
tor, matrix, other data types

igraph_vector_e — Access an element of a vector (deprecated
alias).

igraph_real_t igraph_vector_e(const igraph_vector_t* v, igraph_integer_t pos);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_vector_get() instead.

igraph_vector_e_ptr — Get the address of an element of a
vector.

igraph_real_t* igraph_vector_e_ptr(const igraph_vector_t* v, igraph_integer_t pos);

Arguments:

v: The igraph_vector_t object.

pos: The position of the element, the position of the first element is zero.

Returns:

Pointer to the desired element.

See also:

igraph_vector_get() and the VECTOR macro.

Time complexity: O(1).

igraph_vector_init_seq — Initializes a vector with a se-
quence, inclusive endpoints (deprecated).

igraph_error_t igraph_vector_init_seq(igraph_vector_t *v, igraph_real_t from, igraph_real_t to);

The vector will contain the numbers from, from+1, ..., to. Note that both endpoints are inclusive,
contrary to typical usage of ranges in C.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_vector_init_range() instead.

Arguments:

93

Data structure library: vec-
tor, matrix, other data types

v: Pointer to an uninitialized vector object.

from: The lower limit in the sequence (inclusive).

to: The upper limit in the sequence (inclusive).

Returns:

Error code: IGRAPH_ENOMEM: out of memory.

Time complexity: O(n), the number of elements in the vector.

igraph_vector_ptr_copy — Initializes a pointer vector from an-
other one (deprecated alias).

igraph_error_t igraph_vector_ptr_copy(igraph_vector_ptr_t *to, const igraph_vector_ptr_t *from);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use
igraph_vector_ptr_init_copy() instead.

igraph_vector_ptr_e — Access an element of a pointer vector
(deprecated alias).

void *igraph_vector_ptr_e(const igraph_vector_ptr_t* v, igraph_integer_t pos);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_vector_ptr_get() instead.

Matrices

About igraph_matrix_t objects
This type is just an interface to igraph_vector_t.

The igraph_matrix_t type usually stores n elements in O(n) space, but not always. See the documen-
tation of the vector type.

Matrix constructors and destructors

igraph_matrix_init — Initializes a matrix.

igraph_error_t igraph_matrix_init(

94

Data structure library: vec-
tor, matrix, other data types

 igraph_matrix_t *m, igraph_integer_t nrow, igraph_integer_t ncol);

Every matrix needs to be initialized before using it. This is done by calling this function. A matrix has
to be destroyed if it is not needed any more; see igraph_matrix_destroy().

Arguments:

m: Pointer to a not yet initialized matrix object to be initialized.

nrow: The number of rows in the matrix.

ncol: The number of columns in the matrix.

Returns:

Error code.

Time complexity: usually O(n), n is the number of elements in the matrix.

igraph_matrix_init_array — Initializes a matrix from an ordi-
nary C array (constructor).

igraph_error_t igraph_matrix_init_array(
 igraph_matrix_t *m, const igraph_real_t *data,
 igraph_integer_t nrow, igraph_integer_t ncol,
 igraph_matrix_storage_t storage);

The array is assumed to store the matrix data contiguously, either in a column-major or row-major
format. In other words, data may store concatenated matrix columns or concatenated matrix rows.
Constructing a matrix from column-major data is faster, as this is igraph's native storage format.

Arguments:

v: Pointer to an uninitialized matrix object.

data: A regular C array, storing the elements of the matrix in column-major order, i.e. the
elements of the first column are stored first, followed by the second column and so on.

nrow: The number of rows in the matrix.

ncol: The number of columns in the matrix.

storage: IGRAPH_ROW_MAJOR if the array is in row-major format, IGRAPH_COLUMN_MA-
JOR if the array is in column-major format.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system specific, usually O(nrow ncol).

igraph_matrix_init_copy — Copies a matrix.

igraph_error_t igraph_matrix_init_copy(igraph_matrix_t *to, const igraph_matrix_t *from);

95

Data structure library: vec-
tor, matrix, other data types

Creates a matrix object by copying from an existing matrix.

Arguments:

to: Pointer to an uninitialized matrix object.

from: The initialized matrix object to copy.

Returns:

Error code, IGRAPH_ENOMEM if there isn't enough memory to allocate the new matrix.

Time complexity: O(n), the number of elements in the matrix.

igraph_matrix_destroy — Destroys a matrix object.

void igraph_matrix_destroy(igraph_matrix_t *m);

This function frees all the memory allocated for a matrix object. The destroyed object needs to be
reinitialized before using it again.

Arguments:

m: The matrix to destroy.

Time complexity: operating system dependent.

Initializing elements

igraph_matrix_null — Sets all elements in a matrix to zero.

void igraph_matrix_null(igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_fill — Fill with an element.

void igraph_matrix_fill(igraph_matrix_t *m, igraph_real_t e);

Set the matrix to a constant matrix.

Arguments:

m: The input matrix.

e: The element to set.

Time complexity: O(mn), the number of elements.

96

Data structure library: vec-
tor, matrix, other data types

Accessing elements of a matrix

MATRIX — Accessing an element of a matrix.

#define MATRIX(m,i,j)

Note that there are no range checks right now. This functionality might be redefined as a proper func-
tion later.

Arguments:

m: The matrix object.

i: The index of the row, starting with zero.

j: The index of the column, starting with zero.

Time complexity: O(1).

igraph_matrix_get — Extract an element from a matrix.

igraph_real_t igraph_matrix_get(const igraph_matrix_t *m,
 igraph_integer_t row, igraph_integer_t col);

Use this if you need a function for some reason and cannot use the MATRIX macro. Note that no range
checking is performed.

Arguments:

m: The input matrix.

row: The row index.

col: The column index.

Returns:

The element in the given row and column.

Time complexity: O(1).

igraph_matrix_get_ptr — Pointer to an element of a matrix.

igraph_real_t* igraph_matrix_get_ptr(const igraph_matrix_t *m,
 igraph_integer_t row, igraph_integer_t col);

The function returns a pointer to an element. No range checking is performed.

Arguments:

m: The input matrix.

row: The row index.

97

Data structure library: vec-
tor, matrix, other data types

col: The column index.

Returns:

Pointer to the element in the given row and column.

Time complexity: O(1).

igraph_matrix_set — Set an element.

void igraph_matrix_set(
 igraph_matrix_t* m, igraph_integer_t row, igraph_integer_t col,
 igraph_real_t value);

Set an element of a matrix. No range checking is performed.

Arguments:

m: The input matrix.

row: The row index.

col: The column index.

value: The new value of the element.

Time complexity: O(1).

Matrix views

igraph_matrix_view — Creates a matrix view into an existing
array.

const igraph_matrix_t* igraph_matrix_view(
 const igraph_matrix_t *m, const igraph_real_t *data,
 igraph_integer_t nrow, igraph_integer_t ncol);

This function lets you treat an existing C array as a matrix. The elements of the matrix are assumed
to be stored in column-major order in the array, i.e. the elements of the first column are stored first,
followed by the second column and so on.

Since this function creates a view into an existing array, you must not destroy the igraph_ma-
trix_t object when you are done with it. Similarly, you must not call any function on it that may
attempt to modify the size of the matrix. Modifying an element in the matrix will modify the under-
lying array as the two share the same memory block.

Arguments:

m: Pointer to a not yet initialized matrix object where the view will be created.

data: The array that the matrix provides a view into.

nrow: The number of rows in the matrix.

ncol: The number of columns in the matrix.

98

Data structure library: vec-
tor, matrix, other data types

Returns:

Pointer to the matrix object, the same as the m parameter, for convenience.

Time complexity: O(1).

igraph_matrix_view_from_vector — Creates a matrix view
that treats an existing vector as a matrix.

 const igraph_matrix_t *igraph_matrix_view_from_vector(
 const igraph_matrix_t *m, const igraph_vector_t *v,
 igraph_integer_t nrow
);

This function lets you treat an existing igraph vector as a matrix. The elements of the matrix are
assumed to be stored in column-major order in the vector, i.e. the elements of the first column are
stored first, followed by the second column and so on.

Since this function creates a view into an existing vector, you must not destroy the igraph_ma-
trix_t object when you are done with it. Similarly, you must not call any function on it that may
attempt to modify the size of the vector. Modifying an element in the matrix will modify the underly-
ing vector as the two share the same memory block.

Additionally, you must not attempt to grow the underlying vector by any vector operation as that may
result in a re-allocation of the backing memory block of the vector, and the matrix view will not be
informed about the re-allocation so it will point to an invalid memory area afterwards.

Arguments:

m: Pointer to a not yet initialized matrix object where the view will be created.

v: The vector that the matrix will provide a view into.

nrow: The number of rows in the matrix. The number of columns will be derived implicitly from
the size of the vector. If the number of items in the vector is not divisible by the number of
rows, the last few elements of the vector will not be covered by the view.

Returns:

Error code.

Time complexity: O(1).

Copying matrices

igraph_matrix_copy_to — Copies a matrix to a regular C array.

void igraph_matrix_copy_to(const igraph_matrix_t *m, igraph_real_t *to);

The matrix is copied columnwise, as this is the format most programs and languages use. The C array
should be of sufficient size; there are (of course) no range checks.

Arguments:

99

Data structure library: vec-
tor, matrix, other data types

m: Pointer to an initialized matrix object.

to: Pointer to a C array; the place to copy the data to.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_update — Update from another matrix.

igraph_error_t igraph_matrix_update(igraph_matrix_t *to,
 const igraph_matrix_t *from);

This function replicates from in the matrix to. Note that to must be already initialized.

Arguments:

to: The result matrix.

from: The matrix to replicate; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_swap — Swap two matrices.

igraph_error_t igraph_matrix_swap(igraph_matrix_t *m1, igraph_matrix_t *m2);

The contents of the two matrices will be swapped.

Arguments:

m1: The first matrix.

m2: The second matrix.

Returns:

Error code.

Time complexity: O(1).

Operations on rows and columns

igraph_matrix_get_row — Extract a row.

igraph_error_t igraph_matrix_get_row(const igraph_matrix_t *m,

100

Data structure library: vec-
tor, matrix, other data types

 igraph_vector_t *res, igraph_integer_t index);

Extract a row from a matrix and return it as a vector.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; it will be resized if needed.

index: The index of the row to select.

Returns:

Error code.

Time complexity: O(n), the number of columns in the matrix.

igraph_matrix_get_col — Select a column.

igraph_error_t igraph_matrix_get_col(const igraph_matrix_t *m,
 igraph_vector_t *res,
 igraph_integer_t index);

Extract a column of a matrix and return it as a vector.

Arguments:

m: The input matrix.

res: The result will we stored in this vector. It should be initialized and will be resized as needed.

index: The index of the column to select.

Returns:

Error code.

Time complexity: O(n), the number of rows in the matrix.

igraph_matrix_set_row — Set a row from a vector.

igraph_error_t igraph_matrix_set_row(igraph_matrix_t *m,
 const igraph_vector_t *v, igraph_integer_t index);

Sets the elements of a row with the given vector. This has the effect of setting row index to have
the elements in the vector v. The length of the vector and the number of columns in the matrix must
match, otherwise an error is triggered.

Arguments:

m: The input matrix.

v: The vector containing the new elements of the row.

index: Index of the row to set.

101

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

Time complexity: O(n), the number of columns in the matrix.

igraph_matrix_set_col — Set a column from a vector.

igraph_error_t igraph_matrix_set_col(igraph_matrix_t *m,
 const igraph_vector_t *v, igraph_integer_t index);

Sets the elements of a column with the given vector. In effect, column index will be set with elements
from the vector v. The length of the vector and the number of rows in the matrix must match, otherwise
an error is triggered.

Arguments:

m: The input matrix.

v: The vector containing the new elements of the column.

index: Index of the column to set.

Returns:

Error code.

Time complexity: O(m), the number of rows in the matrix.

igraph_matrix_swap_rows — Swap two rows.

igraph_error_t igraph_matrix_swap_rows(igraph_matrix_t *m,
 igraph_integer_t i, igraph_integer_t j);

Swap two rows in the matrix.

Arguments:

m: The input matrix.

i: The index of the first row.

j: The index of the second row.

Returns:

Error code.

Time complexity: O(n), the number of columns.

igraph_matrix_swap_cols — Swap two columns.

igraph_error_t igraph_matrix_swap_cols(igraph_matrix_t *m,

102

Data structure library: vec-
tor, matrix, other data types

 igraph_integer_t i, igraph_integer_t j);

Swap two columns in the matrix.

Arguments:

m: The input matrix.

i: The index of the first column.

j: The index of the second column.

Returns:

Error code.

Time complexity: O(m), the number of rows.

igraph_matrix_select_rows — Select some rows of a matrix.

igraph_error_t igraph_matrix_select_rows(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_int_t *rows);

This function selects some rows of a matrix and returns them in a new matrix. The result matrix should
be initialized before calling the function.

Arguments:

m: The input matrix.

res: The result matrix. It should be initialized and will be resized as needed.

rows: Vector; it contains the row indices (starting with zero) to extract. Note that no range checking
is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

igraph_matrix_select_cols — Select some columns of a ma-
trix.

igraph_error_t igraph_matrix_select_cols(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_int_t *cols);

This function selects some columns of a matrix and returns them in a new matrix. The result matrix
should be initialized before calling the function.

Arguments:

m: The input matrix.

103

Data structure library: vec-
tor, matrix, other data types

res: The result matrix. It should be initialized and will be resized as needed.

cols: Vector; it contains the column indices (starting with zero) to extract. Note that no range
checking is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

igraph_matrix_select_rows_cols — Select some rows and
columns of a matrix.

igraph_error_t igraph_matrix_select_rows_cols(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_int_t *rows,
 const igraph_vector_int_t *cols);

This function selects some rows and columns of a matrix and returns them in a new matrix. The result
matrix should be initialized before calling the function.

Arguments:

m: The input matrix.

res: The result matrix. It should be initialized and will be resized as needed.

rows: Vector; it contains the row indices (starting with zero) to extract. Note that no range checking
is performed.

cols: Vector; it contains the column indices (starting with zero) to extract. Note that no range
checking is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

Matrix operations

igraph_matrix_add_constant — Add a constant to every ele-
ment.

void igraph_matrix_add_constant(igraph_matrix_t *m, igraph_real_t plus);

Arguments:

m: The input matrix.

plud: The constant to add.

104

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(mn), the number of elements.

igraph_matrix_scale — Multiplies each element of the matrix
by a constant.

void igraph_matrix_scale(igraph_matrix_t *m, igraph_real_t by);

Arguments:

m: The matrix.

by: The constant.

Added in version 0.2.

Time complexity: O(n), the number of elements in the matrix.

igraph_matrix_add — Add two matrices.

igraph_error_t igraph_matrix_add(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Add m2 to m1, and store the result in m1. The dimensions of the matrices must match.

Arguments:

m1: The first matrix; the result will be stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_sub — Difference of two matrices.

igraph_error_t igraph_matrix_sub(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Subtract m2 from m1 and store the result in m1. The dimensions of the two matrices must match.

Arguments:

m1: The first matrix; the result is stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

105

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(mn), the number of elements.

igraph_matrix_mul_elements — Elementwise matrix multipli-
cation.

igraph_error_t igraph_matrix_mul_elements(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Multiply m1 by m2 elementwise and store the result in m1. The dimensions of the two matrices must
match.

Arguments:

m1: The first matrix; the result is stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_div_elements — Elementwise division.

igraph_error_t igraph_matrix_div_elements(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Divide m1 by m2 elementwise and store the result in m1. The dimensions of the two matrices must
match.

Arguments:

m1: The dividend. The result is store here.

m2: The divisor. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_sum — Sum of elements.

igraph_real_t igraph_matrix_sum(const igraph_matrix_t *m);

Returns the sum of the elements of a matrix.

Arguments:

m: The input matrix.

106

Data structure library: vec-
tor, matrix, other data types

Returns:

The sum of the elements.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_prod — Product of all matrix elements.

igraph_real_t igraph_matrix_prod(const igraph_matrix_t *m);

Note that this function can result in overflow easily, even for not too big matrices. Overflow is not
checked.

Arguments:

m: The input matrix.

Returns:

The product of the elements.

Time complexity: O(mn), the number of elements.

igraph_matrix_rowsum — Rowwise sum.

igraph_error_t igraph_matrix_rowsum(const igraph_matrix_t *m,
 igraph_vector_t *res);

Calculate the sum of the elements in each row.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; the result is stored here. It will be resized if necessary.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_colsum — Columnwise sum.

igraph_error_t igraph_matrix_colsum(const igraph_matrix_t *m,
 igraph_vector_t *res);

Calculate the sum of the elements in each column.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; the result is stored here. It will be resized if necessary.

107

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_transpose — Transpose of a matrix.

igraph_error_t igraph_matrix_transpose(igraph_matrix_t *m);

Calculates the transpose of a matrix. When the matrix is non-square, this function reallocates the
storage used for the matrix.

Arguments:

m: The input (and output) matrix.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

Matrix comparisons

igraph_matrix_all_e — Are all elements equal?

igraph_bool_t igraph_matrix_all_e(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Checks element-wise equality of two matrices. For matrices containing floating point values, consider
using igraph_matrix_all_almost_e().

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

True if the elements in the lhs are all equal to the corresponding elements in rhs. Returns false
if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_almost_e — Are all elements almost
equal?

igraph_bool_t igraph_matrix_all_almost_e(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs,

108

Data structure library: vec-
tor, matrix, other data types

 igraph_real_t eps);

Checks if the elements of two matrices are equal within a relative tolerance.

Arguments:

lhs: The first matrix.

rhs: The second matrix.

eps: Relative tolerance, see igraph_almost_equals() for details.

Returns:

True if the two matrices are almost equal, false if there is at least one differing element or if the
matrices are not of the same dimensions.

igraph_matrix_all_l — Are all elements less?

igraph_bool_t igraph_matrix_all_l(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

True if the elements in the lhs are all less than the corresponding elements in rhs. Returns false
if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_g — Are all elements greater?

igraph_bool_t igraph_matrix_all_g(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

True if the elements in the lhs are all greater than the corresponding elements in rhs. Returns
false if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

109

Data structure library: vec-
tor, matrix, other data types

igraph_matrix_all_le — Are all elements less or equal?

igraph_bool_t
igraph_matrix_all_le(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

True if the elements in the lhs are all less than or equal to the corresponding elements in rhs.
Returns false if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_ge — Are all elements greater or equal?

igraph_bool_t
igraph_matrix_all_ge(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

True if the elements in the lhs are all greater than or equal to the corresponding elements in rhs.
Returns false if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_zapsmall — Replaces small elements of a ma-
trix by exact zeros.

igraph_error_t igraph_matrix_zapsmall(igraph_matrix_t *m, igraph_real_t tol);

Matrix elements which are smaller in magnitude than the given absolute tolerance will be replaced by
exact zeros. The default tolerance corresponds to two-thirds of the representable digits of igraph_re-
al_t, i.e. DBL_EPSILON^(2/3) which is approximately 10^-10.

Arguments:

m: The matrix to process, it will be changed in-place.

110

Data structure library: vec-
tor, matrix, other data types

tol: Tolerance value. Numbers smaller than this in magnitude will be replaced by zeros. Pass in
zero to use the default tolerance. Must not be negative.

Returns:

Error code.

See also:

igraph_matrix_all_almost_e() and igraph_almost_equals() to perform com-
parisons with relative tolerances.

Combining matrices

igraph_matrix_rbind — Combine two matrices rowwise.

igraph_error_t igraph_matrix_rbind(igraph_matrix_t *to,
 const igraph_matrix_t *from);

This function places the rows of from below the rows of to and stores the result in to. The number
of columns in the two matrices must match.

Arguments:

to: The upper matrix; the result is also stored here.

from: The lower matrix. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the newly created matrix.

igraph_matrix_cbind — Combine matrices columnwise.

igraph_error_t igraph_matrix_cbind(igraph_matrix_t *to,
 const igraph_matrix_t *from);

This function places the columns of from on the right of to, and stores the result in to.

Arguments:

to: The left matrix; the result is stored here too.

from: The right matrix. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements on the new matrix.

111

Data structure library: vec-
tor, matrix, other data types

Finding minimum and maximum

igraph_matrix_min — Smallest element of a matrix.

igraph_real_t igraph_matrix_min(const igraph_matrix_t *m);

The matrix must be non-empty.

Arguments:

m: The input matrix.

Returns:

The smallest element of m, or NaN if any element is NaN.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_max — Largest element of a matrix.

igraph_real_t igraph_matrix_max(const igraph_matrix_t *m);

If the matrix is empty, an arbitrary number is returned.

Arguments:

m: The matrix object.

Returns:

The maximum element of m, or NaN if any element is NaN.

Added in version 0.2.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_which_min — Indices of the smallest element.

void igraph_matrix_which_min(
 const igraph_matrix_t *m, igraph_integer_t *i, igraph_integer_t *j);

The matrix must be non-empty. If the smallest element is not unique, then the indices of the first such
element are returned. If the matrix contains NaN values, the indices of the first NaN value are returned.

Arguments:

m: The matrix.

i: Pointer to an igraph_integer_t. The row index of the minimum is stored here.

j: Pointer to an igraph_integer_t. The column index of the minimum is stored here.

Time complexity: O(mn), the number of elements.

112

Data structure library: vec-
tor, matrix, other data types

igraph_matrix_which_max — Indices of the largest element.

void igraph_matrix_which_max(
 const igraph_matrix_t *m, igraph_integer_t *i, igraph_integer_t *j);

The matrix must be non-empty. If the largest element is not unique, then the indices of the first such
element are returned. If the matrix contains NaN values, the indices of the first NaN value are returned.

Arguments:

m: The matrix.

i: Pointer to an igraph_integer_t. The row index of the maximum is stored here.

j: Pointer to an igraph_integer_t. The column index of the maximum is stored here.

Time complexity: O(mn), the number of elements.

igraph_matrix_minmax — Minimum and maximum elements of
a matrix.

void igraph_matrix_minmax(const igraph_matrix_t *m,
 igraph_real_t *min, igraph_real_t *max);

Handy if you want to have both the smallest and largest element of a matrix. The matrix is only
traversed once. The matrix must be non-empty. If a matrix contains at least one NaN, both min and
max will be NaN.

Arguments:

m: The input matrix. It must contain at least one element.

min: Pointer to a base type variable. The minimum is stored here.

max: Pointer to a base type variable. The maximum is stored here.

Time complexity: O(mn), the number of elements.

igraph_matrix_which_minmax — Indices of the minimum and
maximum elements.

void igraph_matrix_which_minmax(const igraph_matrix_t *m,
 igraph_integer_t *imin, igraph_integer_t *jmin,
 igraph_integer_t *imax, igraph_integer_t *jmax);

Handy if you need the indices of the smallest and largest elements. The matrix is traversed only once.
The matrix must be non-empty. If the minimum or maximum is not unique, the index of the first
minimum or the first maximum is returned, respectively. If a matrix contains at least one NaN, both
which_min and which_max will point to the first NaN value.

Arguments:

m: The input matrix.

113

Data structure library: vec-
tor, matrix, other data types

imin: Pointer to an igraph_integer_t, the row index of the minimum is stored here.

jmin: Pointer to an igraph_integer_t, the column index of the minimum is stored here.

imax: Pointer to an igraph_integer_t, the row index of the maximum is stored here.

jmax: Pointer to an igraph_integer_t, the column index of the maximum is stored here.

Time complexity: O(mn), the number of elements.

Matrix properties

igraph_matrix_empty — Is the matrix empty?

igraph_bool_t igraph_matrix_empty(const igraph_matrix_t *m);

It is possible to have a matrix with zero rows or zero columns, or even both. This functions checks
for these.

Arguments:

m: The input matrix.

Returns:

Boolean, true if the matrix contains zero elements, and false otherwise.

Time complexity: O(1).

igraph_matrix_isnull — Checks for a null matrix.

igraph_bool_t igraph_matrix_isnull(const igraph_matrix_t *m);

Checks whether all elements are zero.

Arguments:

m: The input matrix.

Returns:

Boolean, true is m contains only zeros and false otherwise.

Time complexity: O(mn), the number of elements.

igraph_matrix_size — The number of elements in a matrix.

igraph_integer_t igraph_matrix_size(const igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

114

Data structure library: vec-
tor, matrix, other data types

Returns:

The size of the matrix.

Time complexity: O(1).

igraph_matrix_capacity — Returns the number of elements
allocated for a matrix.

igraph_integer_t igraph_matrix_capacity(const igraph_matrix_t *m);

Note that this might be different from the size of the matrix (as queried by igraph_ma-
trix_size(), and specifies how many elements the matrix can hold, without reallocation.

Arguments:

v: Pointer to the (previously initialized) matrix object to query.

Returns:

The allocated capacity.

See also:

igraph_matrix_size(), igraph_matrix_nrow(), igraph_matrix_ncol().

Time complexity: O(1).

igraph_matrix_nrow — The number of rows in a matrix.

igraph_integer_t igraph_matrix_nrow(const igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

Returns:

The number of rows in the matrix.

Time complexity: O(1).

igraph_matrix_ncol — The number of columns in a matrix.

igraph_integer_t igraph_matrix_ncol(const igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

115

Data structure library: vec-
tor, matrix, other data types

Returns:

The number of columns in the matrix.

Time complexity: O(1).

igraph_matrix_is_symmetric — Is the matrix symmetric?

igraph_bool_t igraph_matrix_is_symmetric(const igraph_matrix_t *m);

A non-square matrix is not symmetric by definition.

Arguments:

m: The input matrix.

Returns:

Boolean, true if the matrix is square and symmetric, false otherwise.

Time complexity: O(mn), the number of elements. O(1) for non-square matrices.

igraph_matrix_maxdifference — Maximum absolute differ-
ence between two matrices.

igraph_real_t igraph_matrix_maxdifference(const igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Calculate the maximum absolute difference of two matrices. Both matrices must be non-empty. If their
dimensions differ then a warning is given and the comparison is performed by vectors columnwise
from both matrices. The remaining elements in the larger vector are ignored.

Arguments:

m1: The first matrix.

m2: The second matrix.

Returns:

The element with the largest absolute value in m1 - m2.

Time complexity: O(mn), the elements in the smaller matrix.

Searching for elements

igraph_matrix_contains — Search for an element.

igraph_bool_t igraph_matrix_contains(const igraph_matrix_t *m,
 igraph_real_t e);

Search for the given element in the matrix.

116

Data structure library: vec-
tor, matrix, other data types

Arguments:

m: The input matrix.

e: The element to search for.

Returns:

Boolean, true if the matrix contains e, false otherwise.

Time complexity: O(mn), the number of elements.

igraph_matrix_search — Search from a given position.

igraph_bool_t igraph_matrix_search(const igraph_matrix_t *m,
 igraph_integer_t from, igraph_real_t what, igraph_integer_t *pos,
 igraph_integer_t *row, igraph_integer_t *col);

Search for an element in a matrix and start the search from the given position. The search is performed
columnwise.

Arguments:

m: The input matrix.

from: The position to search from, the positions are enumerated columnwise.

what: The element to search for.

pos: Pointer to an igraph_integer_t. If the element is found, then this is set to the position of its
first appearance.

row: Pointer to an igraph_integer_t. If the element is found, then this is set to its row index.

col: Pointer to an igraph_integer_t. If the element is found, then this is set to its column index.

Returns:

Boolean, true if the element is found, false otherwise.

Time complexity: O(mn), the number of elements.

Resizing operations

igraph_matrix_resize — Resizes a matrix.

igraph_error_t igraph_matrix_resize(igraph_matrix_t *m, igraph_integer_t nrow, igraph_integer_t ncol);

This function resizes a matrix by adding more elements to it. The matrix contains arbitrary data after
resizing it. That is, after calling this function you cannot expect that element (i,j) in the matrix remains
the same as before.

Arguments:

m: Pointer to an already initialized matrix object.

117

Data structure library: vec-
tor, matrix, other data types

nrow: The number of rows in the resized matrix.

ncol: The number of columns in the resized matrix.

Returns:

Error code.

Time complexity: O(1) if the matrix gets smaller, usually O(n) if it gets larger, n is the number of
elements in the resized matrix.

igraph_matrix_resize_min — Deallocates unused memory for
a matrix.

void igraph_matrix_resize_min(igraph_matrix_t *m);

This function attempts to deallocate the unused reserved storage of a matrix.

Arguments:

m: Pointer to an initialized matrix.

See also:

igraph_matrix_resize().

Time complexity: operating system dependent, O(n) at worst.

igraph_matrix_add_rows — Adds rows to a matrix.

igraph_error_t igraph_matrix_add_rows(igraph_matrix_t *m, igraph_integer_t n);

Arguments:

m: The matrix object.

n: The number of rows to add.

Returns:

Error code, IGRAPH_ENOMEM if there isn't enough memory for the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

igraph_matrix_add_cols — Adds columns to a matrix.

igraph_error_t igraph_matrix_add_cols(igraph_matrix_t *m, igraph_integer_t n);

Arguments:

m: The matrix object.

118

Data structure library: vec-
tor, matrix, other data types

n: The number of columns to add.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory to perform the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

igraph_matrix_remove_row — Remove a row.

igraph_error_t igraph_matrix_remove_row(igraph_matrix_t *m, igraph_integer_t row);

A row is removed from the matrix.

Arguments:

m: The input matrix.

row: The index of the row to remove.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_remove_col — Removes a column from a ma-
trix.

igraph_error_t igraph_matrix_remove_col(igraph_matrix_t *m, igraph_integer_t col);

Arguments:

m: The matrix object.

col: The column to remove.

Returns:

Error code, always returns with success.

Time complexity: linear with the number of elements of the new, resized matrix.

Complex matrix operations

igraph_matrix_complex_real — Gives the real part of a com-
plex matrix.

igraph_error_t igraph_matrix_complex_real(const igraph_matrix_complex_t *m,

119

Data structure library: vec-
tor, matrix, other data types

 igraph_matrix_t *real);

Arguments:

m: Pointer to a complex matrix.

real: Pointer to an initialized matrix. The result will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_complex_imag — Gives the imaginary part of a
complex matrix.

igraph_error_t igraph_matrix_complex_imag(const igraph_matrix_complex_t *m,
 igraph_matrix_t *imag);

Arguments:

m: Pointer to a complex matrix.

imag: Pointer to an initialized matrix. The result will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_complex_realimag — Gives the real and imag-
inary parts of a complex matrix.

igraph_error_t igraph_matrix_complex_realimag(const igraph_matrix_complex_t *m,
 igraph_matrix_t *real,
 igraph_matrix_t *imag);

Arguments:

m: Pointer to a complex matrix.

real: Pointer to an initialized matrix. The real part will be stored here.

imag: Pointer to an initialized matrix. The imaginary part will be stored here.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

120

Data structure library: vec-
tor, matrix, other data types

igraph_matrix_complex_create — Creates a complex matrix
from a real and imaginary part.

igraph_error_t igraph_matrix_complex_create(igraph_matrix_complex_t *m,
 const igraph_matrix_t *real,
 const igraph_matrix_t *imag);

Arguments:

m: Pointer to an uninitialized complex matrix.

real: Pointer to the real part of the complex matrix.

imag: Pointer to the imaginary part of the complex matrix.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_complex_create_polar — Creates a complex
matrix from a magnitude and an angle.

igraph_error_t igraph_matrix_complex_create_polar(igraph_matrix_complex_t *m,
 const igraph_matrix_t *r,
 const igraph_matrix_t *theta);

Arguments:

m: Pointer to an uninitialized complex matrix.

r: Pointer to a real matrix containing magnitudes.

theta: Pointer to a real matrix containing arguments (phase angles).

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_complex_all_almost_e — Are all elements al-
most equal?

igraph_bool_t igraph_matrix_complex_all_almost_e(igraph_matrix_complex_t *lhs,
 igraph_matrix_complex_t *rhs,
 igraph_real_t eps);

Checks if the elements of two complex matrices are equal within a relative tolerance.

121

Data structure library: vec-
tor, matrix, other data types

Arguments:

lhs: The first matrix.

rhs: The second matrix.

eps: Relative tolerance, see igraph_complex_almost_equals() for details.

Returns:

True if the two matrices are almost equal, false if there is at least one differing element or if the
matrices are not of the same dimensions.

igraph_matrix_complex_zapsmall — Replaces small ele-
ments of a complex matrix by exact zeros.

igraph_error_t igraph_matrix_complex_zapsmall(igraph_matrix_complex_t *m, igraph_real_t tol);

Similarly to igraph_matrix_zapsmall(), small elements will be replaced by zeros. The op-
eration is performed separately on the real and imaginary parts of the numbers. This way, complex
numbers with a large real part and tiny imaginary part will effectively be transformed to real num-
bers. The default tolerance corresponds to two-thirds of the representable digits of igraph_real_t, i.e.
DBL_EPSILON^(2/3) which is approximately 10^-10.

Arguments:

m: The matrix to process, it will be changed in-place.

tol: Tolerance value. Real and imaginary parts smaller than this in magnitude will be replaced by
zeros. Pass in zero to use the default tolerance. Must not be negative.

Returns:

Error code.

See also:

igraph_matrix_complex_all_almost_e() and igraph_complex_almost_e-
quals() to perform comparisons with relative tolerances.

Deprecated functions

igraph_matrix_copy — Copies a matrix (deprecated alias).

igraph_error_t igraph_matrix_copy(igraph_matrix_t *to, const igraph_matrix_t *from);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use
igraph_matrix_init_copy() instead.

122

Data structure library: vec-
tor, matrix, other data types

igraph_matrix_e — Extract an element from a matrix (deprecat-
ed alias).

igraph_real_t igraph_matrix_e(const igraph_matrix_t *m,
 igraph_integer_t row, igraph_integer_t col);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_matrix_get() instead.

igraph_matrix_e_ptr — Pointer to an element of a matrix.

igraph_real_t* igraph_matrix_e_ptr(const igraph_matrix_t *m,
 igraph_integer_t row, igraph_integer_t col);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_matrix_get_ptr() instead.

Sparse matrices

About sparse matrices
The igraph_sparsemat_t data type stores sparse matrices, i.e. matrices in which the majority
of the elements are zero.

The data type is essentially a wrapper to some of the functions in the CXSparse library, by Tim Davis,
see http://faculty.cse.tamu.edu/davis/suitesparse.html

Matrices can be stored in two formats: triplet and column-compressed. The triplet format is intended
for sparse matrix initialization, as it is easy to add new (non-zero) elements to it. Most of the compu-
tations are done on sparse matrices in column-compressed format, after the user has converted the
triplet matrix to column-compressed, via igraph_sparsemat_compress().

Both formats are dynamic, in the sense that new elements can be added to them, possibly resulting
the allocation of more memory.

Row and column indices follow the C convention and are zero-based.

Example 7.4. File examples/simple/igraph_sparsemat.c

Example 7.5. File examples/simple/igraph_sparsemat3.c

Example 7.6. File examples/simple/igraph_sparsemat4.c

123

http://faculty.cse.tamu.edu/davis/suitesparse.html

Data structure library: vec-
tor, matrix, other data types

Example 7.7. File examples/simple/igraph_sparsemat6.c

Example 7.8. File examples/simple/igraph_sparsemat7.c

Example 7.9. File examples/simple/igraph_sparsemat8.c

Creating sparse matrix objects

igraph_sparsemat_init — Initializes a sparse matrix, in triplet
format.

igraph_error_t igraph_sparsemat_init(igraph_sparsemat_t *A, igraph_integer_t rows,
 igraph_integer_t cols, igraph_integer_t nzmax);

This is the most common way to create a sparse matrix, together with the igraph_sparse-
mat_entry() function, which can be used to add the non-zero elements one by one. Once done, the
user can call igraph_sparsemat_compress() to convert the matrix to column-compressed, to
allow computations with it.

The user must call igraph_sparsemat_destroy() on the matrix to deallocate the memory,
once the matrix is no more needed.

Arguments:

A: Pointer to a not yet initialized sparse matrix.

rows: The number of rows in the matrix.

cols: The number of columns.

nzmax: The maximum number of non-zero elements in the matrix. It is not compulsory to get this
right, but it is useful for the allocation of the proper amount of memory.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_init_copy — Copies a sparse matrix.

igraph_error_t igraph_sparsemat_init_copy(
 igraph_sparsemat_t *to, const igraph_sparsemat_t *from
);

Create a sparse matrix object, by copying another one. The source matrix can be either in triplet or
column-compressed format.

Exactly the same amount of memory will be allocated to the copy matrix, as it is currently for the
original one.

124

Data structure library: vec-
tor, matrix, other data types

Arguments:

to: Pointer to an uninitialized sparse matrix, the copy will be created here.

from: The sparse matrix to copy.

Returns:

Error code.

Time complexity: O(n+nzmax), the number of columns plus the maximum number of non-zero ele-
ments.

igraph_sparsemat_init_diag — Creates a sparse diagonal
matrix.

igraph_error_t igraph_sparsemat_init_diag(
 igraph_sparsemat_t *A, igraph_integer_t nzmax, const igraph_vector_t *values,
 igraph_bool_t compress
);

Arguments:

A: An uninitialized sparse matrix, the result is stored here.

nzmax: The maximum number of non-zero elements, this essentially gives the amount of
memory that will be allocated for matrix elements.

values: The values to store in the diagonal, the size of the matrix defined by the length of
this vector.

compress: Whether to create a column-compressed matrix. If false, then a triplet matrix is created.

Returns:

Error code.

Time complexity: O(n), the length of the diagonal vector.

igraph_sparsemat_init_eye — Creates a sparse identity ma-
trix.

igraph_error_t igraph_sparsemat_init_eye(
 igraph_sparsemat_t *A, igraph_integer_t n, igraph_integer_t nzmax,
 igraph_real_t value, igraph_bool_t compress
);

Arguments:

A: An uninitialized sparse matrix, the result is stored here.

n: The number of rows and number of columns in the matrix.

125

Data structure library: vec-
tor, matrix, other data types

nzmax: The maximum number of non-zero elements, this essentially gives the amount of
memory that will be allocated for matrix elements.

value: The value to store in the diagonal.

compress: Whether to create a column-compressed matrix. If false, then a triplet matrix is created.

Returns:

Error code.

Time complexity: O(n).

igraph_sparsemat_realloc — Allocates more (or less) memo-
ry for a sparse matrix.

igraph_error_t igraph_sparsemat_realloc(igraph_sparsemat_t *A, igraph_integer_t nzmax);

Sparse matrices automatically allocate more memory, as needed. To control memory allocation, the
user can call this function, to allocate memory for a given number of non-zero elements.

Arguments:

A: The sparse matrix, it can be in triplet or column-compressed format.

nzmax: The new maximum number of non-zero elements.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_destroy — Deallocates memory used by a
sparse matrix.

void igraph_sparsemat_destroy(igraph_sparsemat_t *A);

One destroyed, the sparse matrix must be initialized again, before calling any other operation on it.

Arguments:

A: The sparse matrix to destroy.

Time complexity: O(1).

igraph_sparsemat_view — Initialize a sparse matrix and set all
parameters.

igraph_error_t igraph_sparsemat_view(igraph_sparsemat_t *A, igraph_integer_t nzmax, igraph_integer_t m, igraph_integer_t n,
 igraph_integer_t *p, igraph_integer_t *i, igraph_real_t *x, igraph_integer_t nz);

126

Data structure library: vec-
tor, matrix, other data types

This function can be used to temporarily handle existing sparse matrix data, usually created by anoth-
er software library, as an igraph_sparsemat_t object, and thus avoid unnecessary copying. It
supports data stored in either the compressed sparse column format, or the (i, j, x) triplet format
where i and j are the matrix indices of a non-zero element, and x is its value.

The compressed sparse column (or row) format is commonly used to represent sparse matrix data.
It consists of three vectors, the p column pointers, the i row indices, and the x values. p[k] is the
number of non-zero entires in matrix columns k-1 and lower. p[0] is always zero and p[n] is
always the total number of non-zero entires in the matrix. i[l] is the row index of the l-th stored
element, while x[l] is its value. If a matrix element with indices (j, k) is explicitly stored, it must
be located between positions p[k] and p[k+1] - 1 (inclusive) in the i and x vectors.

Do not call igraph_sparsemat_destroy() on a sparse matrix created with this function. In-
stead, igraph_free() must be called on the cs field of A to free the storage allocated by this
function.

Warning: Matrices created with this function must not be used with functions that may reallocate the
underlying storage, such as igraph_sparsemat_entry().

Arguments:

A: The non-initialized sparse matrix.

nzmax: The maximum number of entries, typically the actual number of entries.

m: The number of matrix rows.

n: The number of matrix columns.

p: For a compressed matrix, this is the column pointer vector, and must be of size n+1. For
a triplet format matrix, it is a vector of column indices and must be of size nzmax.

i: The row vector. This should contain the row indices of the elements in x. It must be of
size nzmax.

x: The values of the non-zero elements of the sparse matrix. It must be of size nzmax.

nz: For a compressed matrix, is must be -1. For a triplet format matrix, is must contain the
number of entries.

Returns:

Error code.

Time complexity: O(1).

Query properties of a sparse matrix

igraph_sparsemat_index — Extracts a submatrix or a single el-
ement.

igraph_error_t igraph_sparsemat_index(const igraph_sparsemat_t *A,
 const igraph_vector_int_t *p,
 const igraph_vector_int_t *q,
 igraph_sparsemat_t *res,
 igraph_real_t *constres);

127

Data structure library: vec-
tor, matrix, other data types

This function indexes into a sparse matrix. It serves two purposes. First, it can extract submatrices
from a sparse matrix. Second, as a special case, it can extract a single element from a sparse matrix.

Arguments:

A: The input matrix, it must be in column-compressed format.

p: An integer vector, or a null pointer. The selected row index or indices. A null pointer
selects all rows.

q: An integer vector, or a null pointer. The selected column index or indices. A null
pointer selects all columns.

res: Pointer to an uninitialized sparse matrix, or a null pointer. If not a null pointer, then
the selected submatrix is stored here.

constres: Pointer to a real variable or a null pointer. If not a null pointer, then the first non-
zero element in the selected submatrix is stored here, if there is one. Otherwise zero
is stored here. This behavior is handy if one wants to select a single entry from the
matrix.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_nrow — Number of rows.

igraph_integer_t igraph_sparsemat_nrow(const igraph_sparsemat_t *A);

Arguments:

A: The input matrix, in triplet or column-compressed format.

Returns:

The number of rows in the A matrix.

Time complexity: O(1).

igraph_sparsemat_ncol — Number of columns.

igraph_integer_t igraph_sparsemat_ncol(const igraph_sparsemat_t *A);

Arguments:

A: The input matrix, in triplet or column-compressed format.

Returns:

The number of columns in the A matrix.

128

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(1).

igraph_sparsemat_type — Type of a sparse matrix (triplet or
column-compressed).

igraph_sparsemat_type_t igraph_sparsemat_type(const igraph_sparsemat_t *A);

Gives whether a sparse matrix is stored in the triplet format or in column-compressed format.

Arguments:

A: The input matrix.

Returns:

Either IGRAPH_SPARSEMAT_CC or IGRAPH_SPARSEMAT_TRIPLET.

Time complexity: O(1).

igraph_sparsemat_is_triplet — Is this sparse matrix in
triplet format?

igraph_bool_t igraph_sparsemat_is_triplet(const igraph_sparsemat_t *A);

Decides whether a sparse matrix is in triplet format.

Arguments:

A: The input matrix.

Returns:

One if the input matrix is in triplet format, zero otherwise.

Time complexity: O(1).

igraph_sparsemat_is_cc — Is this sparse matrix in col-
umn-compressed format?

igraph_bool_t igraph_sparsemat_is_cc(const igraph_sparsemat_t *A);

Decides whether a sparse matrix is in column-compressed format.

Arguments:

A: The input matrix.

Returns:

One if the input matrix is in column-compressed format, zero otherwise.

Time complexity: O(1).

129

Data structure library: vec-
tor, matrix, other data types

igraph_sparsemat_is_symmetric — Returns whether a sparse
matrix is symmetric.

igraph_error_t igraph_sparsemat_is_symmetric(const igraph_sparsemat_t *A, igraph_bool_t *result);

Arguments:

A: The input matrix

result: Pointer to an igraph_bool_t ; the result is provided here.

Returns:

Error code.

igraph_sparsemat_get — Return the value of a single element
from a sparse matrix.

igraph_real_t igraph_sparsemat_get(
 const igraph_sparsemat_t *A, igraph_integer_t row, igraph_integer_t col
);

Arguments:

A: The input matrix, in triplet or column-compressed format.

row: The row index

col: The column index

Returns:

The value of the cell with the given row and column indices in the matrix; zero if the indices are
out of bounds.

Time complexity: TODO.

igraph_sparsemat_getelements — Returns all elements of a
sparse matrix.

igraph_error_t igraph_sparsemat_getelements(const igraph_sparsemat_t *A,
 igraph_vector_int_t *i,
 igraph_vector_int_t *j,
 igraph_vector_t *x);

This function will return the elements of a sparse matrix in three vectors. Two vectors will indicate
where the elements are located, and one will specify the elements themselves.

Arguments:

130

Data structure library: vec-
tor, matrix, other data types

A: A sparse matrix in either triplet or compressed form.

i: An initialized integer vector. This will store the rows of the returned elements.

j: An initialized integer vector. For a triplet matrix this will store the columns of the returned
elements. For a compressed matrix, if the column index is k, then j[k] is the index in x of the
start of the k-th column, and the last element of j is the total number of elements. The total
number of elements in the k-th column is therefore j[k+1] - j[k]. For example, if there
is one element in the first column, and five in the second, j will be set to {0, 1, 6}.

x: An initialized vector. The elements will be placed here.

Returns:

Error code.

Time complexity: O(n), the number of stored elements in the sparse matrix.

igraph_sparsemat_getelements_sorted — Returns all ele-
ments of a sparse matrix, sorted by row and column indices.

igraph_error_t igraph_sparsemat_getelements_sorted(const igraph_sparsemat_t *A,
 igraph_vector_int_t *i,
 igraph_vector_int_t *j,
 igraph_vector_t *x);

This function will sort a sparse matrix and return the elements in three vectors. Two vectors will
indicate where the elements are located, and one will specify the elements themselves.

Sorting is done based on the indices of the elements, not their numeric values. The returned entries
will be sorted by column indices; entries in the same column are then sorted by row indices.

Arguments:

A: A sparse matrix in either triplet or compressed form.

i: An initialized integer vector. This will store the rows of the returned elements.

j: An initialized integer vector. For a triplet matrix this will store the columns of the returned
elements. For a compressed matrix, if the column index is k, then j[k] is the index in x of the
start of the k-th column, and the last element of j is the total number of elements. The total
number of elements in the k-th column is therefore j[k+1] - j[k]. For example, if there
is one element in the first column, and five in the second, j will be set to {0, 1, 6}.

x: An initialized vector. The elements will be placed here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_min — Minimum of a sparse matrix.

131

Data structure library: vec-
tor, matrix, other data types

igraph_real_t igraph_sparsemat_min(igraph_sparsemat_t *A);

Arguments:

A: The input matrix, column-compressed.

Returns:

The minimum in the input matrix, or IGRAPH_POSINFINITY if the matrix has zero elements.

Time complexity: TODO.

igraph_sparsemat_max — Maximum of a sparse matrix.

igraph_real_t igraph_sparsemat_max(igraph_sparsemat_t *A);

Arguments:

A: The input matrix, column-compressed.

Returns:

The maximum in the input matrix, or IGRAPH_NEGINFINITY if the matrix has zero elements.

Time complexity: TODO.

igraph_sparsemat_minmax — Minimum and maximum of a
sparse matrix.

igraph_error_t igraph_sparsemat_minmax(igraph_sparsemat_t *A,
 igraph_real_t *min, igraph_real_t *max);

Arguments:

A: The input matrix, column-compressed.

min: The minimum in the input matrix is stored here, or IGRAPH_POSINFINITY if the matrix
has zero elements.

max: The maximum in the input matrix is stored here, or IGRAPH_NEGINFINITY if the matrix
has zero elements.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_count_nonzero — Counts nonzero ele-
ments of a sparse matrix.

132

Data structure library: vec-
tor, matrix, other data types

igraph_integer_t igraph_sparsemat_count_nonzero(igraph_sparsemat_t *A);

Arguments:

A: The input matrix, column-compressed.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_count_nonzerotol — Counts nonzero ele-
ments of a sparse matrix, ignoring elements close to zero.

igraph_integer_t igraph_sparsemat_count_nonzerotol(igraph_sparsemat_t *A,
 igraph_real_t tol);

Count the number of matrix entries that are closer to zero than tol.

Arguments:

The: input matrix, column-compressed.

Real: scalar, the tolerance.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_rowsums — Row-wise sums.

igraph_error_t igraph_sparsemat_rowsums(const igraph_sparsemat_t *A,
 igraph_vector_t *res);

Arguments:

A: The input matrix, in triplet or column-compressed format.

res: An initialized vector, the result is stored here. It will be resized as needed.

Returns:

Error code.

Time complexity: O(nz), the number of non-zero elements.

igraph_sparsemat_colsums — Column-wise sums.

133

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_sparsemat_colsums(const igraph_sparsemat_t *A,
 igraph_vector_t *res);

Arguments:

A: The input matrix, in triplet or column-compressed format.

res: An initialized vector, the result is stored here. It will be resized as needed.

Returns:

Error code.

Time complexity: O(nz) for triplet matrices, O(nz+n) for column-compressed ones, nz is the number
of non-zero elements, n is the number of columns.

igraph_sparsemat_nonzero_storage — Returns number of
stored entries of a sparse matrix.

igraph_integer_t igraph_sparsemat_nonzero_storage(const igraph_sparsemat_t *A);

This function will return the number of stored entries of a sparse matrix. These entries can be zero, and
multiple entries can be at the same position. Use igraph_sparsemat_dupl() to sum duplicate
entries, and igraph_sparsemat_dropzeros() to remove zeros.

Arguments:

A: A sparse matrix in either triplet or compressed form.

Returns:

Number of stored entries.

Time complexity: O(1).

Operations on sparse matrices

igraph_sparsemat_entry — Adds an element to a sparse ma-
trix.

igraph_error_t igraph_sparsemat_entry(igraph_sparsemat_t *A,
 igraph_integer_t row, igraph_integer_t col, igraph_real_t elem);

This function can be used to add the entries to a sparse matrix, after initializing it with igraph_s-
parsemat_init(). If you add multiple entries in the same position, they will all be saved, and the
resulting value is the sum of all entries in that position.

Arguments:

A: The input matrix, it must be in triplet format.

row: The row index of the entry to add.

134

Data structure library: vec-
tor, matrix, other data types

col: The column index of the entry to add.

elem: The value of the entry.

Returns:

Error code.

Time complexity: O(1) on average.

igraph_sparsemat_fkeep — Filters the elements of a sparse
matrix.

igraph_error_t igraph_sparsemat_fkeep(
 igraph_sparsemat_t *A,
 igraph_integer_t (*fkeep)(igraph_integer_t, igraph_integer_t, igraph_real_t, void*),
 void *other
);

This function can be used to filter the (non-zero) elements of a sparse matrix. For all entries, it calls
the supplied function and depending on the return values either keeps, or deleted the element from
the matrix.

Arguments:

A: The input matrix, in column-compressed format.

fkeep: The filter function. It must take four arguments: the first is an igraph_integer_t, the
row index of the entry, the second is another igraph_integer_t, the column index.
The third is igraph_real_t, the value of the entry. The fourth element is a void
pointer, the other argument is passed here. The function must return an int. If this is
zero, then the entry is deleted, otherwise it is kept.

other: A void pointer that is passed to the filtering function.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_dropzeros — Drops the zero elements from
a sparse matrix.

igraph_error_t igraph_sparsemat_dropzeros(igraph_sparsemat_t *A);

As a result of matrix operations, some of the entries in a sparse matrix might be zero. This function
removes these entries.

Arguments:

A: The input matrix, it must be in column-compressed format.

Returns:

135

Data structure library: vec-
tor, matrix, other data types

Error code.

Time complexity: TODO.

igraph_sparsemat_droptol — Drops the almost zero elements
from a sparse matrix.

igraph_error_t igraph_sparsemat_droptol(igraph_sparsemat_t *A, igraph_real_t tol);

This function is similar to igraph_sparsemat_dropzeros(), but it also drops entries that are
closer to zero than the given tolerance threshold.

Arguments:

A: The input matrix, it must be in column-compressed format.

tol: Real number, giving the tolerance threshold.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_scale — Scales a sparse matrix.

igraph_error_t igraph_sparsemat_scale(igraph_sparsemat_t *A, igraph_real_t by);

Multiplies all elements of a sparse matrix, by the given scalar.

Arguments:

A: The input matrix.

by: The scaling factor.

Returns:

Error code.

Time complexity: O(nz), the number of non-zero elements in the matrix.

igraph_sparsemat_permute — Permutes the rows and
columns of a sparse matrix.

igraph_error_t igraph_sparsemat_permute(const igraph_sparsemat_t *A,
 const igraph_vector_int_t *p,
 const igraph_vector_int_t *q,
 igraph_sparsemat_t *res);

Arguments:

136

Data structure library: vec-
tor, matrix, other data types

A: The input matrix, it must be in column-compressed format.

p: Integer vector, giving the permutation of the rows.

q: Integer vector, the permutation of the columns.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:

Error code.

Time complexity: O(m+n+nz), the number of rows plus the number of columns plus the number of
non-zero elements in the matrix.

igraph_sparsemat_transpose — Transposes a sparse matrix.

igraph_error_t igraph_sparsemat_transpose(
 const igraph_sparsemat_t *A, igraph_sparsemat_t *res
);

Arguments:

A: The input matrix, column-compressed or triple format.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_add — Sum of two sparse matrices.

igraph_error_t igraph_sparsemat_add(const igraph_sparsemat_t *A,
 const igraph_sparsemat_t *B,
 igraph_real_t alpha,
 igraph_real_t beta,
 igraph_sparsemat_t *res);

Arguments:

A: The first input matrix, in column-compressed format.

B: The second input matrix, in column-compressed format.

alpha: Real scalar, A is multiplied by alpha before the addition.

beta: Real scalar, B is multiplied by beta before the addition.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

137

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_multiply — Matrix multiplication.

igraph_error_t igraph_sparsemat_multiply(const igraph_sparsemat_t *A,
 const igraph_sparsemat_t *B,
 igraph_sparsemat_t *res);

Multiplies two sparse matrices.

Arguments:

A: The first input matrix (left hand side), in column-compressed format.

B: The second input matrix (right hand side), in column-compressed format.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_gaxpy — Matrix-vector product, added to
another vector.

igraph_error_t igraph_sparsemat_gaxpy(const igraph_sparsemat_t *A,
 const igraph_vector_t *x,
 igraph_vector_t *res);

Arguments:

A: The input matrix, in column-compressed format.

x: The input vector, its size must match the number of columns in A.

res: This vector is added to the matrix-vector product and it is overwritten by the result.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_add_rows — Adds rows to a sparse matrix.

igraph_error_t igraph_sparsemat_add_rows(igraph_sparsemat_t *A, igraph_integer_t n);

138

Data structure library: vec-
tor, matrix, other data types

The current matrix elements are retained and all elements in the new rows are zero.

Arguments:

A: The input matrix, in triplet or column-compressed format.

n: The number of rows to add.

Returns:

Error code.

Time complexity: O(1).

igraph_sparsemat_add_cols — Adds columns to a sparse ma-
trix.

igraph_error_t igraph_sparsemat_add_cols(igraph_sparsemat_t *A, igraph_integer_t n);

The current matrix elements are retained, and all elements in the new columns are zero.

Arguments:

A: The input matrix, in triplet or column-compressed format.

n: The number of columns to add.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_resize — Resizes a sparse matrix and
clears all the elements.

igraph_error_t igraph_sparsemat_resize(igraph_sparsemat_t *A, igraph_integer_t nrow,
 igraph_integer_t ncol, igraph_integer_t nzmax);

This function resizes a sparse matrix. The resized sparse matrix will become empty, even if it contained
nonzero entries.

Arguments:

A: The initialized sparse matrix to resize.

nrow: The new number of rows.

ncol: The new number of columns.

nzmax: The new maximum number of elements.

Returns:

Error code.

139

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(nzmax), the maximum number of non-zero elements.

igraph_sparsemat_sort — Sorts all elements of a sparse ma-
trix by row and column indices.

igraph_error_t igraph_sparsemat_sort(const igraph_sparsemat_t *A,
 igraph_sparsemat_t *sorted);

This function will sort the elements of a sparse matrix such that iterating over the entries will return
them sorted by column indices; elements in the same column are then sorted by row indices.

Arguments:

A: A sparse matrix in either triplet or compressed form.

sorted: An uninitialized sparse matrix; the result will be returned here. The result will be in triplet
form if the input was in triplet form, otherwise it will be in compressed form. Note that
sorting is more efficient when the matrix is already in compressed form.

Returns:

Error code.

Time complexity: TODO

Operations on sparse matrix iterators

igraph_sparsemat_iterator_init — Initialize a sparse matrix
iterator.

igraph_error_t igraph_sparsemat_iterator_init(
 igraph_sparsemat_iterator_t *it, const igraph_sparsemat_t *sparsemat
);

Arguments:

it: A pointer to an uninitialized sparse matrix iterator.

sparsemat: Pointer to the sparse matrix.

Returns:

Error code. This will always return IGRAPH_SUCCESS

Time complexity: O(n), the number of columns of the sparse matrix.

igraph_sparsemat_iterator_reset — Reset a sparse matrix
iterator to the first element.

igraph_error_t igraph_sparsemat_iterator_reset(igraph_sparsemat_iterator_t *it);

140

Data structure library: vec-
tor, matrix, other data types

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

Error code. This will always return IGRAPH_SUCCESS

Time complexity: O(n), the number of columns of the sparse matrix.

igraph_sparsemat_iterator_end — Query if the iterator is
past the last element.

igraph_bool_t
igraph_sparsemat_iterator_end(const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

true if the iterator is past the last element, false if it points to an element in a sparse matrix.

Time complexity: O(1).

igraph_sparsemat_iterator_row — Return the row of the iter-
ator.

igraph_integer_t igraph_sparsemat_iterator_row(const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

The row of the element at the current iterator position.

Time complexity: O(1).

igraph_sparsemat_iterator_col — Return the column of the
iterator.

igraph_integer_t igraph_sparsemat_iterator_col(const igraph_sparsemat_iterator_t *it);

Arguments:

141

Data structure library: vec-
tor, matrix, other data types

it: A pointer to the sparse matrix iterator.

Returns:

The column of the element at the current iterator position.

Time complexity: O(1).

igraph_sparsemat_iterator_get — Return the element at the
current iterator position.

igraph_real_t
igraph_sparsemat_iterator_get(const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

The value of the element at the current iterator position.

Time complexity: O(1).

igraph_sparsemat_iterator_next — Let a sparse matrix iter-
ator go to the next element.

igraph_integer_t igraph_sparsemat_iterator_next(igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

Returns:

The position of the iterator in the element vector.

Time complexity: O(n), the number of columns of the sparse matrix.

igraph_sparsemat_iterator_idx — Returns the element vec-
tor index of a sparse matrix iterator.

igraph_integer_t igraph_sparsemat_iterator_idx(const igraph_sparsemat_iterator_t *it);

Arguments:

it: A pointer to the sparse matrix iterator.

142

Data structure library: vec-
tor, matrix, other data types

Returns:

The position of the iterator in the element vector.

Time complexity: O(1).

Operations that change the internal representation

igraph_sparsemat_compress — Converts a sparse matrix to
column-compressed format.

igraph_error_t igraph_sparsemat_compress(const igraph_sparsemat_t *A,
 igraph_sparsemat_t *res);

Converts a sparse matrix from triplet format to column-compressed format. Almost all sparse matrix
operations require that the matrix is in column-compressed format.

Arguments:

A: The input matrix, it must be in triplet format.

res: Pointer to an uninitialized sparse matrix object, the compressed version of A is stored here.

Returns:

Error code.

Time complexity: O(nz) where nz is the number of non-zero elements.

igraph_sparsemat_dupl — Removes duplicate elements from a
sparse matrix.

igraph_error_t igraph_sparsemat_dupl(igraph_sparsemat_t *A);

It is possible that a column-compressed sparse matrix stores a single matrix entry in multiple pieces.
The entry is then the sum of all its pieces. (Some functions create matrices like this.) This function
eliminates the multiple pieces.

Arguments:

A: The input matrix, in column-compressed format.

Returns:

Error code.

Time complexity: TODO.

Decompositions and solving linear systems

igraph_sparsemat_symblu — Symbolic LU decomposition.

143

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_sparsemat_symblu(igraph_integer_t order, const igraph_sparsemat_t *A,
 igraph_sparsemat_symbolic_t *dis);

LU decomposition of sparse matrices involves two steps, the first is calling this function, and then
igraph_sparsemat_lu().

Arguments:

order: The ordering to use: 0 means natural ordering, 1 means minimum degree ordering of A
+A', 2 is minimum degree ordering of A'A after removing the dense rows from A, and 3
is the minimum degree ordering of A'A.

A: The input matrix, in column-compressed format.

dis: The result of the symbolic analysis is stored here. Once not needed anymore, it must be
destroyed by calling igraph_sparsemat_symbolic_destroy().

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_symbqr — Symbolic QR decomposition.

igraph_error_t igraph_sparsemat_symbqr(igraph_integer_t order, const igraph_sparsemat_t *A,
 igraph_sparsemat_symbolic_t *dis);

QR decomposition of sparse matrices involves two steps, the first is calling this function, and then
igraph_sparsemat_qr().

Arguments:

order: The ordering to use: 0 means natural ordering, 1 means minimum degree ordering of A
+A', 2 is minimum degree ordering of A'A after removing the dense rows from A, and 3
is the minimum degree ordering of A'A.

A: The input matrix, in column-compressed format.

dis: The result of the symbolic analysis is stored here. Once not needed anymore, it must be
destroyed by calling igraph_sparsemat_symbolic_destroy().

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_lsolve — Solves a lower-triangular linear
system.

igraph_error_t igraph_sparsemat_lsolve(const igraph_sparsemat_t *L,
 const igraph_vector_t *b,
 igraph_vector_t *res);

144

Data structure library: vec-
tor, matrix, other data types

Solve the Lx=b linear equation system, where the L coefficient matrix is square and lower-triangular,
with a zero-free diagonal.

Arguments:

L: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_ltsolve — Solves an upper-triangular lin-
ear system.

igraph_error_t igraph_sparsemat_ltsolve(const igraph_sparsemat_t *L,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solve the L'x=b linear equation system, where the L matrix is square and lower-triangular, with a
zero-free diagonal.

Arguments:

L: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_usolve — Solves an upper-triangular linear
system.

igraph_error_t igraph_sparsemat_usolve(const igraph_sparsemat_t *U,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solves the Ux=b upper triangular system.

Arguments:

U: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

145

Data structure library: vec-
tor, matrix, other data types

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_utsolve — Solves a lower-triangular linear
system.

igraph_error_t igraph_sparsemat_utsolve(const igraph_sparsemat_t *U,
 const igraph_vector_t *b,
 igraph_vector_t *res);

This is the same as igraph_sparsemat_usolve(), but U'x=b is solved, where the apostrophe
denotes the transpose.

Arguments:

U: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_cholsol — Solves a symmetric linear sys-
tem via Cholesky decomposition.

igraph_error_t igraph_sparsemat_cholsol(const igraph_sparsemat_t *A,
 const igraph_vector_t *b,
 igraph_vector_t *res,
 igraph_integer_t order);

Solve Ax=b, where A is a symmetric positive definite matrix.

Arguments:

A: The input matrix, in column-compressed format.

v: The right hand side.

res: An initialized vector, the result is stored here.

order: An integer giving the ordering method to use for the factorization. Zero is the natural
ordering; if it is one, then the fill-reducing minimum-degree ordering of A+A' is used.

Returns:

146

Data structure library: vec-
tor, matrix, other data types

Error code.

Time complexity: TODO.

igraph_sparsemat_lusol — Solves a linear system via LU de-
composition.

igraph_error_t igraph_sparsemat_lusol(const igraph_sparsemat_t *A,
 const igraph_vector_t *b,
 igraph_vector_t *res,
 igraph_integer_t order,
 igraph_real_t tol);

Solve Ax=b, via LU factorization of A.

Arguments:

A: The input matrix, in column-compressed format.

b: The right hand side of the equation.

res: An initialized vector, the result is stored here.

order: The ordering method to use, zero means the natural ordering, one means the fill-reducing
minimum-degree ordering of A+A', two means the ordering of A'*A, after removing the
dense rows from A. Three means the ordering of A'*A.

tol: Real number, the tolerance limit to use for the numeric LU factorization.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_lu — LU decomposition of a sparse matrix.

igraph_error_t igraph_sparsemat_lu(const igraph_sparsemat_t *A,
 const igraph_sparsemat_symbolic_t *dis,
 igraph_sparsemat_numeric_t *din, double tol);

Performs numeric sparse LU decomposition of a matrix.

Arguments:

A: The input matrix, in column-compressed format.

dis: The symbolic analysis for LU decomposition, coming from a call to the igraph_sparse-
mat_symblu() function.

din: The numeric decomposition, the result is stored here. It can be used to solve linear systems
with changing right hand side vectors, by calling igraph_sparsemat_luresol().
Once not needed any more, it must be destroyed by calling igraph_sparsemat_sym-
bolic_destroy() on it.

tol: The tolerance for the numeric LU decomposition.

147

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_qr — QR decomposition of a sparse matrix.

igraph_error_t igraph_sparsemat_qr(const igraph_sparsemat_t *A,
 const igraph_sparsemat_symbolic_t *dis,
 igraph_sparsemat_numeric_t *din);

Numeric QR decomposition of a sparse matrix.

Arguments:

A: The input matrix, in column-compressed format.

dis: The result of the symbolic QR analysis, from the function igraph_sparsemat_sym-
bqr().

din: The result of the decomposition is stored here, it can be used to solve many linear systems with
the same coefficient matrix and changing right hand sides, using the igraph_sparse-
mat_qrresol() function. Once not needed any more, one should call igraph_s-
parsemat_numeric_destroy() on it to free the allocated memory.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_luresol — Solves a linear system using a
precomputed LU decomposition.

igraph_error_t igraph_sparsemat_luresol(const igraph_sparsemat_symbolic_t *dis,
 const igraph_sparsemat_numeric_t *din,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Uses the LU decomposition of a matrix to solve linear systems.

Arguments:

dis: The symbolic analysis of the coefficient matrix, the result of igraph_sparsemat_sym-
blu().

din: The LU decomposition, the result of a call to igraph_sparsemat_lu().

b: A vector that defines the right hand side of the linear equation system.

res: An initialized vector, the solution of the linear system is stored here.

Returns:

148

Data structure library: vec-
tor, matrix, other data types

Error code.

Time complexity: TODO.

igraph_sparsemat_qrresol — Solves a linear system using a
precomputed QR decomposition.

igraph_error_t igraph_sparsemat_qrresol(const igraph_sparsemat_symbolic_t *dis,
 const igraph_sparsemat_numeric_t *din,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solves a linear system using a QR decomposition of its coefficient matrix.

Arguments:

dis: Symbolic analysis of the coefficient matrix, the result of igraph_sparsemat_sym-
bqr().

din: The QR decomposition of the coefficient matrix, the result of igraph_sparsemat_qr().

b: Vector, giving the right hand side of the linear equation system.

res: An initialized vector, the solution is stored here. It is resized as needed.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_symbolic_destroy — Deallocates memory
after a symbolic decomposition.

void igraph_sparsemat_symbolic_destroy(igraph_sparsemat_symbolic_t *dis);

Frees the memory allocated by igraph_sparsemat_symbqr() or igraph_sparse-
mat_symblu().

Arguments:

dis: The symbolic analysis.

Time complexity: O(1).

igraph_sparsemat_numeric_destroy — Deallocates memory
after a numeric decomposition.

void igraph_sparsemat_numeric_destroy(igraph_sparsemat_numeric_t *din);

Frees the memoty allocated by igraph_sparsemat_qr() or igraph_sparsemat_lu().

Arguments:

149

Data structure library: vec-
tor, matrix, other data types

din: The LU or QR decomposition.

Time complexity: O(1).

Eigenvalues and eigenvectors

igraph_sparsemat_arpack_rssolve — Eigenvalues and eigen-
vectors of a symmetric sparse matrix via ARPACK.

igraph_error_t igraph_sparsemat_arpack_rssolve(const igraph_sparsemat_t *A,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_vector_t *values,
 igraph_matrix_t *vectors,
 igraph_sparsemat_solve_t solvemethod);

Arguments:

The: input matrix, must be column-compressed.

options: It is passed to igraph_arpack_rssolve(). Supply NULL here to use the
defaults. See igraph_arpack_options_t for the details. If mode is 1, then
ARPACK uses regular mode, if mode is 3, then shift and invert mode is used and
the sigma structure member defines the shift.

storage: Storage for ARPACK. See igraph_arpack_rssolve() and
igraph_arpack_storage_t for details.

values: An initialized vector or a null pointer, the eigenvalues are stored here.

vectors: An initialised matrix, or a null pointer, the eigenvectors are stored here, in the
columns.

solvemethod: The method to solve the linear system, if mode is 3, i.e. the shift and invert mode
is used. Possible values:

IGRAPH_SPARSE-
MAT_SOLVE_LU

The linear system is solved using LU de-
composition.

IGRAPH_SPARSE-
MAT_SOLVE_QR

The linear system is solved using QR de-
composition.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_arpack_rnsolve — Eigenvalues and eigen-
vectors of a nonsymmetric sparse matrix via ARPACK.

igraph_error_t igraph_sparsemat_arpack_rnsolve(const igraph_sparsemat_t *A,
 igraph_arpack_options_t *options,

150

Data structure library: vec-
tor, matrix, other data types

 igraph_arpack_storage_t *storage,
 igraph_matrix_t *values,
 igraph_matrix_t *vectors);

Eigenvalues and/or eigenvectors of a nonsymmetric sparse matrix.

Arguments:

A: The input matrix, in column-compressed mode.

options: ARPACK options, it is passed to igraph_arpack_rnsolve(). Supply NULL here
to use the defaults. See also igraph_arpack_options_t for details.

storage: Storage for ARPACK, this is passed to igraph_arpack_rnsolve(). See
igraph_arpack_storage_t for details.

values: An initialized matrix, or a null pointer. If not a null pointer, then the eigenvalues are
stored here, the first column is the real part, the second column is the imaginary part.

vectors: An initialized matrix, or a null pointer. If not a null pointer, then the eigenvectors are
stored here, please see igraph_arpack_rnsolve() for the format.

Returns:

Error code.

Time complexity: TODO.

Conversion to other data types

igraph_sparsemat — Creates an igraph graph from a sparse
matrix.

igraph_error_t igraph_sparsemat(igraph_t *graph, const igraph_sparsemat_t *A,
 igraph_bool_t directed);

One edge is created for each non-zero entry in the matrix. If you have a symmetric matrix, and want to
create an undirected graph, then delete the entries in the upper diagonal first, or call igraph_sim-
plify() on the result graph to eliminate the multiple edges.

Arguments:

graph: Pointer to an uninitialized igraph_t object, the graphs is stored here.

A: The input matrix, in triplet or column-compressed format.

directed: Boolean scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: TODO.

igraph_matrix_as_sparsemat — Converts a dense matrix to a
sparse matrix.

151

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_matrix_as_sparsemat(igraph_sparsemat_t *res,
 const igraph_matrix_t *mat,
 igraph_real_t tol);

Arguments:

res: An uninitialized sparse matrix, the result is stored here.

mat: The dense input matrix.

tol: Real scalar, the tolerance. Values closer than tol to zero are considered as zero, and will not
be included in the sparse matrix.

Returns:

Error code.

See also:

igraph_sparsemat_as_matrix() for the reverse conversion.

Time complexity: O(mn), the number of elements in the dense matrix.

igraph_sparsemat_as_matrix — Converts a sparse matrix to a
dense matrix.

igraph_error_t igraph_sparsemat_as_matrix(igraph_matrix_t *res,
 const igraph_sparsemat_t *spmat);

Arguments:

res: Pointer to an initialized matrix, the result is stored here. It will be resized to the required
size.

spmat: The input sparse matrix, in triplet or column-compressed format.

Returns:

Error code.

See also:

igraph_matrix_as_sparsemat() for the reverse conversion.

Time complexity: O(mn), the number of elements in the dense matrix.

Writing to a file, or to the screen

igraph_sparsemat_print — Prints a sparse matrix to a file.

152

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_sparsemat_print(const igraph_sparsemat_t *A,
 FILE *outstream);

Only the non-zero entries are printed. This function serves more as a debugging utility, as currently
there is no function that could read back the printed matrix from the file.

Arguments:

A: The input matrix, triplet or column-compressed format.

outstream: The stream to print it to.

Returns:

Error code.

Time complexity: O(nz) for triplet matrices, O(n+nz) for column-compressed matrices. nz is the num-
ber of non-zero elements, n is the number columns in the matrix.

Deprecated functions

igraph_sparsemat_copy — Copies a sparse matrix (deprecated
alias).

igraph_error_t igraph_sparsemat_copy(
 igraph_sparsemat_t *to, const igraph_sparsemat_t *from
);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use igraph_s-
parsemat_init_copy() instead.

igraph_sparsemat_diag — Creates a sparse diagonal matrix
(deprecated alias).

igraph_error_t igraph_sparsemat_diag(
 igraph_sparsemat_t *A, igraph_integer_t nzmax, const igraph_vector_t *values,
 igraph_bool_t compress
);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use igraph_s-
parsemat_init_diag() instead.

igraph_sparsemat_eye — Creates a sparse identity matrix
(deprecated alias).

153

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_sparsemat_eye(
 igraph_sparsemat_t *A, igraph_integer_t n, igraph_integer_t nzmax,
 igraph_real_t value, igraph_bool_t compress
);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use igraph_s-
parsemat_init_eye() instead.

Stacks

igraph_stack_init — Initializes a stack.

igraph_error_t igraph_stack_init(igraph_stack_t* s, igraph_integer_t capacity);

The initialized stack is always empty.

Arguments:

s: Pointer to an uninitialized stack.

capacity: The number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(size).

igraph_stack_destroy — Destroys a stack object.

void igraph_stack_destroy(igraph_stack_t* s);

Deallocate the memory used for a stack. It is possible to reinitialize a destroyed stack again by
igraph_stack_init().

Arguments:

s: The stack to destroy.

Time complexity: O(1).

igraph_stack_reserve — Reserve memory.

igraph_error_t igraph_stack_reserve(igraph_stack_t* s, igraph_integer_t capacity);

Reserve memory for future use. The actual size of the stack is unchanged.

154

Data structure library: vec-
tor, matrix, other data types

Arguments:

s: The stack object.

size: The number of elements to reserve memory for. If it is not bigger than the current size then
nothing happens.

Returns:

Error code.

Time complexity: should be around O(n), the new allocated size of the stack.

igraph_stack_empty — Decides whether a stack ob-
ject is empty.

igraph_bool_t igraph_stack_empty(igraph_stack_t* s);

Arguments:

s: The stack object.

Returns:

Boolean, true if the stack is empty, false otherwise.

Time complexity: O(1).

igraph_stack_size — Returns the number of ele-
ments in a stack.

igraph_integer_t igraph_stack_size(const igraph_stack_t* s);

Arguments:

s: The stack object.

Returns:

The number of elements in the stack.

Time complexity: O(1).

igraph_stack_clear — Removes all elements from
a stack.

void igraph_stack_clear(igraph_stack_t* s);

155

Data structure library: vec-
tor, matrix, other data types

Arguments:

s: The stack object.

Time complexity: O(1).

igraph_stack_push — Places an element on the top
of a stack.

igraph_error_t igraph_stack_push(igraph_stack_t* s, igraph_real_t elem);

The capacity of the stack is increased, if needed.

Arguments:

s: The stack object.

elem: The element to push.

Returns:

Error code.

Time complexity: O(1) is no reallocation is needed, O(n) otherwise, but it is ensured that n push
operations are performed in O(n) time.

igraph_stack_pop — Removes and returns an ele-
ment from the top of a stack.

igraph_real_t igraph_stack_pop(igraph_stack_t* s);

The stack must contain at least one element, call igraph_stack_empty() to make sure of this.

Arguments:

s: The stack object.

Returns:

The removed top element.

Time complexity: O(1).

igraph_stack_top — Query top element.

igraph_real_t igraph_stack_top(const igraph_stack_t* s);

Returns the top element of the stack, without removing it. The stack must be non-empty.

Arguments:

156

Data structure library: vec-
tor, matrix, other data types

s: The stack.

Returns:

The top element.

Time complexity: O(1).

Double-ended queues
This is the classic data type of the double ended queue. Most of the time it is used if a First-In-First-
Out (FIFO) behavior is needed. See the operations below.

Example 7.10. File examples/simple/dqueue.c

igraph_dqueue_init — Initialize a double ended
queue (deque).

igraph_error_t igraph_dqueue_init(igraph_dqueue_t* q, igraph_integer_t capacity);

The queue will be always empty.

Arguments:

q: Pointer to an uninitialized deque.

capacity: How many elements to allocate memory for.

Returns:

Error code.

Time complexity: O(capacity).

igraph_dqueue_destroy — Destroy a double ended
queue.

void igraph_dqueue_destroy(igraph_dqueue_t* q);

Arguments:

q: The queue to destroy.

Time complexity: O(1).

igraph_dqueue_empty — Decide whether the queue
is empty.

157

Data structure library: vec-
tor, matrix, other data types

igraph_bool_t igraph_dqueue_empty(const igraph_dqueue_t* q);

Arguments:

q: The queue.

Returns:

Boolean, true if q contains at least one element, false otherwise.

Time complexity: O(1).

igraph_dqueue_full — Check whether the queue is
full.

igraph_bool_t igraph_dqueue_full(igraph_dqueue_t* q);

If a queue is full the next igraph_dqueue_push() operation will allocate more memory.

Arguments:

q: The queue.

Returns:

true if q is full, false otherwise.

Time complecity: O(1).

igraph_dqueue_clear — Remove all elements from
the queue.

void igraph_dqueue_clear(igraph_dqueue_t* q);

Arguments:

q: The queue.

Time complexity: O(1).

igraph_dqueue_size — Number of elements in the
queue.

igraph_integer_t igraph_dqueue_size(const igraph_dqueue_t* q);

Arguments:

158

Data structure library: vec-
tor, matrix, other data types

q: The queue.

Returns:

Integer, the number of elements currently in the queue.

Time complexity: O(1).

igraph_dqueue_head — Head of the queue.

igraph_real_t igraph_dqueue_head(const igraph_dqueue_t* q);

The queue must contain at least one element.

Arguments:

q: The queue.

Returns:

The first element in the queue.

Time complexity: O(1).

igraph_dqueue_back — Tail of the queue.

igraph_real_t igraph_dqueue_back(const igraph_dqueue_t* q);

The queue must contain at least one element.

Arguments:

q: The queue.

Returns:

The last element in the queue.

Time complexity: O(1).

igraph_dqueue_get — Access an element in a
queue.

igraph_real_t igraph_dqueue_get(const igraph_dqueue_t *q, igraph_integer_t idx);

Arguments:

q: The queue.

idx: The index of the element within the queue.

159

Data structure library: vec-
tor, matrix, other data types

Returns:

The desired element.

Time complexity: O(1).

igraph_dqueue_pop — Remove the head.

igraph_real_t igraph_dqueue_pop(igraph_dqueue_t* q);

Removes and returns the first element in the queue. The queue must be non-empty.

Arguments:

q: The input queue.

Returns:

The first element in the queue.

Time complexity: O(1).

igraph_dqueue_pop_back — Removes the tail.

igraph_real_t igraph_dqueue_pop_back(igraph_dqueue_t* q);

Removes and returns the last element in the queue. The queue must be non-empty.

Arguments:

q: The queue.

Returns:

The last element in the queue.

Time complexity: O(1).

igraph_dqueue_push — Appends an element.

igraph_error_t igraph_dqueue_push(igraph_dqueue_t* q, igraph_real_t elem);

Append an element to the end of the queue.

Arguments:

q: The queue.

elem: The element to append.

Returns:

Error code.

160

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(1) if no memory allocation is needed, O(n), the number of elements in the queue
otherwise. But note that by allocating always twice as much memory as the current size of the queue we
ensure that n push operations can always be done in at most O(n) time. (Assuming memory allocation
is at most linear.)

Maximum and minimum heaps

igraph_heap_init — Initializes an empty heap ob-
ject.

igraph_error_t igraph_heap_init(igraph_heap_t* h, igraph_integer_t capacity);

Creates an empty heap, and also allocates memory for some elements.

Arguments:

h: Pointer to an uninitialized heap object.

capacity: Number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(alloc_size), assuming memory allocation is a linear operation.

igraph_heap_init_array — Build a heap from an
array.

igraph_error_t igraph_heap_init_array(igraph_heap_t *h, const igraph_real_t *data, igraph_integer_t len);

Initializes a heap object from an array. The heap is also built of course (constructor).

Arguments:

h: Pointer to an uninitialized heap object.

data: Pointer to an array of base data type.

len: The length of the array at data.

Returns:

Error code.

Time complexity: O(n), the number of elements in the heap.

igraph_heap_destroy — Destroys an initialized
heap object.

161

Data structure library: vec-
tor, matrix, other data types

void igraph_heap_destroy(igraph_heap_t* h);

Arguments:

h: The heap object.

Time complexity: O(1).

igraph_heap_clear — Removes all elements from a
heap.

void igraph_heap_clear(igraph_heap_t* h);

This function simply sets the size of the heap to zero, it does not free any allocated memory. For that
you have to call igraph_heap_destroy().

Arguments:

h: The heap object.

Time complexity: O(1).

igraph_heap_empty — Decides whether a heap ob-
ject is empty.

igraph_bool_t igraph_heap_empty(const igraph_heap_t* h);

Arguments:

h: The heap object.

Returns:

true if the heap is empty, false otherwise.

TIme complexity: O(1).

igraph_heap_push — Add an element.

igraph_error_t igraph_heap_push(igraph_heap_t* h, igraph_real_t elem);

Adds an element to the heap.

Arguments:

h: The heap object.

elem: The element to add.

162

Data structure library: vec-
tor, matrix, other data types

Returns:

Error code.

Time complexity: O(log n), n is the number of elements in the heap if no reallocation is needed, O(n)
otherwise. It is ensured that n push operations are performed in O(n log n) time.

igraph_heap_top — Top element.

igraph_real_t igraph_heap_top(const igraph_heap_t* h);

For maximum heaps this is the largest, for minimum heaps the smallest element of the heap.

Arguments:

h: The heap object.

Returns:

The top element.

Time complexity: O(1).

igraph_heap_delete_top — Removes and returns
the top element.

igraph_real_t igraph_heap_delete_top(igraph_heap_t* h);

Removes and returns the top element of the heap. For maximum heaps this is the largest, for minimum
heaps the smallest element.

Arguments:

h: The heap object.

Returns:

The top element.

Time complexity: O(log n), n is the number of elements in the heap.

igraph_heap_size — Number of elements in the
heap.

igraph_integer_t igraph_heap_size(const igraph_heap_t* h);

Gives the number of elements in a heap.

Arguments:

163

Data structure library: vec-
tor, matrix, other data types

h: The heap object.

Returns:

The number of elements in the heap.

Time complexity: O(1).

igraph_heap_reserve — Reserves memory for a
heap.

igraph_error_t igraph_heap_reserve(igraph_heap_t* h, igraph_integer_t capacity);

Allocates memory for future use. The size of the heap is unchanged. If the heap is larger than the
capacity parameter then nothing happens.

Arguments:

h: The heap object.

capacity: The number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(capacity) if capacity is larger than the current number of elements. O(1)
otherwise.

String vectors
The igraph_strvector_t type is a vector of null-terminated strings. It is used internally for storing graph
attribute names as well as string attributes in the C attribute handler.

This container automatically manages the memory of its elements. The strings within an igraph_strvec-
tor_t should be considered constant, and not modified directly. Functions that add new elements al-
ways make copies of the string passed to them.

Example 7.11. File examples/simple/igraph_strvector.c

igraph_strvector_init — Initializes a string vector.

igraph_error_t igraph_strvector_init(igraph_strvector_t *sv, igraph_integer_t size);

Reserves memory for the string vector, a string vector must be first initialized before calling other
functions on it. All elements of the string vector are set to the empty string.

Arguments:

sv: Pointer to an initialized string vector.

164

Data structure library: vec-
tor, matrix, other data types

len: The (initial) length of the string vector.

Returns:

Error code.

Time complexity: O(len).

igraph_strvector_init_copy — Initialization by
copying.

igraph_error_t igraph_strvector_init_copy(igraph_strvector_t *to,
 const igraph_strvector_t *from);

Initializes a string vector by copying another string vector.

Arguments:

to: Pointer to an uninitialized string vector.

from: The other string vector, to be copied.

Returns:

Error code.

Time complexity: O(l), the total length of the strings in from.

igraph_strvector_destroy — Frees the memory al-
located for the string vector.

void igraph_strvector_destroy(igraph_strvector_t *sv);

Destroy a string vector. It may be reinitialized with igraph_strvector_init() later.

Arguments:

sv: The string vector.

Time complexity: O(l), the total length of the strings, maybe less depending on the memory manager.

STR — Indexing string vectors.

#define STR(sv,i)

This is a macro that allows to query the elements of a string vector, just like igraph_strvec-
tor_get(). Note this macro cannot be used to set an element. Use igraph_strvector_set()
to set an element instead.

Arguments:

165

Data structure library: vec-
tor, matrix, other data types

sv: The string vector

i: The the index of the element.

Returns:

The element at position i.

Time complexity: O(1).

Warning

Deprecated since version 0.10.9. Please do not use this function in new code; use
igraph_strvector_get() instead.

igraph_strvector_get — Retrieves an element of a
string vector.

const char *igraph_strvector_get(const igraph_strvector_t *sv, igraph_integer_t idx);

Query an element of a string vector. The returned string must not be modified.

Arguments:

sv: The input string vector.

idx: The index of the element to query.

Time complexity: O(1).

igraph_strvector_set — Sets an element of the
string vector from a string.

igraph_error_t igraph_strvector_set(igraph_strvector_t *sv, igraph_integer_t idx,
 const char *value);

The provided value is copied into the idx position in the string vector.

Arguments:

sv: The string vector.

idx: The position to set.

value: The new value.

Returns:

Error code.

Time complexity: O(l), the length of the new string. Maybe more, depending on the memory manage-
ment, if reallocation is needed.

166

Data structure library: vec-
tor, matrix, other data types

igraph_strvector_set_len — Sets an element of
the string vector given a buffer and its size.

igraph_error_t igraph_strvector_set_len(igraph_strvector_t *sv, igraph_integer_t idx,
 const char *value, size_t len);

This is almost the same as igraph_strvector_set, but the new value is not a zero terminated
string, but its length is given.

Arguments:

sv: The string vector.

idx: The position to set.

value: The new value.

len: The length of the new value.

Returns:

Error code.

Time complexity: O(l), the length of the new string. Maybe more, depending on the memory manage-
ment, if reallocation is needed.

igraph_strvector_push_back — Adds an element
to the back of a string vector.

igraph_error_t igraph_strvector_push_back(igraph_strvector_t *sv, const char *value);

Arguments:

sv: The string vector.

value: The string to add; it will be copied.

Returns:

Error code.

Time complexity: O(n+l), n is the total number of strings, l is the length of the new string.

igraph_strvector_push_back_len — Adds a string
of the given length to the back of a string vector.

igraph_error_t igraph_strvector_push_back_len(
 igraph_strvector_t *sv,

167

Data structure library: vec-
tor, matrix, other data types

 const char *value, igraph_integer_t len);

Arguments:

sv: The string vector.

value: The start of the string to add. At most len characters will be copied.

len: The length of the string.

Returns:

Error code.

Time complexity: O(n+l), n is the total number of strings, l is the length of the new string.

igraph_strvector_remove — Removes a single ele-
ment from a string vector.

void igraph_strvector_remove(igraph_strvector_t *sv, igraph_integer_t elem);

The string will be one shorter.

Arguments:

sv: The string vector.

elem: The index of the element to remove.

Time complexity: O(n), the length of the string.

igraph_strvector_remove_section — Removes a
section from a string vector.

void igraph_strvector_remove_section(
 igraph_strvector_t *sv, igraph_integer_t from, igraph_integer_t to);

This function removes the range [from, to) from the string vector.

Arguments:

sv: The string vector.

from: The position of the first element to remove.

to: The position of the first element not to remove.

igraph_strvector_append — Concatenates two
string vectors.

168

Data structure library: vec-
tor, matrix, other data types

igraph_error_t igraph_strvector_append(igraph_strvector_t *to,
 const igraph_strvector_t *from);

Appends the contents of the from vector to the to vector. If the from vector is no longer needed
after this operation, use igraph_strvector_merge() for better performance.

Arguments:

to: The first string vector, the result is stored here.

from: The second string vector, it is kept unchanged.

Returns:

Error code.

See also:

igraph_strvector_merge()

Time complexity: O(n+l2), n is the number of strings in the new string vector, l2 is the total length
of strings in the from string vector.

igraph_strvector_merge — Moves the contents of
a string vector to the end of another.

igraph_error_t igraph_strvector_merge(igraph_strvector_t *to, igraph_strvector_t *from);

Transfers the contents of the from vector to the end of to, clearing from in the process. If this
operation fails, both vectors are left intact. This function does not copy or reallocate individual strings,
therefore it performs better than igraph_strvector_append().

Arguments:

to: The target vector. The contents of from will be appended to it.

from: The source vector. It will be cleared.

Returns:

Error code.

See also:

igraph_strvector_append()

Time complexity: O(l2) if to has sufficient capacity, O(2*l1+l2) otherwise, where l1 and l2 are the
lengths of to and \from respectively.

igraph_strvector_clear — Removes all elements
from a string vector.

169

Data structure library: vec-
tor, matrix, other data types

void igraph_strvector_clear(igraph_strvector_t *sv);

After this operation the string vector will be empty.

Arguments:

sv: The string vector.

Time complexity: O(l), the total length of strings, maybe less, depending on the memory manager.

igraph_strvector_resize — Resizes a string vec-
tor.

igraph_error_t igraph_strvector_resize(igraph_strvector_t *sv, igraph_integer_t newsize);

If the new size is bigger then empty strings are added, if it is smaller then the unneeded elements are
removed.

Arguments:

sv: The string vector.

newsize: The new size.

Returns:

Error code.

Time complexity: O(n), the number of strings if the vector is made bigger, O(l), the total length of the
deleted strings if it is made smaller, maybe less, depending on memory management.

igraph_strvector_reserve — Reserves memory
for a string vector.

igraph_error_t igraph_strvector_reserve(igraph_strvector_t *sv, igraph_integer_t capacity);

igraph string vectors are flexible, they can grow and shrink. Growing however occasionally needs
the data in the vector to be copied. In order to avoid this, you can call this function to reserve space
for future growth of the vector.

Note that this function does not change the size of the string vector. Let us see a small example to
clarify things: if you reserve space for 100 strings and the size of your vector was (and still is) 60, then
you can surely add additional 40 strings to your vector before it will be copied.

Arguments:

sv: The string vector object.

capacity: The new allocated size of the string vector.

Returns:

170

Data structure library: vec-
tor, matrix, other data types

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, should be around O(n), n is the new allocated size of
the vector.

igraph_strvector_resize_min — Deallocates the
unused memory of a string vector.

void igraph_strvector_resize_min(igraph_strvector_t *sv);

This function attempts to deallocate the unused reserved storage of a string vector. If it succeeds,
igraph_strvector_size() and igraph_strvector_capacity() will be the same. The
data in the string vector is always preserved, even if deallocation is not successful.

Arguments:

sv: The string vector.

Time complexity: Operating system dependent, at most O(n).

igraph_strvector_size — Returns the size of a
string vector.

igraph_integer_t igraph_strvector_size(const igraph_strvector_t *sv);

Arguments:

sv: The string vector.

Returns:

The length of the string vector.

Time complexity: O(1).

igraph_strvector_capacity — Returns the capaci-
ty of a string vector.

igraph_integer_t igraph_strvector_capacity(const igraph_strvector_t *sv);

Arguments:

sv: The string vector.

Returns:

The capacity of the string vector.

171

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(1).

Deprecated functions

igraph_strvector_copy — Initialization by copying (deprecat-
ed alias).

igraph_error_t igraph_strvector_copy(igraph_strvector_t *to,
 const igraph_strvector_t *from);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_strvector_init_copy() instead.

igraph_strvector_add — Adds an element to the back of a
string vector (deprecated alias).

igraph_error_t igraph_strvector_add(igraph_strvector_t *sv, const char *value);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_strvector_push_back() instead.

igraph_strvector_set2 — Sets an element of the string vector
given a buffer and its size (deprecated alias).

igraph_error_t igraph_strvector_set2(
 igraph_strvector_t *sv, igraph_integer_t idx, const char *value, size_t len
);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_strvector_set_len() instead.

Lists of vectors, matrices and graphs

About igraph_vector_list_t objects
The igraph_vector_list_t data type is essentially a list of igraph_vector_t objects with automatic mem-
ory management. It is something similar to (but much simpler than) the vector template in the C++
standard library where the elements are vectors themselves.

172

Data structure library: vec-
tor, matrix, other data types

There are multiple variants of igraph_vector_list_t; the basic variant stores vectors of doubles (i.e. each
item is an igraph_vector_t), but there is also igraph_vector_int_list_t for integers (where each
item is an igraph_vector_int_t), igraph_matrix_list_t for matrices of doubles and so on. The following
list summarizes the variants that are currently available in the library:

• igraph_vector_list_t for lists of vectors of floating-point numbers (igraph_vector_t)

• igraph_vector_int_list_t for lists of integer vectors (igraph_vector_int_t)

• igraph_matrix_list_t for lists of matrices of floating-point numbers (igraph_matrix_t)

• igraph_graph_list_t for lists of graphs (igraph_t)

Lists of vectors are used in igraph in many cases, e.g., when returning lists of paths, cliques or vertex
sets. Functions that expect or return a list of numeric vectors typically use igraph_vector_list_t or
igraph_vector_int_list_t to achieve this. Lists of integer vectors are used when the vectors in the list
are supposed to hold vertex or edge identifiers, while lists of floating-point vectors are used when the
vectors are expected to hold fractional numbers or infinities.

The elements in an igraph_vector_list_t object and its variants are indexed from zero, we follow the
usual C convention here.

Almost all of the functions described below for igraph_vector_list_t also exist for all the other vector
list variants. These variants are not documented separately; you can simply replace vector_list
with, say, vector_int_list if you need a function for another variant. For instance, to ini-
tialize a list of integer vectors, you need to use igraph_vector_int_list_init() and not
igraph_vector_list_init().

Before diving into a detailed description of the functions related to lists of vectors, we must also
talk about the ownership rules of these objects. The most important rule is that the vectors in the list
are owned by the list itself, meaning that the user is not responsible for allocating memory for the
vectors or for freeing the memory associated to the vectors. It is the responsibility of the list to allocate
and initialize the vectors when new items are created in the list, and it is also the responsibility of
the list to destroy the items when they are removed from the list without passing on their ownership
to the user. As a consequence, the list may not contain "uninitialized" or "null" items; each item is
initialized when it comes to existence. If you create a list containing one million vectors, you are not
only allocating memory for one million igraph_vector_t object but you are also initializing one
million vectors. Also, if you have a list containing one million vectors and you clear the list by calling
igraph_vector_list_clear(), the list will implicitly destroy these lists, and any pointers that
you may hold to the items become invalid at once.

Speaking about pointers, the typical way of working with vectors in a list is to obtain a pointer to one
of the items via the igraph_vector_list_get_ptr() method and then passing this pointer
onwards to functions that manipulate igraph_vector_t objects. However, note that the pointers
are ephemeral in the sense that they may be invalidated any time when the list is modified because a
modification may involve the re-allocation of the internal storage of the list if more space is needed,
and the pointers that you obtained will not follow the reallocation. This limitation does not appear often
in real-world usage of igraph_vector_list_t and in general, the advantages of the automatic
memory management outweigh this limitation.

Constructors and destructors
igraph_vector_list_t objects have to be initialized before using them, this is analogous to calling a
constructor on them. igraph_vector_list_init() is the basic constructor; it creates a list of
the given length and also initializes each vector in the newly created list to zero length.

If an igraph_vector_list_t object is not needed any more, it should be destroyed to free its al-
located memory by calling the igraph_vector_list_t destructor, igraph_vector_list_de-
stroy(). Calling the destructor also destroys all the vectors inside the vector list due to the own-

173

Data structure library: vec-
tor, matrix, other data types

ership rules. If you want to keep a few of the vectors in the vector list, you need to copy them
with igraph_vector_init_copy() or igraph_vector_update(), or you need to re-
move them from the list and take ownership by calling igraph_vector_list_pop_back(),
igraph_vector_list_remove() or igraph_vector_list_remove_fast() .

igraph_vector_list_init — Initializes a list of vectors (con-
structor).

igraph_error_t igraph_vector_list_init(igraph_vector_list_t* v, igraph_integer_t size);

This function constructs a list of vectors of the given size, and initializes each vector in the newly
created list to become an empty vector.

Vector objects initialized by this function are owned by the list, and they will be destroyed automati-
cally when the list is destroyed with igraph_vector_list_destroy().

Arguments:

v: Pointer to a not yet initialized list of vectors.

size: The size of the list.

Returns:

error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, the amount of “time” required to allocate O(n) ele-
ments and initialize the corresponding vectors; n is the number of elements.

igraph_vector_list_destroy — Destroys a list of vectors ob-
ject.

void igraph_vector_list_destroy(igraph_vector_list_t* v);

All lists initialized by igraph_vector_list_init() should be properly destroyed by this func-
tion. A destroyed list of vectors needs to be reinitialized by igraph_vector_list_init() if
you want to use it again.

Vectors that are in the list when it is destroyed are also destroyed implicitly.

Arguments:

v: Pointer to the (previously initialized) list object to destroy.

Time complexity: operating system dependent.

Accessing elements
Elements of a vector list may be accessed with the igraph_vector_list_get_ptr() function.
The function returns a pointer to the vector with a given index inside the list, and you may then pass
this pointer onwards to other functions that can query or manipulate vectors. The pointer itself is
guaranteed to stay valid as long as the list itself is not modified; however, any modification to the
list will invalidate the pointer, even modifications that are seemingly unrelated to the vector that the

174

Data structure library: vec-
tor, matrix, other data types

pointer points to (such as adding a new vector at the end of the list). This is because the list data
structure may be forced to re-allocate its internal storage if a new element does not fit into the already
allocated space, and there are no guarantees that the re-allocated block remains at the same memory
location (typically it gets moved elsewhere).

Note that the standard VECTOR macro that works for ordinary vectors does not work for lists of vec-
tors to access the i-th element (but of course you can use it to index into an existing vector that you
retrieved from the vector list with igraph_vector_list_get_ptr()). This is because the
macro notation would allow one to overwrite the vector in the list with another one without the list
knowing about it, so the list would not be able to destroy the vector that was overwritten by a new one.

igraph_vector_list_tail_ptr() returns a pointer to the last vector in the list, or NULL if
the list is empty. There is no igraph_vector_list_head_ptr(), however, as it is easy to
write igraph_vector_list_get_ptr(v, 0) instead.

igraph_vector_list_get_ptr — Retrieve the address of a vec-
tor in the vector list.

igraph_vector_t* igraph_vector_list_get_ptr(const igraph_vector_list_t* v, igraph_integer_t pos);

Arguments:

v: The list object.

pos: The position of the vector in the list. The position of the first vector is zero.

Returns:

A pointer to the vector. It remains valid as long as the underlying list of vectors is not modified.

Time complexity: O(1).

igraph_vector_list_tail_ptr — Retrieve the address of the
last vector in the vector list.

igraph_vector_t* igraph_vector_list_tail_ptr(const igraph_vector_list_t *v);

Arguments:

v: The list object.

Returns:

A pointer to the last vector in the list, or NULL if the list is empty.

Time complexity: O(1).

igraph_vector_list_set — Sets the vector at the given index
in the list.

175

Data structure library: vec-
tor, matrix, other data types

void igraph_vector_list_set(igraph_vector_list_t* v, igraph_integer_t pos, igraph_vector_t* e);

This function destroys the vector that is already at the given index pos in the list, and replaces it with
the vector pointed to by e. The ownership of the vector pointed to by e is taken by the list so the user
is not responsible for destroying e any more; it will be destroyed when the list itself is destroyed or if
e gets removed from the list without passing on the ownership to somewhere else.

Arguments:

v: The list object.

pos: The index to modify in the list.

e: The vector to set in the list.

Time complexity: O(1).

igraph_vector_list_replace — Replaces the vector at the
given index in the list with another one.

void igraph_vector_list_replace(igraph_vector_list_t* v, igraph_integer_t pos, igraph_vector_t* e);

This function replaces the vector that is already at the given index pos in the list with the vector
pointed to by e. The ownership of the vector pointed to by e is taken by the list so the user is not
responsible for destroying e any more. At the same time, the ownership of the vector that was in the
list at position pos will be transferred to the caller and e will be updated to point to it, so the caller
becomes responsible for destroying it when it does not need the vector any more.

Arguments:

v: The list object.

pos: The index to modify in the list.

e: The vector to swap with the one already in the list.

Time complexity: O(1).

Vector properties

igraph_vector_list_empty — Decides whether the size of the
list is zero.

igraph_bool_t igraph_vector_list_empty(const igraph_vector_list_t* v);

Arguments:

v: The list object.

Returns:

True if the size of the list is zero and false otherwise.

176

Data structure library: vec-
tor, matrix, other data types

Time complexity: O(1).

igraph_vector_list_size — Returns the size (=length) of the
vector.

igraph_integer_t igraph_vector_list_size(const igraph_vector_list_t* v);

Arguments:

v: The list object

Returns:

The size of the list.

Time complexity: O(1).

igraph_vector_list_capacity — Returns the allocated ca-
pacity of the list.

igraph_integer_t igraph_vector_list_capacity(const igraph_vector_list_t* v);

Note that this might be different from the size of the list (as queried by igraph_vec-
tor_list_size()), and specifies how many vectors the list can hold, without reallocation.

Arguments:

v: Pointer to the (previously initialized) list object to query.

Returns:

The allocated capacity.

See also:

igraph_vector_list_size().

Time complexity: O(1).

Resizing operations

igraph_vector_list_clear — Removes all elements from a
list of vectors.

void igraph_vector_list_clear(igraph_vector_list_t* v);

This function sets the size of the list to zero, and it also destroys all the vectors that were placed in
the list before clearing it.

177

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The list object.

Time complexity: O(n), n is the number of items being deleted.

igraph_vector_list_reserve — Reserves memory for a list.

igraph_error_t igraph_vector_list_reserve(igraph_vector_list_t* v, igraph_integer_t capacity);

igraph lists are flexible, they can grow and shrink. Growing however occasionally needs the data
in the list to be copied. In order to avoid this, you can call this function to reserve space for future
growth of the list.

Note that this function does not change the size of the list, neither does it initialize any new vectors.
Let us see a small example to clarify things: if you reserve space for 100 elements and the size of
your list was (and still is) 60, then you can surely add additional 40 new vectors to your list before
it will be copied.

Arguments:

v: The list object.

capacity: The new allocated size of the list.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, should be around O(n), n is the new allocated size of
the list.

igraph_vector_list_resize — Resize the list of vectors.

igraph_error_t igraph_vector_list_resize(igraph_vector_list_t* v, igraph_integer_t new_size);

Note that this function does not free any memory, just sets the size of the list to the given one. It can
on the other hand allocate more memory if the new size is larger than the previous one.

When the new size is larger than the current size, the newly added vectors in the list are initialized
to empty vectors. When the new size is smaller than the current size, the vectors that were removed
from the end of the list are destroyed automatically.

Arguments:

v: The list object

new_size: The new size of the list.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory. Note that this function never returns
an error if the list is made smaller.

178

Data structure library: vec-
tor, matrix, other data types

See also:

igraph_vector_list_reserve() for allocating memory for future extensions of a list.

Time complexity: O(m) if the new size is smaller (m is the number of items that were removed from
the list), operating system dependent if the new size is larger. In the latter case it is usually around
O(n), where n is the new size of the vector.

igraph_vector_list_push_back — Append an existing vector
to the list, transferring ownership.

igraph_error_t igraph_vector_list_push_back(igraph_vector_list_t* v, igraph_vector_t* e);

This function resizes the list to be one element longer, and sets the very last element in the list to the
specified vector e . The list takes ownership of the vector so the user is not responsible for freeing e
any more; the vector will be destroyed when the list itself is destroyed or if e gets removed from the
list without passing on the ownership to somewhere else.

Arguments:

v: The list object.

e: Pointer to the vector to append to the list.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: operating system dependent. What is important is that a sequence of n subsequent
calls to this function has time complexity O(n), even if there hadn't been any space reserved for the
new elements by igraph_vector_list_reserve(). This is implemented by a trick similar to
the C++ vector class: each time more memory is allocated for a vector, the size of the additionally
allocated memory is the same as the vector's current length. (We assume here that the time complexity
of memory allocation is at most linear).

igraph_vector_list_push_back_copy — Append the copy of
a vector to the list.

igraph_error_t igraph_vector_list_push_back_copy(igraph_vector_list_t* v, const igraph_vector_t* e);

This function resizes the list to be one element longer, and copies the specified vector given as an
argument to the last element. The newly added element is owned by the list, but the ownership of the
original vector is retained at the caller.

Arguments:

v: The list object.

e: Pointer to the vector to copy to the end of the list.

Returns:

179

Data structure library: vec-
tor, matrix, other data types

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: same as igraph_vector_list_push_back() plus the time needed to copy
the vector (which is O(n) for n elements in the vector).

igraph_vector_list_push_back_new — Append a new vector
to the list.

igraph_error_t igraph_vector_list_push_back_new(igraph_vector_list_t* v, igraph_vector_t** e);

This function resizes the list to be one element longer. The newly added element will be an empty
vector that is owned by the list. A pointer to the newly added element is returned in the last argument
if it is not NULL .

Arguments:

v: The list object.

result: Pointer to a vector pointer; this will be updated to point to the newly added vector. May
be NULL if you do not need a pointer to the newly added vector.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: same as igraph_vector_list_push_back().

igraph_vector_list_pop_back — Remove the last item from
the vector list and transfer ownership to the caller.

igraph_vector_t igraph_vector_list_pop_back(igraph_vector_list_t* v);

This function removes the last vector from the list. The vector that was removed from the list is returned
and its ownership is passed back to the caller; in other words, the caller becomes responsible for
destroying the vector when it is not needed any more.

It is an error to call this function with an empty vector.

Arguments:

v: The list object.

result: Pointer to an igraph_vector_t object; it will be updated to the item that was re-
moved from the list. Ownership of this vector is passed on to the caller.

Time complexity: O(1).

igraph_vector_list_insert — Insert an existing vector into
the list, transferring ownership.

igraph_error_t igraph_vector_list_insert(igraph_vector_list_t* v, igraph_integer_t pos, igraph_vector_t* e);

180

Data structure library: vec-
tor, matrix, other data types

This function inserts e into the list at the given index, moving other items towards the end of the list
as needed. The list takes ownership of the vector so the user is not responsible for freeing e any more;
the vector will be destroyed when the list itself is destroyed or if e gets removed from the list without
passing on the ownership to somewhere else.

Arguments:

v: The list object.

pos: The position where the new element is to be inserted.

e: Pointer to the vector to insert into the list.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: O(n).

igraph_vector_list_insert_copy — Insert the copy of a vec-
tor to the list.

igraph_error_t igraph_vector_list_insert_copy(igraph_vector_list_t* v, igraph_integer_t pos, const igraph_vector_t* e);

This function inserts a copy of e into the list at the given index, moving other items towards the end
of the list as needed. The newly added element is owned by the list, but the ownership of the original
vector is retained at the caller.

Arguments:

v: The list object.

pos: The position where the new element is to be inserted.

e: Pointer to the vector to copy to the end of the list.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: same as igraph_vector_list_insert() plus the time needed to copy the
vector (which is O(n) for n elements in the vector).

igraph_vector_list_insert_new — Insert a new vector into
the list.

igraph_error_t igraph_vector_list_insert_new(igraph_vector_list_t* v, igraph_integer_t pos, igraph_vector_t** e);

This function inserts a newly created empty vector into the list at the given index, moving other items
towards the end of the list as needed. The newly added vector is owned by the list. A pointer to the
new element is returned in the last argument if it is not NULL .

181

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The list object.

pos: The position where the new element is to be inserted.

result: Pointer to a vector pointer; this will be updated to point to the newly added vector. May
be NULL if you do not need a pointer to the newly added vector.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: same as igraph_vector_list_push_back().

igraph_vector_list_remove — Remove the item at the given
index from the vector list and transfer ownership to the caller.

igraph_error_t igraph_vector_list_remove(igraph_vector_list_t* v, igraph_integer_t index, igraph_vector_t* result);

This function removes the vector at the given index from the list, and moves all subsequent items in
the list by one slot to the left to fill the gap. The vector that was removed from the list is returned in
e and its ownership is passed back to the caller; in other words, the caller becomes responsible for
destroying the vector when it is not needed any more.

Arguments:

v: The list object.

index: Index of the item to be removed.

result: Pointer to an igraph_vector_t object; it will be updated to the item that was re-
moved from the list. Ownership of this vector is passed on to the caller. It is an error to
supply a null pointer here.

See also:

igraph_vector_list_discard() if you are not interested in the item that was removed,
igraph_vector_list_remove_fast() if you do not care about the order of the items in
the list.

Time complexity: O(n), where n is the number of items in the list.

igraph_vector_list_remove_fast — Remove the item at the
given index in the vector list, move the last item to its place and
transfer ownership to the caller.

igraph_error_t igraph_vector_list_remove_fast(igraph_vector_list_t* v, igraph_integer_t index, igraph_vector_t* result);

This function removes the vector at the given index from the list, moves the last item in the list to
index to fill the gap, and then transfers ownership of the removed vector back to the caller; in other
words, the caller becomes responsible for destroying the vector when it is not needed any more.

182

Data structure library: vec-
tor, matrix, other data types

Arguments:

v: The list object.

index: Index of the item to be removed.

result: Pointer to an igraph_vector_t object; it will be updated to the item that was re-
moved from the list. Ownership of this vector is passed on to the caller. It is an error to
supply a null pointer here.

See also:

igraph_vector_list_remove() if you want to preserve the order of the items in the list,
igraph_vector_list_discard_fast() if you are not interested in the item that was re-
moved.

Time complexity: O(1).

igraph_vector_list_discard — Discard the item at the given
index in the vector list.

void igraph_vector_list_discard(igraph_vector_list_t* v, igraph_integer_t index);

This function removes the vector at the given index from the list, and moves all subsequent items in
the list by one slot to the left to fill the gap. The vector that was removed from the list is destroyed
automatically.

Arguments:

v: The list object.

index: Index of the item to be discarded and destroyed.

See also:

igraph_vector_list_discard_fast() if you do not care about the order of the items in
the list, igraph_vector_list_remove() if you want to gain ownership of the item that was
removed instead of destroying it.

Time complexity: O(n), where n is the number of items in the list.

igraph_vector_list_discard_back — Discard the last item in
the vector list.

void igraph_vector_list_discard_back(igraph_vector_list_t* v);

This function removes the last vector from the list and destroys it.

Arguments:

v: The list object.

Time complexity: O(1).

183

Data structure library: vec-
tor, matrix, other data types

igraph_vector_list_discard_fast — Discard the item at the
given index in the vector list and move the last item to its place.

void igraph_vector_list_discard_fast(igraph_vector_list_t* v, igraph_integer_t index);

This function removes the vector at the given index from the list, and moves the last item in the list to
index to fill the gap. The vector that was removed from the list is destroyed automatically.

Arguments:

v: The list object.

index: Index of the item to be discarded and destroyed.

See also:

igraph_vector_list_discard() if you want to preserve the order of the items in the list,
igraph_vector_list_remove_fast() if you want to gain ownership of the item that was
removed instead of destroying it.

Time complexity: O(1).

Sorting and reordering

igraph_vector_list_permute — Permutes the elements of a
list in place according to an index vector.

igraph_error_t igraph_vector_list_permute(igraph_vector_list_t* v, const igraph_vector_int_t* index);

This function takes a list v and a corresponding index vector index, and permutes the elements of v
such that v[index[i]] is moved to become v[i] after the function is executed.

It is an error to call this function with an index vector that does not represent a valid permutation. Each
element in the index vector must be between 0 and the length of the list minus one (inclusive), and
each such element must appear only once. The function does not attempt to validate the index vector.
Memory may be leaked if the index vector does not satisfy these conditions.

The index vector that this function takes is compatible with the index vector returned from
igraph_vector_list_sort_ind(); passing in the index vector from igraph_vec-
tor_list_sort_ind() will sort the original vector.

Arguments:

v: the list to permute

index: the index vector

Time complexity: O(n), the number of items in the list.

igraph_vector_list_sort — Sorts the elements of the list into
ascending order.

184

Data structure library: vec-
tor, matrix, other data types

void igraph_vector_list_sort(igraph_vector_list_t *v, int (*cmp)(const igraph_vector_t*, const igraph_vector_t*));

Arguments:

v: Pointer to an initialized list object.

cmp: A comparison function that takes pointers to two vectors and returns zero if the two vectors are
considered equal, any negative number if the first vector is smaller and any positive number
if the second vector is smaller.

Returns:

Error code.

Time complexity: O(n log n) for n elements.

igraph_vector_list_sort_ind — Returns a permutation of in-
dices that sorts the list.

igraph_error_t igraph_vector_list_sort_ind(
 igraph_vector_list_t *v, igraph_vector_int_t *inds,
 int (*cmp)(const igraph_vector_t*, const igraph_vector_t*)
);

Takes an unsorted list v as input and computes an array of indices inds such that v[inds[i]], with i
increasing from 0, is an ordered array according to the comparison function cmp. The order of indices
for identical elements is not defined.

Arguments:

v: the list to be sorted

inds: the output array of indices. This must be initialized, but will be resized

cmp: A comparison function that takes pointers to two vectors and returns zero if the two vectors
are considered equal, any negative number if the first vector is smaller and any positive
number if the second vector is smaller.

Returns:

Error code.

Time complexity: O(n log n) for n elements.

igraph_vector_list_swap — Swaps all elements of two vector
lists.

igraph_error_t igraph_vector_list_swap(igraph_vector_list_t *v1, igraph_vector_list_t *v2);

Arguments:

185

Data structure library: vec-
tor, matrix, other data types

v1: The first list.

v2: The second list.

Returns:

Error code.

Time complexity: O(1).

igraph_vector_list_swap_elements — Swap two elements in
a vector list.

igraph_error_t igraph_vector_list_swap_elements(igraph_vector_list_t *v1, igraph_integer_t i, igraph_integer_t j);

Note that currently no range checking is performed.

Arguments:

v: The input list.

i: Index of the first element.

j: Index of the second element (may be the same as the first one).

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(1).

Adjacency lists
Sometimes it is easier to work with a graph which is in adjacency list format: a list of vectors; each
vector contains the neighbor vertices or incident edges of a given vertex. Typically, this representation
is good if we need to iterate over the neighbors of all vertices many times. E.g. when finding the
shortest paths between all pairs of vertices or calculating closeness centrality for all the vertices.

The igraph_adjlist_t stores the adjacency lists of a graph. After creation it is independent of the original
graph, it can be modified freely with the usual vector operations, the graph is not affected. E.g. the
adjacency list can be used to rewire the edges of a graph efficiently. If one used the straightforward
igraph_delete_edges() and igraph_add_edges() combination for this that needs O(|V|
+|E|) time for every single deletion and insertion operation, it is thus very slow if many edges are
rewired. Extracting the graph into an adjacency list, do all the rewiring operations on the vectors of the
adjacency list and then creating a new graph needs (depending on how exactly the rewiring is done)
typically O(|V|+|E|) time for the whole rewiring process.

Lazy adjacency lists are a bit different. When creating a lazy adjacency list, the neighbors of the ver-
tices are not queried, only some memory is allocated for the vectors. When igraph_lazy_ad-
jlist_get() is called for vertex v the first time, the neighbors of v are queried and stored in a
vector of the adjacency list, so they don't need to be queried again. Lazy adjacency lists are handy if
you have an at least linear operation (because initialization is generally linear in terms of the number
of vertices), but you don't know how many vertices you will visit during the computation.

Example 7.12. File examples/simple/adjlist.c

186

Data structure library: vec-
tor, matrix, other data types

Adjacent vertices

igraph_adjlist_init — Constructs an adjacency list of ver-
tices from a given graph.

igraph_error_t igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al,
 igraph_neimode_t mode, igraph_loops_t loops,
 igraph_multiple_t multiple);

Creates a list of vectors containing the neighbors of all vertices in a graph. The adjacency list is inde-
pendent of the graph after creation, e.g. the graph can be destroyed and modified, the adjacency list
contains the state of the graph at the time of its initialization.

This function returns each neighbor list in sorted order, just like igraph_neighbors().

As of igraph 0.10, there is a small performance cost to setting loops to a different value than
IGRAPH_LOOPS_TWICE or setting multiple to a different value from IGRAPH_MULTIPLE.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized igraph_adjlist_t object.

mode: Constant specifying whether to include only outgoing (IGRAPH_OUT), only incom-
ing (IGRAPH_IN), or both (IGRAPH_ALL) types of neighbors in the adjacency list.
It is ignored for undirected graphs.

loops: Specifies how to treat loop edges. IGRAPH_NO_LOOPS removes loop edges from
the adjacency list. IGRAPH_LOOPS_ONCE makes each loop edge appear only once
in the adjacency list of the corresponding vertex. IGRAPH_LOOPS_TWICE makes
loop edges appear twice in the adjacency list of the corresponding vertex, but only if
the graph is undirected or mode is set to IGRAPH_ALL.

multiple: Specifies how to treat multiple (parallel) edges. IGRAPH_NO_MULTIPLE collaps-
es parallel edges into a single one; IGRAPH_MULTIPLE keeps the multiplicities of
parallel edges so the same vertex will appear as many times in the adjacency list of
another vertex as the number of parallel edges going between the two vertices.

Returns:

Error code.

See also:

igraph_neighbors() for getting the neighbor lists of individual vertices.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_adjlist_init_empty — Initializes an empty adjacency
list.

igraph_error_t igraph_adjlist_init_empty(igraph_adjlist_t *al, igraph_integer_t no_of_nodes);

187

Data structure library: vec-
tor, matrix, other data types

Creates a list of vectors, one for each vertex. This is useful when you are constructing a graph using
an adjacency list representation as it does not require your graph to exist yet.

Arguments:

no_of_nodes: The number of vertices

al: Pointer to an uninitialized igraph_adjlist_t object.

Returns:

Error code.

Time complexity: O(|V|), linear in the number of vertices.

igraph_adjlist_init_complementer — Adjacency lists for
the complementer graph.

igraph_error_t igraph_adjlist_init_complementer(const igraph_t *graph,
 igraph_adjlist_t *al,
 igraph_neimode_t mode,
 igraph_bool_t loops);

This function creates adjacency lists for the complementer of the input graph. In the complementer
graph all edges are present which are not present in the original graph. Multiple edges in the input
graph are ignored.

This function returns each neighbor list in sorted order.

Arguments:

graph: The input graph.

al: Pointer to a not yet initialized adjacency list.

mode: Constant specifying whether outgoing (IGRAPH_OUT), incoming (IGRAPH_IN), or both
(IGRAPH_ALL) types of neighbors (in the complementer graph) to include in the adja-
cency list. It is ignored for undirected networks.

loops: Whether to consider loop edges.

Returns:

Error code.

See also:

igraph_adjlist_init(), igraph_complementer()

Time complexity: O(|V|^2+|E|), quadratic in the number of vertices.

igraph_adjlist_destroy — Deallocates an adjacency list.

void igraph_adjlist_destroy(igraph_adjlist_t *al);

188

Data structure library: vec-
tor, matrix, other data types

Free all memory allocated for an adjacency list.

Arguments:

al: The adjacency list to destroy.

Time complexity: depends on memory management.

igraph_adjlist_get — Query a vector in an adjacency list.

#define igraph_adjlist_get(al,no)

Returns a pointer to an igraph_vector_int_t object from an adjacency list. The vector can be modified
as desired.

Arguments:

al: The adjacency list object.

no: The vertex whose adjacent vertices will be returned.

Returns:

Pointer to the igraph_vector_int_t object.

Time complexity: O(1).

igraph_adjlist_size — Returns the number of vertices in an
adjacency list.

igraph_integer_t igraph_adjlist_size(const igraph_adjlist_t *al);

Arguments:

al: The adjacency list.

Returns:

The number of vertices in the adjacency list.

Time complexity: O(1).

igraph_adjlist_clear — Removes all edges from an adjacen-
cy list.

void igraph_adjlist_clear(igraph_adjlist_t *al);

Arguments:

al: The adjacency list. Time complexity: depends on memory management, typically O(n), where
n is the total number of elements in the adjacency list.

189

Data structure library: vec-
tor, matrix, other data types

igraph_adjlist_sort — Sorts each vector in an adjacency list.

void igraph_adjlist_sort(igraph_adjlist_t *al);

Sorts every vector of the adjacency list. Note that igraph_adjlist_init() already produces
sorted neighbor lists. This function is useful when the adjacency list is produced in a different manner,
or is modified in a way that does not preserve the sorted order.

Arguments:

al: The adjacency list.

Time complexity: O(n log n), n is the total number of elements in the adjacency list.

igraph_adjlist_simplify — Simplifies an adjacency list.

igraph_error_t igraph_adjlist_simplify(igraph_adjlist_t *al);

Simplifies an adjacency list, i.e. removes loop and multiple edges.

When the adjacency list is created with igraph_adjlist_init(), use the loops and multi-
ple parameters of that function instead.

Arguments:

al: The adjacency list.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of edges and vertices.

Incident edges

igraph_inclist_init — Initializes an incidence list.

igraph_error_t igraph_inclist_init(const igraph_t *graph,
 igraph_inclist_t *il,
 igraph_neimode_t mode,
 igraph_loops_t loops);

Creates a list of vectors containing the incident edges for all vertices. The incidence list is independent
of the graph after creation, subsequent changes of the graph object do not update the incidence list,
and changes to the incidence list do not update the graph.

When mode is IGRAPH_IN or IGRAPH_OUT, each edge ID will appear in the incidence list once.
When mode is IGRAPH_ALL, each edge ID will appear in the incidence list twice, once for the source
vertex and once for the target edge. It also means that the edge IDs of loop edges may potentially
appear twice for the same vertex. Use the loops argument to control whether this will be the case
(IGRAPH_LOOPS_TWICE) or not (IGRAPH_LOOPS_ONCE or IGRAPH_NO_LOOPS).

190

Data structure library: vec-
tor, matrix, other data types

As of igraph 0.10, there is a small performance cost to setting loops to a different value than
IGRAPH_LOOPS_TWICE.

Arguments:

graph: The input graph.

il: Pointer to an uninitialized incidence list.

mode: Constant specifying whether incoming edges (IGRAPH_IN), outgoing edges
(IGRAPH_OUT) or both (IGRAPH_ALL) to include in the incidence lists of directed
graphs. It is ignored for undirected graphs.

loops: Specifies how to treat loop edges. IGRAPH_NO_LOOPS removes loop edges from the
incidence list. IGRAPH_LOOPS_ONCE makes each loop edge appear only once in the
incidence list of the corresponding vertex. IGRAPH_LOOPS_TWICE makes loop edges
appear twice in the incidence list of the corresponding vertex, but only if the graph is
undirected or mode is set to IGRAPH_ALL.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_inclist_destroy — Frees all memory allocated for an
incidence list.

void igraph_inclist_destroy(igraph_inclist_t *il);

Arguments:

eal: The incidence list to destroy.

Time complexity: depends on memory management.

igraph_inclist_get — Query a vector in an incidence list.

#define igraph_inclist_get(il,no)

Returns a pointer to an igraph_vector_int_t object from an incidence list containing edge IDs. The
vector can be modified, resized, etc. as desired.

Arguments:

il: Pointer to the incidence list.

no: The vertex for which the incident edges are returned.

Returns:

Pointer to an igraph_vector_int_t object.

Time complexity: O(1).

191

Data structure library: vec-
tor, matrix, other data types

igraph_inclist_size — Returns the number of vertices in an
incidence list.

igraph_integer_t igraph_inclist_size(const igraph_inclist_t *il);

Arguments:

il: The incidence list.

Returns:

The number of vertices in the incidence list.

Time complexity: O(1).

igraph_inclist_clear — Removes all edges from an inci-
dence list.

void igraph_inclist_clear(igraph_inclist_t *il);

Arguments:

il: The incidence list.

Time complexity: depends on memory management, typically O(n), where n is the total number of
elements in the incidence list.

Lazy adjacency list for vertices

igraph_lazy_adjlist_init — Initializes a lazy adjacency list.

igraph_error_t igraph_lazy_adjlist_init(const igraph_t *graph,
 igraph_lazy_adjlist_t *al,
 igraph_neimode_t mode,
 igraph_loops_t loops,
 igraph_multiple_t multiple);

Create a lazy adjacency list for vertices. This function only allocates some memory for storing the vec-
tors of an adjacency list, but the neighbor vertices are not queried, only at the igraph_lazy_ad-
jlist_get() calls. Neighbor lists will be returned in sorted order.

As of igraph 0.10, there is a small performance cost to setting loops to a different value than
IGRAPH_LOOPS_TWICE or setting multiple to a different value from IGRAPH_MULTIPLE.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized adjacency list object.

192

Data structure library: vec-
tor, matrix, other data types

mode: Constant specifying whether to include only outgoing (IGRAPH_OUT), only incom-
ing (IGRAPH_IN), or both (IGRAPH_ALL) types of neighbors in the adjacency list.
It is ignored for undirected graphs.

loops: Specifies how to treat loop edges. IGRAPH_NO_LOOPS removes loop edges from
the adjacency list. IGRAPH_LOOPS_ONCE makes each loop edge appear only once
in the adjacency list of the corresponding vertex. IGRAPH_LOOPS_TWICE makes
loop edges appear twice in the adjacency list of the corresponding vertex, but only if
the graph is undirected or mode is set to IGRAPH_ALL.

multiple: Specifies how to treat multiple (parallel) edges. IGRAPH_NO_MULTIPLE collaps-
es parallel edges into a single one; IGRAPH_MULTIPLE keeps the multiplicities of
parallel edges so the same vertex will appear as many times in the adjacency list of
another vertex as the number of parallel edges going between the two vertices.

Returns:

Error code.

See also:

igraph_neighbors() for getting the neighbor lists of individual vertices.

Time complexity: O(|V|), the number of vertices, possibly, but depends on the underlying memory
management too.

igraph_lazy_adjlist_destroy — Deallocate a lazt adjacency
list.

void igraph_lazy_adjlist_destroy(igraph_lazy_adjlist_t *al);

Free all allocated memory for a lazy adjacency list.

Arguments:

al: The adjacency list to deallocate.

Time complexity: depends on the memory management.

igraph_lazy_adjlist_get — Query neighbor vertices.

#define igraph_lazy_adjlist_get(al,no)

If the function is called for the first time for a vertex then the result is stored in the adjacency list and
no further query operations are needed when the neighbors of the same vertex are queried again.

Arguments:

al: The lazy adjacency list.

no: The vertex ID to query.

Returns:

193

Data structure library: vec-
tor, matrix, other data types

Pointer to a vector, or NULL upon error. Errors can only occur the first time this function is called
for a given vertex. It is safe to modify this vector, modification does not affect the original graph.

See also:

igraph_lazy_adjlist_has() to check if this function has already been called for a vertex.

Time complexity: O(d), the number of neighbor vertices for the first time, O(1) for subsequent calls.

igraph_lazy_adjlist_has — Are adjacenct vertices already
stored in a lazy adjacency list?

#define igraph_lazy_adjlist_has(al,no)

Arguments:

al: The lazy adjacency list.

no: The vertex ID to query.

Returns:

True if the adjacent vertices of this vertex are already computed and stored, false otherwise.

Time complexity: O(1).

igraph_lazy_adjlist_size — Returns the number of vertices
in a lazy adjacency list.

igraph_integer_t igraph_lazy_adjlist_size(const igraph_lazy_adjlist_t *al);

Arguments:

al: The lazy adjacency list.

Returns:

The number of vertices in the lazy adjacency list.

Time complexity: O(1).

igraph_lazy_adjlist_clear — Removes all edges from a lazy
adjacency list.

void igraph_lazy_adjlist_clear(igraph_lazy_adjlist_t *al);

Arguments:

194

Data structure library: vec-
tor, matrix, other data types

al: The lazy adjacency list. Time complexity: depends on memory management, typically O(n),
where n is the total number of elements in the adjacency list.

Lazy incidence list for edges

igraph_lazy_inclist_init — Initializes a lazy incidence list of
edges.

igraph_error_t igraph_lazy_inclist_init(const igraph_t *graph,
 igraph_lazy_inclist_t *il,
 igraph_neimode_t mode,
 igraph_loops_t loops);

Create a lazy incidence list for edges. This function only allocates some memory for storing the vec-
tors of an incidence list, but the incident edges are not queried, only when igraph_lazy_in-
clist_get() is called.

When mode is IGRAPH_IN or IGRAPH_OUT, each edge ID will appear in the incidence list once.
When mode is IGRAPH_ALL, each edge ID will appear in the incidence list twice, once for the source
vertex and once for the target edge. It also means that the edge IDs of loop edges will appear twice
for the same vertex.

As of igraph 0.10, there is a small performance cost to setting loops to a different value than
IGRAPH_LOOPS_TWICE.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized incidence list.

mode: Constant, it gives whether incoming edges (IGRAPH_IN), outgoing edges
(IGRAPH_OUT) or both types of edges (IGRAPH_ALL) are considered. It is ignored for
undirected graphs.

loops: Specifies how to treat loop edges. IGRAPH_NO_LOOPS removes loop edges from the
incidence list. IGRAPH_LOOPS_ONCE makes each loop edge appear only once in the
incidence list of the corresponding vertex. IGRAPH_LOOPS_TWICE makes loop edges
appear twice in the incidence list of the corresponding vertex, but only if the graph is
undirected or mode is set to IGRAPH_ALL.

Returns:

Error code.

Time complexity: O(|V|), the number of vertices, possibly. But it also depends on the underlying
memory management.

igraph_lazy_inclist_destroy — Deallocates a lazy incidence
list.

void igraph_lazy_inclist_destroy(igraph_lazy_inclist_t *il);

195

Data structure library: vec-
tor, matrix, other data types

Frees all allocated memory for a lazy incidence list.

Arguments:

al: The incidence list to deallocate.

Time complexity: depends on memory management.

igraph_lazy_inclist_get — Query incident edges.

#define igraph_lazy_inclist_get(il,no)

If the function is called for the first time for a vertex, then the result is stored in the incidence list and
no further query operations are needed when the incident edges of the same vertex are queried again.

Arguments:

il: The lazy incidence list object.

no: The vertex ID to query.

Returns:

Pointer to a vector, or NULL upon error. Errors can only occur the first time this function is called
for a given vertex. It is safe to modify this vector, modification does not affect the original graph.

See also:

igraph_lazy_inclist_has() to check if this function has already been called for a vertex.

Time complexity: O(d), the number of incident edges for the first time, O(1) for subsequent calls with
the same no argument.

igraph_lazy_inclist_has — Are incident edges already
stored in a lazy inclist?

#define igraph_lazy_inclist_has(il,no)

Arguments:

il: The lazy incidence list.

no: The vertex ID to query.

Returns:

True if the incident edges of this vertex are already computed and stored, false otherwise.

Time complexity: O(1).

igraph_lazy_inclist_size — Returns the number of vertices
in a lazy incidence list.

196

Data structure library: vec-
tor, matrix, other data types

igraph_integer_t igraph_lazy_inclist_size(const igraph_lazy_inclist_t *il);

Arguments:

il: The lazy incidence list.

Returns:

The number of vertices in the lazy incidence list.

Time complexity: O(1).

igraph_lazy_inclist_clear — Removes all edges from a lazy
incidence list.

void igraph_lazy_inclist_clear(igraph_lazy_inclist_t *il);

Arguments:

il: The lazy incidence list.

Time complexity: depends on memory management, typically O(n), where n is the total number of
elements in the incidence list.

Partial prefix sum trees
The igraph_psumtree_t data type represents a partial prefix sum tree. A partial prefix sum tree is a
data structure that can be used to draw samples from a discrete probability distribution with dynamic
probabilities that are updated frequently. This is achieved by creating a binary tree where the leaves
are the items. Each leaf contains the probability corresponding to the items. Intermediate nodes of the
tree always contain the sum of its two children. When the value of a leaf node is updated, the values
of its ancestors are also updated accordingly.

Samples can be drawn from the probability distribution represented by the tree by generating a uni-
form random number between 0 (inclusive) and the value of the root of the tree (exclusive), and then
following the branches of the tree as follows. In each step, the value in the current node is compared
with the generated number. If the value in the node is larger, the left branch of the tree is taken; oth-
erwise the generated number is decreased by the value in the node and the right branch of the tree is
taken, until a leaf node is reached.

Note that the sampling process works only if all the values in the tree are non-negative. This is enforced
by the object; in particular, trying to set a negative value for an item will produce an igraph error.

igraph_psumtree_init — Initializes a partial prefix
sum tree.

igraph_error_t igraph_psumtree_init(igraph_psumtree_t *t, igraph_integer_t size);

The tree is initialized with a fixed number of elements. After initialization, the value corresponding
to each element is zero.

197

Data structure library: vec-
tor, matrix, other data types

Arguments:

t: The tree to initialize.

size: The number of elements in the tree. It must be at least one.

Returns:

Error code, typically IGRAPH_ENOMEM if there is not enough memory.

Time complexity: O(n) for a tree containing n elements

igraph_psumtree_destroy — Destroys a partial pre-
fix sum tree.

void igraph_psumtree_destroy(igraph_psumtree_t *t);

All partial prefix sum trees initialized by igraph_psumtree_init() should be properly de-
stroyed by this function. A destroyed tree needs to be reinitialized by igraph_psumtree_init()
if you want to use it again.

Arguments:

t: Pointer to the (previously initialized) tree to destroy.

Time complexity: operating system dependent.

igraph_psumtree_size — Returns the size of the
tree.

igraph_integer_t igraph_psumtree_size(const igraph_psumtree_t *t);

Arguments:

t: The tree object

Returns:

The number of discrete items in the tree.

Time complexity: O(1).

igraph_psumtree_get — Retrieves the value corre-
sponding to an item in the tree.

igraph_real_t igraph_psumtree_get(const igraph_psumtree_t *t, igraph_integer_t idx);

198

Data structure library: vec-
tor, matrix, other data types

Arguments:

t: The tree to query.

idx: The index of the item whose value is to be retrieved.

Returns:

The value corresponding to the item with the given index.

Time complexity: O(1)

igraph_psumtree_sum — Returns the sum of the val-
ues of the leaves in the tree.

igraph_real_t igraph_psumtree_sum(const igraph_psumtree_t *t);

Arguments:

t: The tree object

Returns:

The sum of the values of the leaves in the tree.

Time complexity: O(1).

igraph_psumtree_search — Finds an item in the
tree, given a value.

igraph_error_t igraph_psumtree_search(const igraph_psumtree_t *t, igraph_integer_t *idx,
 igraph_real_t search);

This function finds the item with the lowest index where it holds that the sum of all the items with a
lower index is less than or equal to the given value and that the sum of all the items with a lower index
plus the item itself is larger than the given value.

If you think about the partial prefix sum tree as a tool to sample from a discrete probability distrib-
ution, then calling this function repeatedly with uniformly distributed random numbers in the range
0 (inclusive) to the sum of all values in the tree (exclusive) will sample the items in the tree with a
probability that is proportional to their associated values.

Arguments:

t: The tree to query.

idx: The index of the item is returned here.

search: The value to use for the search. Must be in the interval [0, sum), where sum is the
sum of all elements (leaves) in the tree.

Returns:

199

Data structure library: vec-
tor, matrix, other data types

Error code; currently the search always succeeds.

Time complexity: O(log n), where n is the number of items in the tree.

igraph_psumtree_update — Updates the value as-
sociated to an item in the tree.

igraph_error_t igraph_psumtree_update(igraph_psumtree_t *t, igraph_integer_t idx,
 igraph_real_t new_value);

Arguments:

t: The tree to query.

idx: The index of the item to update.

new_value: The new value of the item.

Returns:

Error code, IGRAPH_EINVAL if the new value is negative or NaN, IGRAPH_SUCCESS if the
operation was successful.

Time complexity: O(log n), where n is the number of items in the tree.

200

Chapter 8. Random numbers

About random numbers in igraph
Some algorithms in igraph, such as sampling from random graph models, require random number
generators (RNGs). igraph includes a flexible RNG framework that allows hooking up arbitrary ran-
dom number generators, and comes with several ready-to-use generators. This framework is used in
igraph's high-level interfaces to integrate with the host language's own RNG.

The default random number generator

igraph_rng_default — Query the default random
number generator.

igraph_rng_t *igraph_rng_default(void);

Returns:

A pointer to the default random number generator.

See also:

igraph_rng_set_default()

igraph_rng_set_default — Set the default igraph
random number generator.

void igraph_rng_set_default(igraph_rng_t *rng);

This function copies the internal structure of the given igraph_rng_t object to igraph's internal default
RNG structure. The structure itself contains two pointers only, one to the "methods" of the RNG
and one to the memory buffer holding the internal state of the RNG. This means that if you keep
on generating random numbers from the RNG after setting it as the default, it will affect the state
of the default RNG as well because the two share the same state pointer. However, do not expect
igraph_rng_default() to return the same pointer as the one you passed in here - the state is
shared, but the entire structure is not.

Arguments:

rng: The random number generator to use as default from now on. Calling igraph_rng_de-
stroy() on it, while it is still being used as the default will result in crashes and/or unpre-
dictable results.

Time complexity: O(1).

201

Random numbers

Creating random number generators

igraph_rng_init — Initializes a random number
generator.

igraph_error_t igraph_rng_init(igraph_rng_t *rng, const igraph_rng_type_t *type);

This function allocates memory for a random number generator, with the given type, and sets its seed
to the default.

Arguments:

rng: Pointer to an uninitialized RNG.

type: The type of the RNG, such as igraph_rngtype_mt19937, igraph_rng-
type_glibc2, igraph_rngtype_pcg32 or igraph_rngtype_pcg64.

Returns:

Error code.

igraph_rng_destroy — Deallocates memory associ-
ated with a random number generator.

void igraph_rng_destroy(igraph_rng_t *rng);

Arguments:

rng: The RNG to destroy. Do not destroy an RNG that is used as the default igraph RNG.

Time complexity: O(1).

igraph_rng_seed — Seeds a random number genera-
tor.

igraph_error_t igraph_rng_seed(igraph_rng_t *rng, igraph_uint_t seed);

Arguments:

rng: The RNG.

seed: The new seed.

Returns:

Error code.

202

Random numbers

Time complexity: usually O(1), but may depend on the type of the RNG.

igraph_rng_bits — The number of random bits that
a random number generator can produces in a single
round.

 igraph_integer_t igraph_rng_bits(const igraph_rng_t* rng);

Arguments:

rng: The RNG.

Returns:

The number of random bits that can be generated in a single round with the RNG.

Time complexity: O(1).

igraph_rng_max — The maximum possible integer
for a random number generator.

igraph_uint_t igraph_rng_max(const igraph_rng_t *rng);

Note that this number is only for informational purposes; it returns the maximum possible integer that
can be generated with the RNG with a single call to its internals. It is derived directly from the number
of random bits that the RNG can generate in a single round. When this is smaller than what would
be needed by other RNG functions like igraph_rng_get_integer(), igraph will call the RNG
multiple times to generate more random bits.

Arguments:

rng: The RNG.

Returns:

The largest possible integer that can be generated in a single round with the RNG.

Time complexity: O(1).

igraph_rng_name — The type of a random number
generator.

const char *igraph_rng_name(const igraph_rng_t *rng);

Arguments:

rng: The RNG.

203

Random numbers

Returns:

The name of the type of the generator. Do not deallocate or change the returned string.

Time complexity: O(1).

Generating random numbers

igraph_rng_get_integer — Generate an integer
random number from an interval.

igraph_integer_t igraph_rng_get_integer(
 igraph_rng_t *rng, igraph_integer_t l, igraph_integer_t h
);

Arguments:

rng: Pointer to the RNG to use for the generation. Use igraph_rng_default() here to use
the default igraph RNG.

l: Lower limit, inclusive, it can be negative as well.

h: Upper limit, inclusive, it can be negative as well, but it should be at least l.

Returns:

The generated random integer.

Time complexity: O(log2(h-l) / bits) where bits is the value of igraph_rng_bits(rng).

igraph_rng_get_unif01 — Samples uniformly from
the unit interval.

igraph_real_t igraph_rng_get_unif01(igraph_rng_t *rng);

Generates uniformly distributed real numbers from the [0, 1) half-open interval.

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

Returns:

The generated uniformly distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_unif — Samples real numbers
from a given interval.

204

Random numbers

igraph_real_t igraph_rng_get_unif(igraph_rng_t *rng,
 igraph_real_t l, igraph_real_t h);

Generates uniformly distributed real numbers from the [l, h) half-open interval.

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

l: The lower bound, it can be negative.

h: The upper bound, it can be negative, but it has to be larger than the lower bound.

Returns:

The generated uniformly distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_normal — Samples from a normal
distribution.

igraph_real_t igraph_rng_get_normal(igraph_rng_t *rng,
 igraph_real_t m, igraph_real_t s);

Generates random variates from a normal distribution with probability density

exp(-(x - m)^2 / (2 s^2)).

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

m: The mean.

s: The standard deviation.

Returns:

The generated normally distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_exp — Samples from an exponen-
tial distribution.

igraph_real_t igraph_rng_get_exp(igraph_rng_t *rng, igraph_real_t rate);

Generates random variates from an exponential distribution with probability density proportional to

205

Random numbers

exp(-rate x).

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

rate: Rate parameter.

Returns:

The generated sample.

Time complexity: depends on the RNG.

igraph_rng_get_gamma — Samples from a gamma
distribution.

igraph_real_t igraph_rng_get_gamma(igraph_rng_t *rng, igraph_real_t shape,
 igraph_real_t scale);

Generates random variates from a gamma distribution with probability density proportional to

x^(shape-1) exp(-x / scale).

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

shape: Shape parameter.

scale: Scale parameter.

Returns:

The generated sample.

Time complexity: depends on the RNG.

igraph_rng_get_binom — Samples from a binomial
distribution.

igraph_real_t igraph_rng_get_binom(igraph_rng_t *rng, igraph_integer_t n, igraph_real_t p);

Generates random variates from a binomial distribution. The number k is generated with probability

(n \choose k) p^k (1-p)^(n-k), k = 0, 1, ..., n.

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

206

Random numbers

n: Number of observations.

p: Probability of an event.

Returns:

The generated binomially distributed random number.

Time complexity: depends on the RNG.

igraph_rng_get_geom — Samples from a geometric
distribution.

igraph_real_t igraph_rng_get_geom(igraph_rng_t *rng, igraph_real_t p);

Generates random variates from a geometric distribution. The number k is generated with probability

(1 - p)^k p, k = 0, 1, 2,

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

p: The probability of success in each trial. Must be larger than zero and smaller or equal to 1.

Returns:

The generated geometrically distributed random number.

Time complexity: depends on the RNG.

igraph_rng_get_pois — Samples from a Poisson
distribution.

igraph_real_t igraph_rng_get_pois(igraph_rng_t *rng, igraph_real_t rate);

Generates random variates from a Poisson distribution. The number k is generated with probability

rate^k * exp(-rate) / k!, k = 0, 1, 2,

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph
RNG.

rate: The rate parameter of the Poisson distribution. Must not be negative.

Returns:

The generated geometrically distributed random number.

Time complexity: depends on the RNG.

207

Random numbers

Supported random number generators
By default igraph uses the MT19937 generator. Prior to igraph version 0.6, the generator supplied
by the standard C library was used. This means the GLIBC2 generator on GNU libc 2 systems, and
maybe the BSD RAND generator on others. The RAND generator was removed due to poor statistical
properties in version 0.10. The PCG32 generator was added in version 0.10.

igraph_rngtype_mt19937 — The MT19937 random
number generator.

const igraph_rng_type_t igraph_rngtype_mt19937 = {
 /* name= */ "MT19937",
 /* bits= */ 32,
 /* init= */ igraph_rng_mt19937_init,
 /* destroy= */ igraph_rng_mt19937_destroy,
 /* seed= */ igraph_rng_mt19937_seed,
 /* get= */ igraph_rng_mt19937_get,
 /* get_int= */ 0,
 /* get_real= */ 0,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0,
 /* get_gamma= */ 0,
 /* get_pois= */ 0
};

The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant of the twisted gen-
eralized feedback shift-register algorithm, and is known as the “Mersenne Twister” generator. It has
a Mersenne prime period of 2^19937 - 1 (about 10^6000) and is equi-distributed in 623 dimensions.
It has passed the diehard statistical tests. It uses 624 words of state per generator and is comparable in
speed to the other generators. The original generator used a default seed of 4357 and choosing s equal
to zero in igraph_rng_mt19937_seed() reproduces this. Later versions switched to 5489 as the
default seed, you can choose this explicitly via igraph_rng_seed() instead if you require it.

For more information see, Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-di-
mensionally equidistributed uniform pseudorandom number generator”. ACM Transactions on Mod-
eling and Computer Simulation, Vol. 8, No. 1 (Jan. 1998), Pages 3–30

The generator igraph_rngtype_mt19937 uses the second revision of the seeding procedure
published by the two authors above in 2002. The original seeding procedures could cause spurious
artifacts for some seed values.

This generator was ported from the GNU Scientific Library.

igraph_rngtype_glibc2 — The random number
generator introduced in GNU libc 2.

const igraph_rng_type_t igraph_rngtype_glibc2 = {
 /* name= */ "LIBC",
 /* bits= */ 31,
 /* init= */ igraph_rng_glibc2_init,

208

Random numbers

 /* destroy= */ igraph_rng_glibc2_destroy,
 /* seed= */ igraph_rng_glibc2_seed,
 /* get= */ igraph_rng_glibc2_get,
 /* get_int= */ 0,
 /* get_real= */ 0,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0,
 /* get_gamma= */ 0,
 /* get_pois= */ 0
};

This is a linear feedback shift register generator with a 128-byte buffer. This generator was the default
prior to igraph version 0.6, at least on systems relying on GNU libc. This generator was ported from
the GNU Scientific Library. It is a reimplementation and does not call the system glibc generator.

igraph_rngtype_pcg32 — The PCG random number
generator (32-bit version).

const igraph_rng_type_t igraph_rngtype_pcg32 = {
 /* name= */ "PCG32",
 /* bits= */ 32,
 /* init= */ igraph_rng_pcg32_init,
 /* destroy= */ igraph_rng_pcg32_destroy,
 /* seed= */ igraph_rng_pcg32_seed,
 /* get= */ igraph_rng_pcg32_get,
 /* get_int= */ 0,
 /* get_real= */ 0,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0,
 /* get_gamma= */ 0,
 /* get_pois= */ 0
};

This is an implementation of the PCG random number generator; see https://www.pcg-random.org for
more details. This implementation returns 32 random bits in a single iteration.

The generator was ported from the original source code published by the authors at https://github.com/
imneme/pcg-c.

igraph_rngtype_pcg64 — The PCG random number
generator (64-bit version).

const igraph_rng_type_t igraph_rngtype_pcg64 = {
 /* name= */ "PCG64",
 /* bits= */ 64,
 /* init= */ igraph_rng_pcg64_init,
 /* destroy= */ igraph_rng_pcg64_destroy,
 /* seed= */ igraph_rng_pcg64_seed,

209

https://www.pcg-random.org
https://github.com/imneme/pcg-c
https://github.com/imneme/pcg-c

Random numbers

 /* get= */ igraph_rng_pcg64_get,
 /* get_int= */ 0,
 /* get_real= */ 0,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0,
 /* get_gamma= */ 0,
 /* get_pois= */ 0
};

This is an implementation of the PCG random number generator; see https://www.pcg-random.org for
more details. This implementation returns 64 random bits in a single iteration. It is only available on
64-bit plaforms with compilers that provide the __uint128_t type.

PCG64 typically provides better performance than PCG32 when sampling floating point numbers or
very large integers, as it can provide twice as many random bits in a single generation round.

The generator was ported from the original source code published by the authors at https://github.com/
imneme/pcg-c.

Use cases

Normal (default) use
If the user does not use any of the RNG functions explicitly, but calls some of the randomized igraph
functions, then a default RNG is set up the first time an igraph function needs random numbers. The
seed of this RNG is the output of the time(0) function call, using the time function from the
standard C library. This ensures that igraph creates a different random graph, each time the C program
is called.

The created default generator is stored internally and can be queried with the igraph_rng_de-
fault() function.

Reproducible simulations
If reproducible results are needed, then the user should set the seed of the default random num-
ber generator explicitly, using the igraph_rng_seed() function on the default generator,
igraph_rng_default(). When setting the seed to the same number, igraph generates exactly
the same random graph (or series of random graphs).

Changing the default generator
By default igraph uses the igraph_rng_default() random number generator. This can be
changed any time by calling igraph_rng_set_default(), with an already initialized random
number generator. Note that the old (replaced) generator is not destroyed, so no memory is deallocated.

Using multiple generators
igraph also provides functions to set up multiple random number generators, using the
igraph_rng_init() function, and then generating random numbers from them, e.g. with
igraph_rng_get_integer() and/or igraph_rng_get_unif() calls.

Note that initializing a new random number generator is independent of the generator that the igraph
functions themselves use. If you want to replace that, then please use igraph_rng_set_de-
fault().

210

https://www.pcg-random.org
https://github.com/imneme/pcg-c
https://github.com/imneme/pcg-c

Random numbers

Example

Example 8.1. File examples/simple/random_seed.c

211

Chapter 9. Graph generators
Graph generators create graphs.

Almost all functions which create graph objects are documented here. The exceptions are
igraph_induced_subgraph() and alike, these create graphs based on another graph.

Deterministic graph generators

igraph_create — Creates a graph with the specified
edges.

igraph_error_t igraph_create(igraph_t *graph, const igraph_vector_int_t *edges,
 igraph_integer_t n, igraph_bool_t directed);

Arguments:

graph: An uninitialized graph object.

edges: The edges to add, the first two elements are the first edge, etc.

n: The number of vertices in the graph, if smaller or equal to the highest vertex ID in the
edges vector it will be increased automatically. So it is safe to give 0 here.

directed: Boolean, whether to create a directed graph or not. If yes, then the first edge points
from the first vertex ID in edges to the second, etc.

Returns:

Error code: IGRAPH_EINVEVECTOR: invalid edges vector (odd number of vertices).
IGRAPH_EINVVID: invalid (negative) vertex ID.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

Example 9.1. File examples/simple/igraph_create.c

igraph_small — Shorthand to create a small graph,
giving the edges as arguments.

igraph_error_t igraph_small(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 int first, ...);

This function is handy when a relatively small graph needs to be created. Instead of giving the edges
as a vector, they are given simply as arguments and a -1 needs to be given after the last meaningful
edge argument.

This function is intended to be used with vertex IDs that are entered as literal integers. If you use a
variable instead of a literal, make sure that it is of type int, as this is the type that this function assumes
for all variadic arguments. Using a different integer type is undefined behaviour and likely to cause
platform-specific issues.

212

Graph generators

Arguments:

graph: Pointer to an uninitialized graph object. The result will be stored here.

n: The number of vertices in the graph; a non-negative integer.

directed: Logical constant; gives whether the graph should be directed. Supported values are:

IGRAPH_DIRECTED The graph to be created will be directed.

IGRAPH_UNDIRECTED The graph to be created will be undirected.

...: The additional arguments giving the edges of the graph, and must be of type int. Don't
forget to supply an additional -1 after the last (meaningful) argument. The first
parameter is present for technical reasons and represents the first variadic argument.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph to create.

Example 9.2. File examples/simple/igraph_small.c

igraph_adjacency — Creates a graph from an adja-
cency matrix.

igraph_error_t igraph_adjacency(
 igraph_t *graph, const igraph_matrix_t *adjmatrix, igraph_adjacency_t mode,
 igraph_loops_t loops
);

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/
column will be vertex with id 0, the next row is for vertex 1, etc.

Arguments:

graph: Pointer to an uninitialized graph object.

adjmatrix: The adjacency matrix. How it is interpreted depends on the mode argument.

mode: Constant to specify how the given matrix is interpreted as an adjacency matrix. Pos-
sible values (A(i,j) is the element in row i and column j in the adjacency matrix ad-
jmatrix):

IGRAPH_ADJ_DIRECTED The graph will be directed and an element gives
the number of edges between two vertices.

IGRAPH_ADJ_UNDIRECTED The graph will be undirected and an element gives
the number of edges between two vertices. If the
input matrix is not symmetric, an error is thrown.

IGRAPH_ADJ_MAX An undirected graph will be created and the num-
ber of edges between vertices i and j is max(A(i,j),
A(j,i)).

213

Graph generators

IGRAPH_ADJ_MIN An undirected graph will be created with
min(A(i,j), A(j,i)) edges between vertices i and j.

IGRAPH_ADJ_PLUS An undirected graph will be created with
A(i,j)+A(j,i) edges between vertices i and j.

IGRAPH_ADJ_UPPER An undirected graph will be created. Only the up-
per right triangle (including the diagonal) is used
for the number of edges.

IGRAPH_ADJ_LOWER An undirected graph will be created. Only the
lower left triangle (including the diagonal) is used
for the number of edges.

loops: Constant to specify how the diagonal of the matrix should be treated when creating
loop edges.

IGRAPH_NO_LOOPS Ignore the diagonal of the input matrix and do not cre-
ate loops.

IGRAPH_LOOPS_ONCE Treat the diagonal entries as the number of loop edges
incident on the corresponding vertex.

IGRAPH_LOOPS_TWICE Treat the diagonal entries as twice the number of loop
edges incident on the corresponding vertex. Odd num-
bers in the diagonal will return an error code.

Returns:

Error code, IGRAPH_NONSQUARE: non-square matrix. IGRAPH_EINVAL: Negative en-
try was found in adjacency matrix, or an odd number was found in the diagonal with
IGRAPH_LOOPS_TWICE

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

Example 9.3. File examples/simple/igraph_adjacency.c

igraph_weighted_adjacency — Creates a graph
from a weighted adjacency matrix.

igraph_error_t igraph_weighted_adjacency(
 igraph_t *graph, const igraph_matrix_t *adjmatrix, igraph_adjacency_t mode,
 igraph_vector_t *weights, igraph_loops_t loops
);

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/
column will be vertex with id 0, the next row is for vertex 1, etc.

Arguments:

graph: Pointer to an uninitialized graph object.

adjmatrix: The weighted adjacency matrix. How it is interpreted depends on the mode argu-
ment. The common feature is that edges with zero weights are considered nonexis-
tent (however, negative weights are permitted).

214

Graph generators

mode: Constant to specify how the given matrix is interpreted as an adjacency matrix. Pos-
sible values (A(i,j) is the element in row i and column j in the adjacency matrix ad-
jmatrix):

IGRAPH_ADJ_DIRECTED the graph will be directed and an element gives the
weight of the edge between two vertices.

IGRAPH_ADJ_UNDIRECTED this is the same as IGRAPH_ADJ_MAX, for con-
venience.

IGRAPH_ADJ_MAX undirected graph will be created and the weight
of the edge between vertices i and j is max(A(i,j),
A(j,i)).

IGRAPH_ADJ_MIN undirected graph will be created with edge weight
min(A(i,j), A(j,i)) between vertices i and j.

IGRAPH_ADJ_PLUS undirected graph will be created with edge weight
A(i,j)+A(j,i) between vertices i and j.

IGRAPH_ADJ_UPPER undirected graph will be created, only the upper
right triangle (including the diagonal) is used for
the edge weights.

IGRAPH_ADJ_LOWER undirected graph will be created, only the lower
left triangle (including the diagonal) is used for
the edge weights.

weights: Pointer to an initialized vector, the weights will be stored here.

loops: Constant to specify how the diagonal of the matrix should be treated when creating
loop edges.

IGRAPH_NO_LOOPS Ignore the diagonal of the input matrix and do not cre-
ate loops.

IGRAPH_LOOPS_ONCE Treat the diagonal entries as the weight of the loop
edge incident on the corresponding vertex.

IGRAPH_LOOPS_TWICE Treat the diagonal entries as twice the weight of the
loop edge incident on the corresponding vertex.

Returns:

Error code, IGRAPH_NONSQUARE: non-square matrix.

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

Example 9.4. File examples/simple/igraph_weighted_adjacency.c

igraph_sparse_adjacency — Creates a graph from
a sparse adjacency matrix.

igraph_error_t igraph_sparse_adjacency(igraph_t *graph, igraph_sparsemat_t *adjmatrix,
 igraph_adjacency_t mode, igraph_loops_t loops);

215

Graph generators

This has the same functionality as igraph_adjacency(), but uses a column-compressed adja-
cency matrix. Time complexity: O(|E|), where |E| is the number of edges in the graph.

igraph_sparse_weighted_adjacency — Creates a
graph from a weighted sparse adjacency matrix.

igraph_error_t igraph_sparse_weighted_adjacency(
 igraph_t *graph, igraph_sparsemat_t *adjmatrix, igraph_adjacency_t mode,
 igraph_vector_t *weights, igraph_loops_t loops
);

This has the same functionality as igraph_weighted_adjacency(), but uses a column-com-
pressed adjacency matrix. Time complexity: O(|E|), where |E| is the number of edges in the graph.

igraph_adjlist — Creates a graph from an adjacen-
cy list.

igraph_error_t igraph_adjlist(igraph_t *graph, const igraph_adjlist_t *adjlist,
 igraph_neimode_t mode, igraph_bool_t duplicate);

An adjacency list is a list of vectors, containing the neighbors of all vertices. For operations that involve
many changes to the graph structure, it is recommended that you convert the graph into an adjacency
list via igraph_adjlist_init(), perform the modifications (these are cheap for an adjacency
list) and then recreate the igraph graph via this function.

Arguments:

graph: Pointer to an uninitialized graph object.

adjlist: The adjacency list.

mode: Whether or not to create a directed graph. IGRAPH_ALL means an undirected graph,
IGRAPH_OUT means a directed graph from an out-adjacency list (i.e. each list con-
tains the successors of the corresponding vertices), IGRAPH_IN means a directed
graph from an in-adjacency list

duplicate: Logical, for undirected graphs this specified whether each edge is included twice, in
the vectors of both adjacent vertices. If this is false (0), then it is assumed that every
edge is included only once. This argument is ignored for directed graphs.

Returns:

Error code.

See also:

igraph_adjlist_init() for the opposite operation.

Time complexity: O(|V|+|E|).

igraph_star — Creates a star graph, every vertex
connects only to the center.

216

Graph generators

igraph_error_t igraph_star(igraph_t *graph, igraph_integer_t n, igraph_star_mode_t mode,
 igraph_integer_t center);

Arguments:

graph: Pointer to an uninitialized graph object, this will be the result.

n: Integer constant, the number of vertices in the graph.

mode: Constant, gives the type of the star graph to create. Possible values:

IGRAPH_STAR_OUT directed star graph, edges point from the center to the
other vertices.

IGRAPH_STAR_IN directed star graph, edges point to the center from the
other vertices.

IGRAPH_STAR_MUTUAL directed star graph with mutual edges.

IGRAPH_STAR_UNDIRECTED an undirected star graph is created.

center: Id of the vertex which will be the center of the graph.

Returns:

Error code:

IGRAPH_EINVVID invalid number of vertices.

IGRAPH_EINVAL invalid center vertex.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|), the number of vertices in the graph.

See also:

igraph_square_lattice(), igraph_ring(), igraph_kary_tree() for creating
other regular structures.

Example 9.5. File examples/simple/igraph_star.c

igraph_wheel — Creates a wheel graph, a union of a
star and a cycle graph.

igraph_error_t igraph_wheel(igraph_t *graph, igraph_integer_t n, igraph_wheel_mode_t mode,
 igraph_integer_t center);

A wheel graph on n vertices can be thought of as a wheel with n - 1 spokes. The cycle graph part
makes up the rim, while the star graph part adds the spokes.

Note that the two and three-vertex wheel graphs are non-simple: The two-vertex wheel graph contains
a self-loop, while the three-vertex wheel graph contains parallel edges (a 1-cycle and a 2-cycle, re-
spectively).

217

Graph generators

Arguments:

graph: Pointer to an uninitialized graph object, this will be the result.

n: Integer constant, the number of vertices in the graph.

mode: Constant, gives the type of the star graph to create. Possible values:

IGRAPH_WHEEL_OUT directed wheel graph, edges point from the center
to the other vertices.

IGRAPH_WHEEL_IN directed wheel graph, edges point to the center from
the other vertices.

IGRAPH_WHEEL_MUTUAL directed wheel graph with mutual edges.

IGRAPH_WHEEL_UNDIRECTED an undirected wheel graph is created.

center: Id of the vertex which will be the center of the graph.

Returns:

Error code:

IGRAPH_EINVVID invalid number of vertices.

IGRAPH_EINVAL invalid center vertex.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|), the number of vertices in the graph.

See also:

igraph_square_lattice(), igraph_ring(), igraph_star(),
igraph_kary_tree() for creating other regular structures.

igraph_square_lattice — Arbitrary dimensional
square lattices.

igraph_error_t igraph_square_lattice(
 igraph_t *graph, const igraph_vector_int_t *dimvector, igraph_integer_t nei,
 igraph_bool_t directed, igraph_bool_t mutual, const igraph_vector_bool_t *periodic
);

Creates d-dimensional square lattices of the given size. Optionally, the lattice can be made periodic,
and the neighbors within a given graph distance can be connected.

In the zero-dimensional case, the singleton graph is returned.

The vertices of the resulting graph are ordered such that the index of the vertex at position (i_1,
i_2, i_3, ..., i_d) in a lattice of size (n_1, n_2, ..., n_d) will be i_1 + n_1
* i_2 + n_1 * n_2 * i_3 +

Arguments:

graph: An uninitialized graph object.

218

Graph generators

dimvector: Vector giving the sizes of the lattice in each of its dimensions. The dimension of the
lattice will be the same as the length of this vector.

nei: Integer value giving the distance (number of steps) within which two vertices will
be connected.

directed: Boolean, whether to create a directed graph. If the mutual and circular argu-
ments are not set to true, edges will be directed from lower-index vertices towards
higher-index ones.

mutual: Boolean, if the graph is directed this gives whether to create all connections as mu-
tual.

periodic: Boolean vector, defines whether the generated lattice is periodic along each dimen-
sion. The length of this vector must match the length of dimvector. This parame-
ter may also be NULL, which implies that the lattice will not be periodic.

Returns:

Error code: IGRAPH_EINVAL: invalid (negative) dimension vector or mismatch between the
length of the dimension vector and the periodicity vector.

Time complexity: If nei is less than two then it is O(|V|+|E|) (as far as I remember), |V| and |E| are the
number of vertices and edges in the generated graph. Otherwise it is O(|V|*d^k+|E|), d is the average
degree of the graph, k is the nei argument.

igraph_triangular_lattice — A triangular lattice
with the given shape.

igraph_error_t igraph_triangular_lattice(
 igraph_t *graph, const igraph_vector_int_t *dims, igraph_bool_t directed,
 igraph_bool_t mutual);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Creates a triangular lattice whose vertices have the form (i, j) for non-negative integers i and j and (i,
j) is generally connected with (i + 1, j), (i, j + 1), and (i - 1, j + 1). The function constructs a planar dual
of the graph constructed by igraph_hexagonal_lattice(). In particular, there a one-to-one
correspondence between the vertices in the constructed graph and the cycles of length 6 in the graph
constructed by igraph_hexagonal_lattice() with the same dims parameter.

The vertices of the resulting graph are ordered lexicographically with the 2nd coordinate being more
significant, e.g., (i, j) < (i + 1, j) and (i + 1, j) < (i, j + 1)

Arguments:

graph: An uninitialized graph object.

dims: Integer vector, defines the shape of the lattice. (Below the "edge length"s are in terms
of graph theoretical path lengths.) If dims is of length 1, the resulting lattice has a tri-
angular shape where each side of the triangle contains dims[0] vertices. If dims is
of length 2, the resulting lattice has a "quasi rectangular" shape with the sides contain-

219

Graph generators

ing dims[0] and dims[1] vertices, respectively. If dims is of length 3, the result-
ing lattice has a hexagonal shape where the sides of the hexagon contain dims[0],
dims[1] and dims[2] vertices. All coordinates must be non-negative.

directed: Boolean, whether to create a directed graph. If the mutual argument is not set to
true, edges will be directed from lower-index vertices towards higher-index ones.

mutual: Boolean, if the graph is directed this gives whether to create all connections as mutual.

Returns:

Error code: IGRAPH_EINVAL: The size of dims must be either 1, 2, or 3 with all the components
at least 1.

See also:

igraph_hexagonal_lattice() for creating a triangular lattice.

Time complexity: O(|V|), where |V| is the number of vertices in the generated graph.

igraph_hexagonal_lattice — A hexagonal lattice
with the given shape.

igraph_error_t igraph_hexagonal_lattice(
 igraph_t *graph, const igraph_vector_int_t *dims, igraph_bool_t directed,
 igraph_bool_t mutual
);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Creates a hexagonal lattice whose vertices have the form (i, j) for non-negative integers i and j and (i,
j) is generally connected with (i + 1, j), and if i is odd also with (i - 1, j + 1). The function constructs a
planar dual of the graph constructed by igraph_triangular_lattice(). In particular, there
a one-to-one correspondence between the cycles of length 6 in the constructed graph and the vertices
of the graph constructed by igraph_triangular_lattice() function with the same dims
parameter.

The vertices of the resulting graph are ordered lexicographically with the 2nd coordinate being more
significant, e.g., (i, j) < (i + 1, j) and (i + 1, j) < (i, j + 1)

Arguments:

graph: An uninitialized graph object.

dims: Integer vector, defines the shape of the lattice. (Below the "edge length"s are in terms
of graph theoretical path lengths.) If dims is of length 1, the resulting lattice has a tri-
angular shape where each side of the triangle contains dims[0] vertices. If dims is
of length 2, the resulting lattice has a "quasi rectangular" shape with the sides contain-
ing dims[0] and dims[1] vertices, respectively. If dims is of length 3, the result-
ing lattice has a hexagonal shape where the sides of the hexagon contain dims[0],
dims[1] and dims[2] vertices. All coordinates must be non-negative.

220

Graph generators

directed: Boolean, whether to create a directed graph. If the mutual argument is not set to
true, edges will be directed from lower-index vertices towards higher-index ones.

mutual: Boolean, if the graph is directed this gives whether to create all connections as mutual.

Returns:

Error code: IGRAPH_EINVAL: The size of dims must be either 1, 2, or 3 with all the components
at least 1.

See also:

igraph_triangular_lattice() for creating a triangular lattice.

Time complexity: O(|V|), where |V| is the number of vertices in the generated graph.

igraph_ring — Creates a cycle graph or a path
graph.

igraph_error_t igraph_ring(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 igraph_bool_t mutual, igraph_bool_t circular);

A circular ring on n vertices is commonly known in graph theory as the cycle graph, and often denoted
by C_n. Removing a single edge from the cycle graph C_n results in the path graph P_n. This function
can generate both.

When n is 1 or 2, the result may not be a simple graph: the one-cycle contains a self-loop and the
undirected or reciprocally connected directed two-cycle contains parallel edges.

Arguments:

graph: Pointer to an uninitialized graph object.

n: The number of vertices in the graph.

directed: Logical, whether to create a directed graph. All edges will be oriented in the same
direction along the cycle or path.

mutual: Logical, whether to create mutual edges in directed graphs. It is ignored for undirected
graphs.

circular: Logical, whether to create a closed ring (a cycle) or an open path.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|), the number of vertices in the graph.

See also:

igraph_lattice() for generating more general lattices.

Example 9.6. File examples/simple/igraph_ring.c

221

Graph generators

igraph_kary_tree — Creates a k-ary tree in which
almost all vertices have k children.

igraph_error_t igraph_kary_tree(igraph_t *graph, igraph_integer_t n, igraph_integer_t children,
 igraph_tree_mode_t type);

To obtain a completely symmetric tree with l layers, where each vertex has precisely children
descendants, use n = (children^(l+1) - 1) / (children - 1). Such trees are often
called k-ary trees, where k refers to the number of children.

Note that for n=0, the null graph is returned, which is not considered to be a tree by
igraph_is_tree().

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

children: Integer, the number of children of a vertex in the tree.

type: Constant, gives whether to create a directed tree, and if this is the case, also its orien-
tation. Possible values:

IGRAPH_TREE_OUT directed tree, the edges point from the parents to
their children.

IGRAPH_TREE_IN directed tree, the edges point from the children to
their parents.

IGRAPH_TREE_UNDIRECTED undirected tree.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices. IGRAPH_INVMODE: invalid mode
argument.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_lattice(), igraph_star() for creating other regular structures;
igraph_from_prufer() for creating arbitrary trees; igraph_tree_game() for uniform
random sampling of trees.

Example 9.7. File examples/simple/igraph_kary_tree.c

igraph_symmetric_tree — Creates a symmetric tree
with the specified number of branches at each level.

igraph_error_t igraph_symmetric_tree(igraph_t *graph, const igraph_vector_int_t *branches,
 igraph_tree_mode_t type);

222

Graph generators

This function creates a tree in which all vertices at distance d from the root have branch-
ing_counts[d] children.

Arguments:

graph: Pointer to an uninitialized graph object.

branches: Vector detailing the number of branches at each level.

type: Constant, gives whether to create a directed tree, and if this is the case, also its orien-
tation. Possible values:

IGRAPH_TREE_OUT directed tree, the edges point from the parents to
their children.

IGRAPH_TREE_IN directed tree, the edges point from the children to
their parents.

IGRAPH_TREE_UNDIRECTED undirected tree.

Returns:

Error code: IGRAPH_INVMODE: invalid mode argument. IGRAPH_EINVAL: invalid number of
children.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_kary_tree(), igraph_regular_tree() and igraph_star() for creat-
ing other regular tree structures; igraph_from_prufer() for creating arbitrary trees;
igraph_tree_game() for uniform random sampling of trees.

Example 9.8. File examples/simple/igraph_symmetric_tree.c

igraph_regular_tree — Creates a regular tree.

igraph_error_t igraph_regular_tree(igraph_t *graph, igraph_integer_t h, igraph_integer_t k, igraph_tree_mode_t type);

All vertices of a regular tree, except its leaves, have the same total degree k. This is different from
a k-ary tree (igraph_kary_tree()), where all vertices have the same number of children, thus
the degre of the root is one less than the degree of the other internal vertices. Regular trees are also
referred to as Bethe lattices.

Arguments:

graph: Pointer to an uninitialized graph object.

h: The height of the tree, i.e. the distance between the root and the leaves.

k: The degree of the regular tree.

type: Constant, gives whether to create a directed tree, and if this is the case, also its orientation.
Possible values:

IGRAPH_TREE_OUT directed tree, the edges point from the parents to their
children.

223

Graph generators

IGRAPH_TREE_IN directed tree, the edges point from the children to their
parents.

IGRAPH_TREE_UNDIRECTED undirected tree.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_kary_tree() to create k-ary tree where each vertex has the same number of children,
i.e. out-degree, instead of the same total degree. igraph_symmetric_tree() to use a different
number of children at each level.

Example 9.9. File examples/simple/igraph_regular_tree.c

igraph_full — Creates a full graph (directed or undi-
rected, with or without loops).

igraph_error_t igraph_full(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 igraph_bool_t loops);

In a full graph every possible edge is present, every vertex is connected to every other vertex. A full
graph in igraph should be distinguished from the concept of complete graphs as used in graph theory.
If n is a positive integer, then the complete graph K_n on n vertices is the undirected simple graph
with the following property. For any distinct pair (u,v) of vertices in K_n, uv (or equivalently vu) is
an edge of K_n. In igraph, a full graph on n vertices can be K_n, a directed version of K_n, or K_n
with at least one loop edge. In any case, if F is a full graph on n vertices as generated by igraph,
then K_n is a subgraph of the undirected version of F.

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

directed: Logical, whether to create a directed graph.

loops: Logical, whether to include self-edges (loops).

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph. Of
course this is the same as O(|E|)=O(|V||V|) here.

See also:

igraph_square_lattice(), igraph_star(), igraph_kary_tree() for creating
other regular structures.

224

Graph generators

Example 9.10. File examples/simple/igraph_full.c

igraph_full_citation — Creates a full citation
graph.

igraph_error_t igraph_full_citation(igraph_t *graph, igraph_integer_t n,
 igraph_bool_t directed);

This is a directed graph, where every i->j edge is present if and only if j<i. If the directed
argument is zero then an undirected graph is created, and it is just a full graph.

Arguments:

graph: Pointer to an uninitialized graph object, the result is stored here.

n: The number of vertices.

directed: Whether to created a directed graph. If zero an undirected graph is created.

Returns:

Error code.

Time complexity: O(|V|^2), as we have many edges.

igraph_full_multipartite — Create a full multi-
partite graph.

igraph_error_t igraph_full_multipartite(igraph_t *graph,
 igraph_vector_int_t *types,
 const igraph_vector_int_t *n,
 igraph_bool_t directed,
 igraph_neimode_t mode);

A multipartite graph contains two or more types of vertices and connections are only possible between
two vertices of different types. This function creates a complete multipartite graph.

Arguments:

graph: Pointer to an igraph_t object, the graph will be created here.

types: Pointer to an integer vector. If not a null pointer, the type of each vertex will be stored
here.

n: Pointer to an integer vector, the number of vertices of each type.

directed: Boolean, whether to create a directed graph.

mode: A constant that gives the type of connections for directed graphs. If IGRAPH_OUT,
then edges point from vertices of low-index vertices to high-index vertices; if
IGRAPH_IN, then the opposite direction is realized; if IGRAPH_ALL, then mutual
edges will be created.

225

Graph generators

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_full_bipartite() for full bipartite graphs.

igraph_turan — Create a Turán graph.

igraph_error_t igraph_turan(igraph_t *graph,
 igraph_vector_int_t *types,
 igraph_integer_t n,
 igraph_integer_t r);

Turán graphs are complete multipartite graphs with the property that the sizes of the partitions are as
close to equal as possible.

The Turán graph with n vertices and r partitions is the densest graph on n vertices that does not
contain a clique of size r+1.

This function generates undirected graphs. The null graph is returned when the number of vertices is
zero. A complete graph is returned if the number of partitions is greater than the number of vertices.

Arguments:

graph: Pointer to an igraph_t object, the graph will be created here.

types: Pointer to an integer vector. If not a null pointer, the type (partition index) of each vertex
will be stored here.

n: Integer, the number of vertices in the graph.

r: Integer, the number of partitions of the graph, must be positive.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_full_multipartite() for full multipartite graphs.

igraph_realize_degree_sequence — Generates a
graph with the given degree sequence.

igraph_error_t igraph_realize_degree_sequence(
 igraph_t *graph,
 const igraph_vector_int_t *outdeg, const igraph_vector_int_t *indeg,

226

Graph generators

 igraph_edge_type_sw_t allowed_edge_types,
 igraph_realize_degseq_t method);

This function generates an undirected graph that realizes a given degree sequence, or a directed graph
that realized a given pair of out- and in-degree sequences.

Simple undirected graphs are constructed using the Havel-Hakimi algorithm (undirected case), or the
analogous Kleitman-Wang algorithm (directed case). These algorithms work by choosing an arbitrary
vertex and connecting all its stubs to other vertices of highest degree. In the directed case, the "high-
est" (in, out) degree pairs are determined based on lexicographic ordering. This step is repeated until
all degrees have been connected up.

Loopless multigraphs are generated using an analogous algorithm: an arbitrary vertex is chosen, and
it is connected with a single connection to a highest remaining degee vertex. If self-loops are also
allowed, the same algorithm is used, but if a non-zero vertex remains at the end of the procedure, the
graph is completed by adding self-loops to it. Thus, the result will contain at most one vertex with
self-loops.

The method parameter controls the order in which the vertices to be connected are chosen.

References:

V. Havel, Poznámka o existenci kone#ných graf# (A remark on the existence of finite graphs), #asopis
pro p#stování matematiky 80, 477-480 (1955). http://eudml.org/doc/19050

S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph,
Journal of the SIAM 10, 3 (1962). https://www.jstor.org/stable/2098770

D. J. Kleitman and D. L. Wang, Algorithms for Constructing Graphs and Digraphs with Giv-
en Valences and Factors, Discrete Mathematics 6, 1 (1973). https://doi.org/10.1016/0012-365X
%2873%2990037-X

Sz. Horvát and C. D. Modes, Connectedness matters: construction and exact random sampling of
connected networks (2021). https://doi.org/10.1088/2632-072X/abced5

Arguments:

graph: Pointer to an uninitialized graph object.

outdeg: The degree sequence of an undirected graph (if indeg is NULL), or
the out-degree sequence of a directed graph (if indeg is given).

indeg: The in-degree sequence of a directed graph. Pass NULL to generate an
undirected graph.

allowed_edge_types: The types of edges to allow in the graph. For directed graphs, only
IGRAPH_SIMPLE_SW is implemented at this moment. For undirect-
ed graphs, the following values are valid:

IGRAPH_SIMPLE_SW simple graphs (i.e. no self-loops
or multi-edges allowed).

IGRAPH_LOOPS_SW single self-loops are allowed,
but not multi-edges; currently
not implemented.

IGRAPH_MULTI_SW multi-edges are allowed, but
not self-loops.

IGRAPH_LOOPS_SW |
IGRAPH_MULTI_SW

both self-loops and multi-edges
are allowed.

227

http://eudml.org/doc/19050
https://www.jstor.org/stable/2098770
https://doi.org/10.1016/0012-365X%2873%2990037-X
https://doi.org/10.1016/0012-365X%2873%2990037-X
https://doi.org/10.1088/2632-072X/abced5

Graph generators

method: The method to generate the graph. Possible values:

IGRAPH_REALIZE_DEGSEQ_S-
MALLEST

The vertex with smallest re-
maining degree is selected
first. The result is usually a
graph with high negative de-
gree assortativity. In the undi-
rected case, this method is
guaranteed to generate a con-
nected graph, regardless of
whether multi-edges are al-
lowed, provided that a con-
nected realization exists (see
Horvát and Modes, 2021, as
well as http://szhorvat.net/peli-
can/hh-
connected-graphs.html). In the
directed case it tends to gen-
erate weakly connected graphs,
but this is not guaranteed.

IGRAPH_REALIZE_DEGSE-
Q_LARGEST

The vertex with the largest re-
maining degree is selected first.
The result is usually a graph
with high positive degree assor-
tativity, and is often disconnect-
ed.

IGRAPH_REALIZE_DEGSE-
Q_INDEX

The vertices are selected in or-
der of their index (i.e. their
position in the degree vector).
Note that sorting the degree
vector and using the INDEX
method is not equivalent to the
SMALLEST method above, as
SMALLEST uses the smallest
remaining degree for selecting
vertices, not the smallest initial
degree.

Returns:

Error code:

IGRAPH_UNIMPLEMENTED The requested method is not implemented.

IGRAPH_ENOMEM There is not enough memory to perform the operation.

IGRAPH_EINVAL Invalid method parameter, or invalid in- and/or out-degree vectors.
The degree vectors should be non-negative, the length and sum of
outdeg and indeg should match for directed graphs.

See also:

igraph_is_graphical() to test graphicality without generating a graph; igraph_de-
gree_sequence_game() to generate random graphs with a given degree sequence;
igraph_k_regular_game() to generate random regular graphs; igraph_rewire() to
randomly rewire the edges of a graph while preserving its degree sequence.

228

http://szhorvat.net/pelican/hh-connected-graphs.html
http://szhorvat.net/pelican/hh-connected-graphs.html
http://szhorvat.net/pelican/hh-connected-graphs.html

Graph generators

Example 9.11. File examples/simple/
igraph_realize_degree_sequence.c

igraph_realize_bipartite_degree_sequence —
Generates a bipartite graph with the given bidegree
sequence.

igraph_error_t igraph_realize_bipartite_degree_sequence(
 igraph_t *graph,
 const igraph_vector_int_t *degrees1, const igraph_vector_int_t *degrees2,
 const igraph_edge_type_sw_t allowed_edge_types, const igraph_realize_degseq_t method
);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This function generates a bipartite graph with the given bidegree sequence, using a Havel-Hakimi-like
construction algorithm. The order in which vertices are connected up is controlled by the method
parameter. When using the IGRAPH_REALIZE_DEGSEQ_SMALLEST method, it is ensured that the
graph will be connected if and only if the given bidegree sequence is potentially connected.

The vertices of the graph will be ordered so that those having degrees1 come first, followed by
degrees2.

Arguments:

graph: Pointer to an uninitialized graph object.

degrees1: The degree sequence of the first partition.

degrees2: The degree sequence of the second partition.

allowed_edge_types: The types of edges to allow in the graph.

IGRAPH_SIMPLE_SW simple graph (i.e. no multi-edges allowed).

IGRAPH_MULTI_SW multi-edges are allowed

method: Controls the order in which vertices are selected for connection. Pos-
sible values:

IGRAPH_REALIZE_DEGSEQ_S-
MALLEST

The vertex with smallest re-
maining degree is selected first,
from either partition. The re-
sult is usually a graph with
high negative degree assortativ-
ity. This method is guaranteed
to generate a connected graph,
if one exists.

IGRAPH_REALIZE_DEGSE-
Q_LARGEST

The vertex with the largest re-
maining degree is selected first,

229

Graph generators

from either parition. The re-
sult is usually a graph with
high positive degree assortativ-
ity, and is often disconnected.

IGRAPH_REALIZE_DEGSE-
Q_INDEX

The vertices are selected in or-
der of their index.

Returns:

Error code.

See also:

igraph_is_bigraphical() to test bigraphicality without generating a graph.

igraph_famous — Create a famous graph by simply
providing its name.

igraph_error_t igraph_famous(igraph_t *graph, const char *name);

The name of the graph can be simply supplied as a string. Note that this function creates graphs
which don't take any parameters, there are separate functions for graphs with parameters, e.g.
igraph_full() for creating a full graph.

The following graphs are supported:

Bull The bull graph, 5 vertices, 5 edges, resembles the head of a bull
if drawn properly.

Chvatal This is the smallest triangle-free graph that is both 4-chromatic
and 4-regular. According to the Grunbaum conjecture there ex-
ists an m-regular, m-chromatic graph with n vertices for every
m>1 and n>2. The Chvatal graph is an example for m=4 and
n=12. It has 24 edges.

Coxeter A non-Hamiltonian cubic symmetric graph with 28 vertices and
42 edges.

Cubical The Platonic graph of the cube. A convex regular polyhedron
with 8 vertices and 12 edges.

Diamond A graph with 4 vertices and 5 edges, resembles a schematic
diamond if drawn properly.

Dodecahedral, Dodecahe-
dron

Another Platonic solid with 20 vertices and 30 edges.

Folkman The semisymmetric graph with minimum number of vertices,
20 and 40 edges. A semisymmetric graph is regular, edge tran-
sitive and not vertex transitive.

Franklin This is a graph whose embedding to the Klein bottle can be
colored with six colors, it is a counterexample to the necessity

230

Graph generators

of the Heawood conjecture on a Klein bottle. It has 12 vertices
and 18 edges.

Frucht The Frucht Graph is the smallest cubical graph whose automor-
phism group consists only of the identity element. It has 12 ver-
tices and 18 edges.

Grotzsch The Grötzsch graph is a triangle-free graph with 11 vertices, 20
edges, and chromatic number 4. It is named after German math-
ematician Herbert Grötzsch, and its existence demonstrates that
the assumption of planarity is necessary in Grötzsch's theorem
that every triangle-free planar graph is 3-colorable.

Heawood The Heawood graph is an undirected graph with 14 vertices and
21 edges. The graph is cubic, and all cycles in the graph have
six or more edges. Every smaller cubic graph has shorter cycles,
so this graph is the 6-cage, the smallest cubic graph of girth 6.

Herschel The Herschel graph is the smallest nonhamiltonian polyhedral
graph. It is the unique such graph on 11 nodes, and has 18 edges.

House The house graph is a 5-vertex, 6-edge graph, the schematic
draw of a house if drawn properly, basically a triangle on top
of a square.

HouseX The same as the house graph with an X in the square. 5 vertices
and 8 edges.

Icosahedral, Icosahedron A Platonic solid with 12 vertices and 30 edges.

Krackhardt_Kite A social network with 10 vertices and 18 edges. Krackhardt,
D. Assessing the Political Landscape: Structure, Cognition, and
Power in Organizations. Admin. Sci. Quart. 35, 342-369, 1990.

Levi The graph is a 4-arc transitive cubic graph, it has 30 vertices
and 45 edges.

McGee The McGee graph is the unique 3-regular 7-cage graph, it has
24 vertices and 36 edges.

Meredith The Meredith graph is a quartic graph on 70 nodes and 140
edges that is a counterexample to the conjecture that every 4-
regular 4-connected graph is Hamiltonian.

Noperfectmatching A connected graph with 16 vertices and 27 edges containing
no perfect matching. A matching in a graph is a set of pairwise
non-incident edges; that is, no two edges share a common ver-
tex. A perfect matching is a matching which covers all vertices
of the graph.

Nonline A graph whose connected components are the 9 graphs whose
presence as a vertex-induced subgraph in a graph makes a non-
line graph. It has 50 vertices and 72 edges.

Octahedral, Octahedron Platonic solid with 6 vertices and 12 edges.

Petersen A 3-regular graph with 10 vertices and 15 edges. It is the small-
est hypohamiltonian graph, i.e. it is non-hamiltonian but re-
moving any single vertex from it makes it Hamiltonian.

Robertson The unique (4,5)-cage graph, i.e. a 4-regular graph of girth 5.
It has 19 vertices and 38 edges.

231

Graph generators

Smallestcyclicgroup A smallest nontrivial graph whose automorphism group is
cyclic. It has 9 vertices and 15 edges.

Tetrahedral, Tetrahedron Platonic solid with 4 vertices and 6 edges.

Thomassen The smallest hypotraceable graph, on 34 vertices and 52 edges.
A hypotracable graph does not contain a Hamiltonian path but
after removing any single vertex from it the remainder always
contains a Hamiltonian path. A graph containing a Hamiltonian
path is called traceable.

Tutte Tait's Hamiltonian graph conjecture states that every 3-con-
nected 3-regular planar graph is Hamiltonian. This graph is a
counterexample. It has 46 vertices and 69 edges.

Uniquely3colorable Returns a 12-vertex, triangle-free graph with chromatic number
3 that is uniquely 3-colorable.

Walther An identity graph with 25 vertices and 31 edges. An identity
graph has a single graph automorphism, the trivial one.

Zachary Social network of friendships between 34 members of a karate
club at a US university in the 1970s. See W. W. Zachary, An
information flow model for conflict and fission in small groups,
Journal of Anthropological Research 33, 452-473 (1977).

Arguments:

graph: Pointer to an uninitialized graph object.

name: Character constant, the name of the graph to be created, it is case insensitive.

Returns:

Error code, IGRAPH_EINVAL if there is no graph with the given name.

See also:

Other functions for creating graph structures: igraph_ring(), igraph_kary_tree(),
igraph_square_lattice(), igraph_full().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

igraph_lcf — Creates a graph from LCF notation.

igraph_error_t igraph_lcf(igraph_t *graph, igraph_integer_t n, ...);

LCF is short for Lederberg-Coxeter-Frucht, it is a concise notation for 3-regular Hamiltonian graphs.
It consists of three parameters: the number of vertices in the graph, a list of shifts giving additional
edges to a cycle backbone, and another integer giving how many times the shifts should be performed.
See http://mathworld.wolfram.com/LCFNotation.html for details.

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

232

http://mathworld.wolfram.com/LCFNotation.html

Graph generators

...: The shifts and the number of repeats for the shifts, plus an additional 0 to mark the end
of the arguments.

Returns:

Error code.

See also:

See igraph_lcf_vector() for a similar function using a vector_t instead of the variable length
argument list.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.12. File examples/simple/igraph_lcf.c

igraph_lcf_vector — Creates a graph from LCF no-
tation.

igraph_error_t igraph_lcf_vector(igraph_t *graph, igraph_integer_t n,
 const igraph_vector_int_t *shifts,
 igraph_integer_t repeats);

This function is essentially the same as igraph_lcf(), only the way for giving the arguments is
different. See igraph_lcf() for details.

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer constant giving the number of vertices.

shifts: A vector giving the shifts.

repeats: An integer constant giving the number of repeats for the shifts.

Returns:

Error code.

See also:

igraph_lcf(), igraph_extended_chordal_ring()

Time complexity: O(|V|+|E|), linear in the number of vertices plus the number of edges.

igraph_from_prufer — Generates a tree from a
Prüfer sequence.

igraph_error_t igraph_from_prufer(igraph_t *graph, const igraph_vector_int_t *prufer);

233

Graph generators

A Prüfer sequence is a unique sequence of integers associated with a labelled tree. A tree on n vertices
can be represented by a sequence of n-2 integers, each between 0 and n-1 (inclusive). The algorithm
used by this function is based on Paulius Micikevi#ius, Saverio Caminiti, Narsingh Deo: Linear-time
Algorithms for Encoding Trees as Sequences of Node Labels

Arguments:

graph: Pointer to an uninitialized graph object.

prufer: The Prüfer sequence

Returns:

Error code:

IGRAPH_ENOMEM there is not enough memory to perform the operation.

IGRAPH_EINVAL invalid Prüfer sequence given

See also:

igraph_to_prufer(), igraph_kary_tree(), igraph_tree_game()

Time complexity: O(|V|), where |V| is the number of vertices in the tree.

igraph_atlas — Create a small graph from the
“Graph Atlas”.

igraph_error_t igraph_atlas(igraph_t *graph, igraph_integer_t number);

The number of the graph is given as a parameter. The graphs are listed:

1. in increasing order of number of nodes;

2. for a fixed number of nodes, in increasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example
111223 < 112222;

4. for fixed degree sequence, in increasing number of automorphisms.

The data was converted from the NetworkX software package, see http://networkx.github.io .

See An Atlas of Graphs by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.

Arguments:

graph: Pointer to an uninitialized graph object.

number: The number of the graph to generate.

Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.13. File examples/simple/igraph_atlas.c

234

http://networkx.github.io

Graph generators

igraph_de_bruijn — Generate a de Bruijn graph.

igraph_error_t igraph_de_bruijn(igraph_t *graph, igraph_integer_t m, igraph_integer_t n);

A de Bruijn graph represents relationships between strings. An alphabet of m letters are used and
strings of length n are considered. A vertex corresponds to every possible string and there is a directed
edge from vertex v to vertex w if the string of v can be transformed into the string of w by removing
its first letter and appending a letter to it.

Please note that the graph will have m to the power n vertices and even more edges, so probably you
don't want to supply too big numbers for m and n.

De Bruijn graphs have some interesting properties, please see another source, e.g. Wikipedia for de-
tails.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

m: Integer, the number of letters in the alphabet.

n: Integer, the length of the strings.

Returns:

Error code.

See also:

igraph_kautz().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_kautz — Generate a Kautz graph.

igraph_error_t igraph_kautz(igraph_t *graph, igraph_integer_t m, igraph_integer_t n);

A Kautz graph is a labeled graph, vertices are labeled by strings of length n+1 above an alphabet with
m+1 letters, with the restriction that every two consecutive letters in the string must be different. There
is a directed edge from a vertex v to another vertex w if it is possible to transform the string of v into
the string of w by removing the first letter and appending a letter to it. For string length 1 the new letter
cannot equal the old letter, so there are no loops.

Kautz graphs have some interesting properties, see e.g. Wikipedia for details.

Vincent Matossian wrote the first version of this function in R, thanks.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

m: Integer, m+1 is the number of letters in the alphabet.

n: Integer, n+1 is the length of the strings.

235

Graph generators

Returns:

Error code.

See also:

igraph_de_bruijn().

Time complexity: O(|V|* [(m+1)/m]^n +|E|), in practice it is more like O(|V|+|E|). |V| is the number
of vertices, |E| is the number of edges and m and n are the corresponding arguments.

igraph_circulant — Creates a circulant graph.

igraph_error_t igraph_circulant(igraph_t *graph, igraph_integer_t n, const igraph_vector_int_t *shifts, igraph_bool_t directed);

A circulant graph G(n, shifts) consists of n vertices v_0, ..., v_(n-1) such that for each s_i
in the list of offsets shifts, v_j is connected to v_((j + s_i) mod n) for all j.

The function can generate either directed or undirected graphs. It does not generate multi-edges or
self-loops.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

n: Integer, the number of vertices in the circulant graph.

shifts: Integer vector, a list of the offsets within the circulant graph.

directed: Boolean, whether to create a directed graph.

Returns:

Error code.

See also:

igraph_ring(), igraph_generalized_petersen(), igraph_extend-
ed_chordal_ring()

Time complexity: O(|V||shifts|), the number of vertices in the graph times the number of shifts.

igraph_generalized_petersen — Creates a Gener-
alized Petersen graph.

igraph_error_t igraph_generalized_petersen(igraph_t *graph, igraph_integer_t n, igraph_integer_t k);

The generalized Petersen graph G(n, k) consists of n vertices v_0, ..., v_n forming an "outer"
cycle graph, and n additional vertices u_0, ..., u_n forming an "inner" circulant graph where u_i is
connected to u_(i + k mod n). Additionally, all v_i are connected to u_i.

G(n, k) has 2n vertices and 3n edges. The Petersen graph itself is G(5, 2).

Reference:

236

Graph generators

M. E. Watkins, A Theorem on Tait Colorings with an Application to the Gener-
alized Petersen Graphs, Journal of Combinatorial Theory 6, 152-164 (1969). https://
doi.org/10.1016%2FS0021-9800%2869%2980116-X

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

n: Integer, n is the number of vertices in the inner and outer cycle/circulant graphs. It must
be at least 3.

k: Integer, k is the shift of the circulant graph. It must be positive and less than n/2.

Returns:

Error code.

See also:

igraph_famous() for the original Petersen graph.

Time complexity: O(|V|), the number of vertices in the graph.

igraph_extended_chordal_ring — Create an ex-
tended chordal ring.

igraph_error_t igraph_extended_chordal_ring(
 igraph_t *graph, igraph_integer_t nodes, const igraph_matrix_int_t *W,
 igraph_bool_t directed);

An extended chordal ring is a cycle graph with additional chords connecting its vertices. Each row L
of the matrix W specifies a set of chords to be inserted, in the following way: vertex i will connect
to a vertex L[(i mod p)] steps ahead of it along the cycle, where p is the length of L. In other
words, vertex i will be connected to vertex (i + L[(i mod p)]) mod nodes. If multiple
edges are defined in this way, this will output a non-simple graph. The result can be simplified using
igraph_simplify().

See also Kotsis, G: Interconnection Topologies for Parallel Processing Systems, PARS Mitteilungen
11, 1-6, 1993. The igraph extended chordal rings are not identical to the ones in the paper. In igraph the
matrix specifies which edges to add. In the paper, a condition is specified which should simultaneously
hold between two endpoints and the reverse endpoints.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

nodes: Integer constant, the number of vertices in the graph. It must be at least 3.

W: The matrix specifying the extra edges. The number of columns should divide the num-
ber of total vertices. The elements are allowed to be negative.

directed: Whether the graph should be directed.

Returns:

Error code.

237

https://doi.org/10.1016%2FS0021-9800%2869%2980116-X
https://doi.org/10.1016%2FS0021-9800%2869%2980116-X

Graph generators

See also:

igraph_ring(), igraph_lcf(), igraph_lcf_vector().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Games: Randomized graph generators
Games are randomized graph generators. Randomization means that they generate a different graph
every time you call them.

igraph_grg_game — Generates a geometric random
graph.

igraph_error_t igraph_grg_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_real_t radius, igraph_bool_t torus,
 igraph_vector_t *x, igraph_vector_t *y);

A geometric random graph is created by dropping points (i.e. vertices) randomly on the unit square
and then connecting all those pairs which are strictly less than radius apart in Euclidean distance.

Original code contributed by Keith Briggs, thanks Keith.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

radius: The radius within which the vertices will be connected.

torus: Logical constant. If true, periodic boundary conditions will be used, i.e. the vertices are
assumed to be on a torus instead of a square.

x: An initialized vector or NULL. If not NULL, the points' x coordinates will be returned here.

y: An initialized vector or NULL. If not NULL, the points' y coordinates will be returned here.

Returns:

Error code.

Time complexity: TODO, less than O(|V|^2+|E|).

Example 9.14. File examples/simple/igraph_grg_game.c

igraph_barabasi_game — Generates a graph based
on the Barabási-Albert model.

igraph_error_t igraph_barabasi_game(igraph_t *graph, igraph_integer_t n,
 igraph_real_t power,

238

Graph generators

 igraph_integer_t m,
 const igraph_vector_int_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t A,
 igraph_bool_t directed,
 igraph_barabasi_algorithm_t algo,
 const igraph_t *start_from);

This function implements several variants of the preferential attachment process, including linear and
non-linear varieties of the Barabási-Albert and Price models. The graph construction starts with a
single vertex, or an existing graph given by the start_from parameter. Then new vertices are
added one at a time. Each new vertex connects to m existing vertices, choosing them with probabilities
proportional to

d^power + A,

where d is the in- or total degree of the existing vertex (controlled by the outpref argument), while
power and A are given by parameters. The constant attractiveness A is used to ensure that vertices
with zero in-degree can also be connected to with non-zero probability.

Barabási, A.-L. and Albert R. 1999. Emergence of scaling in random networks, Science, 286 509--512.
https://doi.org/10.1126/science.286.5439.509

de Solla Price, D. J. 1965. Networks of Scientific Papers, Science, 149 510--515. https://
doi.org/10.1126/science.149.3683.510

Arguments:

graph: An uninitialized graph object.

n: The number of vertices in the graph.

power: Power of the preferential attachment. In the classic preferential attachment model
power=1. Other values allow for sampling from a non-linear preferential attach-
ment model. Negative values are only allowed when no zero-degree vertices are
present during the construction process, i.e. when the starting graph has no isolated
vertices and outpref is set to true.

m: The number of outgoing edges generated for each vertex. Only used when outseq
is NULL.

outseq: Gives the (out-)degrees of the vertices. If this is constant, this can be a NULL pointer
or an empty vector. In this case m contains the constant out-degree. The very first
vertex has by definition no outgoing edges, so the first number in this vector is
ignored.

outpref: Boolean, if true not only the in- but also the out-degree of a vertex increases its
citation probability. I.e., the citation probability is determined by the total degree
of the vertices. Ignored and assumed to be true if the graph being generated is
undirected.

A: The constant attractiveness of vertices. When outpref is set to false, it should
be positive to ensure that zero in-degree vertices can be connected to as well.

directed: Boolean, whether to generate a directed graph. When set to false, outpref is
assumed to be true.

algo: The algorithm to use to generate the network. Possible values:

IGRAPH_BARABASI_BAG This is the algorithm that was previously
(before version 0.6) solely implemented in

239

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.149.3683.510
https://doi.org/10.1126/science.149.3683.510

Graph generators

igraph. It works by putting the IDs of the
vertices into a bag (multiset, really), exact-
ly as many times as their (in-)degree, plus
once more. Then the required number of cit-
ed vertices are drawn from the bag, with
replacement. This method might generate
multiple edges. It only works if power=1
and A=1.

IGRAPH_BARABASI_PSUMTREE This algorithm uses a partial prefix-sum tree
to generate the graph. It does not generate
multiple edges and works for any power and
A values.

IGRAPH_BARABASI_PSUMTREE_MULTI-
PLE

This algorithm also uses a partial pre-
fix-sum tree to generate the graph. The
difference is, that now multiple edges
are allowed. This method was imple-
mented under the name igraph_non-
linear_barabasi_game before ver-
sion 0.6.

start_from: Either a NULL pointer, or a graph. In the former case, the starting configuration
is a clique of size m. In the latter case, the graph is a starting configuration. The
graph must be non-empty, i.e. it must have at least one vertex. If a graph is supplied
here and the outseq argument is also given, then outseq should only contain
information on the vertices that are not in the start_from graph.

Returns:

Error code: IGRAPH_EINVAL: invalid n, m, A or outseq parameter.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.15. File examples/simple/igraph_barabasi_game.c

Example 9.16. File examples/simple/igraph_barabasi_game2.c

igraph_erdos_renyi_game_gnm — Generates a
random (Erd#s-Rényi) graph with a fixed number of
edges.

igraph_error_t igraph_erdos_renyi_game_gnm(
 igraph_t *graph, igraph_integer_t n, igraph_integer_t m,
 igraph_bool_t directed, igraph_bool_t loops
);

In this model, a graph with n vertices and m edges is generated such that the edges are selected uni-
formly at random.

Arguments:

graph: Pointer to an uninitialized graph object.

240

Graph generators

n: The number of vertices in the graph.

m: The number of edges in the graph.

directed: Logical, whether to generate a directed graph.

loops: Logical, whether to generate self-loops.

Returns:

Error code: IGRAPH_EINVAL: invalid n or m parameter. IGRAPH_ENOMEM: there is not enough
memory for the operation.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_barabasi_game(), igraph_growing_random_game(), igraph_er-
dos_renyi_game_gnp()

Example 9.17. File examples/simple/
igraph_erdos_renyi_game_gnm.c

igraph_erdos_renyi_game_gnp — Generates a ran-
dom (Erd#s-Rényi) graph with fixed edge probabilities.

igraph_error_t igraph_erdos_renyi_game_gnp(
 igraph_t *graph, igraph_integer_t n, igraph_real_t p,
 igraph_bool_t directed, igraph_bool_t loops
);

In this model, a graph with n vertices is generated such that every possible edge is included in the
graph with probability p.

Arguments:

graph: Pointer to an uninitialized graph object.

n: The number of vertices in the graph.

p: The probability of the existence of an edge in the graph.

directed: Logical, whether to generate a directed graph.

loops: Logical, whether to generate self-loops.

Returns:

Error code: IGRAPH_EINVAL: invalid n or p parameter. IGRAPH_ENOMEM: there is not enough
memory for the operation.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_barabasi_game(), igraph_growing_random_game(), igraph_er-
dos_renyi_game_gnm()

241

Graph generators

Example 9.18. File examples/simple/
igraph_erdos_renyi_game_gnp.c

igraph_watts_strogatz_game — The Watts-Stro-
gatz small-world model.

igraph_error_t igraph_watts_strogatz_game(igraph_t *graph, igraph_integer_t dim,
 igraph_integer_t size, igraph_integer_t nei,
 igraph_real_t p, igraph_bool_t loops,
 igraph_bool_t multiple);

This function generates networks with the small-world property based on a variant of the Watts-Stro-
gatz model. The network is obtained by first creating a periodic undirected lattice, then rewiring both
endpoints of each edge with probability p, while avoiding the creation of multi-edges.

This process differs from the original model of Watts and Strogatz (see reference) in that it rewires
both endpoints of edges. Thus in the limit of p=1, we obtain a G(n,m) random graph with the same
number of vertices and edges as the original lattice. In comparison, the original Watts-Strogatz model
only rewires a single endpoint of each edge, thus the network does not become fully random even for
p=1. For appropriate choices of p, both models exhibit the property of simultaneously having short
path lengths and high clustering.

Reference:

Duncan J Watts and Steven H Strogatz: Collective dynamics of “small world” networks, Nature 393,
440-442, 1998.

Arguments:

graph: The graph to initialize.

dim: The dimension of the lattice.

size: The size of the lattice along each dimension.

nei: The size of the neighborhood for each vertex. This is the same as the nei argument
of igraph_connect_neighborhood().

p: The rewiring probability. A real number between zero and one (inclusive).

loops: Logical, whether to generate loop edges.

multiple: Logical, whether to allow multiple edges in the generated graph.

Returns:

Error code.

See also:

igraph_square_lattice(), igraph_connect_neighborhood() and
igraph_rewire_edges() can be used if more flexibility is needed, e.g. a different type of
lattice.

Time complexity: O(|V|*d^o+|E|), |V| and |E| are the number of vertices and edges, d is the average
degree, o is the nei argument.

242

Graph generators

igraph_rewire_edges — Rewires the edges of a
graph with constant probability.

igraph_error_t igraph_rewire_edges(igraph_t *graph, igraph_real_t prob,
 igraph_bool_t loops, igraph_bool_t multiple);

This function rewires the edges of a graph with a constant probability. More precisely each end point
of each edge is rewired to a uniformly randomly chosen vertex with constant probability prob.

Note that this function modifies the input graph, call igraph_copy() if you want to keep it.

Arguments:

graph: The input graph, this will be rewired, it can be directed or undirected.

prob: The rewiring probability a constant between zero and one (inclusive).

loops: Boolean, whether loop edges are allowed in the new graph, or not.

multiple: Boolean, whether multiple edges are allowed in the new graph.

Returns:

Error code.

See also:

igraph_watts_strogatz_game() uses this function for the rewiring.

Time complexity: O(|V|+|E|).

igraph_rewire_directed_edges — Rewires the
chosen endpoint of directed edges.

igraph_error_t igraph_rewire_directed_edges(igraph_t *graph, igraph_real_t prob,
 igraph_bool_t loops, igraph_neimode_t mode);

This function rewires either the start or end of directed edges in a graph with a constant probability.
Correspondingly, either the in-degree sequence or the out-degree sequence of the graph will be pre-
served.

Note that this function modifies the input graph, call igraph_copy() if you want to keep it.

This function can produce multiple edges between two vertices.

Arguments:

graph: The input graph, this will be rewired, it can be directed or undirected. If it is undirected or
mode is set to IGRAPH_ALL, igraph_rewire_edges() will be called.

prob: The rewiring probability, a constant between zero and one (inclusive).

loops: Boolean, whether loop edges are allowed in the new graph, or not.

243

Graph generators

mode: The endpoints of directed edges to rewire. It is ignored for undirected graphs. Possible
values:

IGRAPH_OUT rewire the end of each directed edge

IGRAPH_IN rewire the start of each directed edge

IGRAPH_ALL rewire both endpoints of each edge

Returns:

Error code.

See also:

igraph_rewire_edges(), igraph_rewire()

Time complexity: O(|E|).

igraph_degree_sequence_game — Generates a ran-
dom graph with a given degree sequence.

igraph_error_t igraph_degree_sequence_game(igraph_t *graph, const igraph_vector_int_t *out_deg,
 const igraph_vector_int_t *in_deg,
 igraph_degseq_t method);

Arguments:

graph: Pointer to an uninitialized graph object.

out_deg: The degree sequence for an undirected graph (if in_seq is NULL or of length zero),
or the out-degree sequence of a directed graph (if in_deq is not of length zero).

in_deg: It is either a zero-length vector or NULL (if an undirected graph is generated), or the
in-degree sequence.

method: The method to generate the graph. Possible values:

IGRAPH_DEGSEQ_CONFIGU-
RATION

This method implements the configuration mod-
el. For undirected graphs, it puts all vertex IDs
in a bag such that the multiplicity of a vertex in
the bag is the same as its degree. Then it draws
pairs from the bag until the bag becomes empty.
This method may generate both loop (self) edges
and multiple edges. For directed graphs, the al-
gorithm is basically the same, but two separate
bags are used for the in- and out-degrees. Undi-
rected graphs are generated with probability pro-
portional to (\prod_{i<j} A_{ij} !
\prod_i A_{ii} !!)^{-1}, where A de-
notes the adjacency matrix and !! denotes the
double factorial. Here A is assumed to have twice
the number of self-loops on its diagonal. The
corresponding expression for directed graphs
is (\prod_{i,j} A_{ij}!)^{-1}. Thus

244

Graph generators

the probability of all simple graphs (which only
have 0s and 1s in the adjacency matrix) is the
same, while that of non-simple ones depends on
their edge and self-loop multiplicities.

IGRAPH_DEGSEQ_CONFIGU-
RATION_SIMPLE

This method is identical to IGRAPH_DEGSE-
Q_CONFIGURATION, but if the generated
graph is not simple, it rejects it and re-starts the
generation. It generates all simple graphs with
the same probability.

IGRAPH_DEGSE-
Q_FAST_HEUR_SIMPLE

This method generates simple graphs. It is sim-
ilar to IGRAPH_DEGSEQ_CONFIGURATION
but tries to avoid multiple and loop edges and
restarts the generation from scratch if it gets
stuck. It can generate all simple realizations of
a degree sequence, but it is not guaranteed to
sample them uniformly. This method is relative-
ly fast and it will eventually succeed if the pro-
vided degree sequence is graphical, but there is
no upper bound on the number of iterations.

IGRAPH_DEGSE-
Q_EDGE_SWITCHING_SIMPLE

This is an MCMC sampler based on degree-pre-
serving edge switches. It generates simple undi-
rected or directed graphs. It uses igraph_re-
alize_degree_sequence() to construct
an initial graph, then rewires it using
igraph_rewire().

IGRAPH_DEGSEQ_VL This method samples undirected connected
graphs approximately uniformly. It is a Monte
Carlo method based on degree-preserving edge
switches. This generator should be favoured
if undirected and connected graphs are to
be generated and execution time is not a
concern. igraph uses the original implemen-
tation of Fabien Viger; for the algorithm,
see https://www-complexnetworks.lip6.fr/~lat-
apy/FV/generation.html and the paper https://
arxiv.org/abs/cs/0502085

Returns:

Error code: IGRAPH_ENOMEM: there is not enough memory to perform the operation.
IGRAPH_EINVAL: invalid method parameter, or invalid in- and/or out-degree vectors. The degree
vectors should be non-negative, out_deg should sum up to an even integer for undirected graphs;
the length and sum of out_deg and in_deg should match for directed graphs.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges for IGRAPH_DEGSE-
Q_SIMPLE. The time complexity of the other modes is not known.

See also:

igraph_barabasi_game(), igraph_erdos_renyi_game_gnm(), igraph_er-
dos_renyi_game_gnp(), igraph_is_graphical()

Example 9.19. File examples/simple/
igraph_degree_sequence_game.c

245

https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://arxiv.org/abs/cs/0502085
https://arxiv.org/abs/cs/0502085

Graph generators

igraph_k_regular_game — Generates a random
graph where each vertex has the same degree.

igraph_error_t igraph_k_regular_game(igraph_t *graph,
 igraph_integer_t no_of_nodes, igraph_integer_t k,
 igraph_bool_t directed, igraph_bool_t multiple);

This game generates a directed or undirected random graph where the degrees of vertices are equal to a
predefined constant k. For undirected graphs, at least one of k and the number of vertices must be even.

Currently, this game simply uses igraph_degree_sequence_game with the
IGRAPH_DEGSEQ_CONFIGURATION or the IGRAPH_DEGSEQ_FAST_SIMPLE method and ap-
propriately constructed degree sequences. Thefore, it does not sample uniformly: while it can generate
all k-regular graphs with the given number of vertices, it does not generate each one with the same
probability.

Arguments:

graph: Pointer to an uninitialized graph object.

no_of_nodes: The number of nodes in the generated graph.

k: The degree of each vertex in an undirected graph, or the out-degree and in-degree
of each vertex in a directed graph.

directed: Whether the generated graph will be directed.

multiple: Whether to allow multiple edges in the generated graph.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter; e.g., negative number of nodes, or odd number
of nodes and odd k for undirected graphs. IGRAPH_ENOMEM: there is not enough memory for the
operation.

Time complexity: O(|V|+|E|) if multiple is true, otherwise not known.

igraph_static_fitness_game — Non-growing ran-
dom graph with edge probabilities proportional to
node fitness scores.

igraph_error_t igraph_static_fitness_game(igraph_t *graph, igraph_integer_t no_of_edges,
 const igraph_vector_t *fitness_out, const igraph_vector_t *fitness_in,
 igraph_bool_t loops, igraph_bool_t multiple);

This game generates a directed or undirected random graph where the probability of an edge between
vertices i and j depends on the fitness scores of the two vertices involved. For undirected graphs, each
vertex has a single fitness score. For directed graphs, each vertex has an out- and an in-fitness, and the
probability of an edge from i to j depends on the out-fitness of vertex i and the in-fitness of vertex j.

The generation process goes as follows. We start from N disconnected nodes (where N is given by
the length of the fitness vector). Then we randomly select two vertices i and j, with probabilities
proportional to their fitnesses. (When the generated graph is directed, i is selected according to the

246

Graph generators

out-fitnesses and j is selected according to the in-fitnesses). If the vertices are not connected yet (or if
multiple edges are allowed), we connect them; otherwise we select a new pair. This is repeated until
the desired number of links are created.

It can be shown that the expected degree of each vertex will be proportional to its fitness, although the
actual, observed degree will not be. If you need to generate a graph with an exact degree sequence,
consider igraph_degree_sequence_game instead.

This model is commonly used to generate static scale-free networks. To achieve this, you have to draw
the fitness scores from the desired power-law distribution. Alternatively, you may use igraph_sta-
tic_power_law_game which generates the fitnesses for you with a given exponent.

Reference:

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys Rev
Lett 87(27):278701, 2001 https://doi.org/10.1103/PhysRevLett.87.278701.

Arguments:

graph: Pointer to an uninitialized graph object.

fitness_out: A numeric vector containing the fitness of each vertex. For directed graphs, this
specifies the out-fitness of each vertex.

fitness_in: If NULL, the generated graph will be undirected. If not NULL, this argument spec-
ifies the in-fitness of each vertex.

no_of_edges: The number of edges in the generated graph.

loops: Whether to allow loop edges in the generated graph.

multiple: Whether to allow multiple edges in the generated graph.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter IGRAPH_ENOMEM: there is not enough memory
for the operation.

Time complexity: O(|V| + |E| log |E|).

igraph_static_power_law_game — Generates a
non-growing random graph with expected power-law
degree distributions.

igraph_error_t igraph_static_power_law_game(igraph_t *graph,
 igraph_integer_t no_of_nodes, igraph_integer_t no_of_edges,
 igraph_real_t exponent_out, igraph_real_t exponent_in,
 igraph_bool_t loops, igraph_bool_t multiple,
 igraph_bool_t finite_size_correction);

This game generates a directed or undirected random graph where the degrees of vertices follow pow-
er-law distributions with prescribed exponents. For directed graphs, the exponents of the in- and out-
degree distributions may be specified separately.

The game simply uses igraph_static_fitness_game with appropriately constructed fitness
vectors. In particular, the fitness of vertex i is i-alpha, where alpha = 1/(gamma-1) and gamma is the
exponent given in the arguments.

247

https://doi.org/10.1103/PhysRevLett.87.278701

Graph generators

To remove correlations between in- and out-degrees in case of directed graphs, the in-fitness vector
will be shuffled after it has been set up and before igraph_static_fitness_game is called.

Note that significant finite size effects may be observed for exponents smaller than 3 in the original
formulation of the game. This function provides an argument that lets you remove the finite size effects
by assuming that the fitness of vertex i is (i+i0-1)-alpha, where i0 is a constant chosen appropriately to
ensure that the maximum degree is less than the square root of the number of edges times the average
degree; see the paper of Chung and Lu, and Cho et al for more details.

References:

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys Rev
Lett 87(27):278701, 2001.

Chung F and Lu L: Connected components in a random graph with given degree sequences. Annals
of Combinatorics 6, 125-145, 2002.

Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in scale-free networks under the
Achlioptas process. Phys Rev Lett 103:135702, 2009.

Arguments:

graph: Pointer to an uninitialized graph object.

no_of_nodes: The number of nodes in the generated graph.

no_of_edges: The number of edges in the generated graph.

exponent_out: The power law exponent of the degree distribution. For directed
graphs, this specifies the exponent of the out-degree distribution.
It must be greater than or equal to 2. If you pass IGRAPH_IN-
FINITY here, you will get back an Erd#s-Rényi random net-
work.

exponent_in: If negative, the generated graph will be undirected. If greater than
or equal to 2, this argument specifies the exponent of the in-de-
gree distribution. If non-negative but less than 2, an error will be
generated.

loops: Whether to allow loop edges in the generated graph.

multiple: Whether to allow multiple edges in the generated graph.

finite_size_correction: Whether to use the proposed finite size correction of Cho et al.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter IGRAPH_ENOMEM: there is not enough memory
for the operation.

Time complexity: O(|V| + |E| log |E|).

igraph_forest_fire_game — Generates a network
according to the “forest fire game”.

igraph_error_t igraph_forest_fire_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_real_t fw_prob, igraph_real_t bw_factor,

248

Graph generators

 igraph_integer_t pambs, igraph_bool_t directed);

The forest fire model intends to reproduce the following network characteristics, observed in real
networks:

• Heavy-tailed in- and out-degree distributions.

• Community structure.

• Densification power-law. The network is densifying in time, according to a power-law rule.

• Shrinking diameter. The diameter of the network decreases in time.

The network is generated in the following way. One vertex is added at a time. This vertex connects to
(cites) ambs vertices already present in the network, chosen uniformly random. Now, for each cited
vertex v we do the following procedure:

1. We generate two random numbers, x and y, that are geometrically distributed with means p/
(1-p) and rp(1-rp). (p is fw_prob, r is bw_factor.) The new vertex cites x outgoing
neighbors and y incoming neighbors of v, from those which are not yet cited by the new vertex. If
there are less than x or y such vertices available then we cite all of them.

2. The same procedure is applied to all the newly cited vertices.

See also: Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. KDD '05: Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining , 177--187, 2005.

Note however, that the version of the model in the published paper is incorrect in the sense that it
cannot generate the kind of graphs the authors claim. A corrected version is available from http://
cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf , our implementation is based on this.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

fw_prob: The forward burning probability.

bw_factor: The backward burning ratio. The backward burning probability is calculated as
bw_factor * fw_prob.

pambs: The number of ambassador vertices.

directed: Whether to create a directed graph.

Returns:

Error code.

Time complexity: TODO.

igraph_rewire — Randomly rewires a graph while
preserving its degree sequence.

igraph_error_t igraph_rewire(igraph_t *graph, igraph_integer_t n, igraph_rewiring_t mode);

249

http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf
http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf

Graph generators

This function generates a new graph based on the original one by randomly "rewriting" edges while
preserving the original graph's degree sequence. The rewiring is done "in place", so no new graph will
be allocated. If you would like to keep the original graph intact, use igraph_copy() beforehand.
All graph attributes will be lost.

The rewiring is performed with degree-preserving edge switches: Two arbitrary edges are picked uni-
formly at random, namely (a, b) and (c, d), then they are replaced by (a, d) and (b, c)
if this preserves the constraints specified by mode.

Arguments:

graph: The graph object to be rewired.

n: Number of rewiring trials to perform.

mode: The rewiring algorithm to be used. It can be one of the following flags:

IGRAPH_REWIRING_SIMPLE This method does not create or destroy self-loops,
and does not create multi-edges.

IGRAPH_REWIRING_SIM-
PLE_LOOPS

This method allows the creation or destruction
of self-loops. Self-loops are created by switching
edges that have a single common endpoint.

Returns:

Error code:

IGRAPH_EINVMODE Invalid rewiring mode.

IGRAPH_ENOMEM Not enough memory for temporary data.

Time complexity: TODO.

igraph_growing_random_game — Generates a grow-
ing random graph.

igraph_error_t igraph_growing_random_game(igraph_t *graph, igraph_integer_t n,
 igraph_integer_t m, igraph_bool_t directed,
 igraph_bool_t citation);

This function simulates a growing random graph. We start out with one vertex. In each step a new
vertex is added and a number of new edges are also added. These graphs are known to be different
from standard (not growing) random graphs.

Arguments:

graph: Uninitialized graph object.

n: The number of vertices in the graph.

m: The number of edges to add in a time step (i.e. after adding a vertex).

directed: Boolean, whether to generate a directed graph.

citation: Boolean, if true, the edges always originate from the most recently added vertex and
are connected to a previous vertex.

250

Graph generators

Returns:

Error code: IGRAPH_EINVAL: invalid n or m parameter.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_callaway_traits_game — Simulates a
growing network with vertex types.

igraph_error_t igraph_callaway_traits_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types, igraph_integer_t edges_per_step,
 const igraph_vector_t *type_dist,
 const igraph_matrix_t *pref_matrix,
 igraph_bool_t directed,
 igraph_vector_int_t *node_type_vec);

The different types of vertices prefer to connect other types of vertices with a given probability.

The simulation goes like this: in each discrete time step a new vertex is added to the graph. The
type of this vertex is generated based on type_dist. Then two vertices are selected uniformly
randomly from the graph. The probability that they will be connected depends on the types of these
vertices and is taken from pref_matrix. Then another two vertices are selected and this is repeated
edges_per_step times in each time step.

References:

D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Are ran-
domly grown graphs really random? Phys. Rev. E 64, 041902 (2001). https://doi.org/10.1103/Phys-
RevE.64.041902

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of nodes in the graph.

types: Number of node types.

edges_per_step: The number of connections tried in each time step.

type_dist: Vector giving the distribution of the vertex types. If NULL, the distribution
is assumed to be uniform.

pref_matrix: Matrix giving the connection probabilities for the vertex types.

directed: Logical, whether to generate a directed graph.

node_type_vec: An initialized vector or NULL. If not NULL, the type of each node will be
stored here.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|*k*log(|V|)), |V| is the number of vertices, k is edges_per_step.

251

https://doi.org/10.1103/PhysRevE.64.041902
https://doi.org/10.1103/PhysRevE.64.041902

Graph generators

igraph_establishment_game — Generates a graph
with a simple growing model with vertex types.

igraph_error_t igraph_establishment_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types, igraph_integer_t k,
 const igraph_vector_t *type_dist,
 const igraph_matrix_t *pref_matrix,
 igraph_bool_t directed,
 igraph_vector_int_t *node_type_vec);

The simulation goes like this: a single vertex is added at each time step. This new vertex tries to
connect to k vertices in the graph. The probability that such a connection is realized depends on the
types of the vertices involved.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

types: The number of vertex types.

k: The number of connections tried in each time step.

type_dist: Vector giving the distribution of vertex types. If NULL, the distribution is as-
sumed to be uniform.

pref_matrix: Matrix giving the connection probabilities for different vertex types.

directed: Logical, whether to generate a directed graph.

node_type_vec: An initialized vector or NULL. If not NULL, the type of each node will be
stored here.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|*k*log(|V|)), |V| is the number of vertices and k is the k parameter.

igraph_preference_game — Generates a graph with
vertex types and connection preferences.

igraph_error_t igraph_preference_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types,
 const igraph_vector_t *type_dist,
 igraph_bool_t fixed_sizes,
 const igraph_matrix_t *pref_matrix,
 igraph_vector_int_t *node_type_vec,
 igraph_bool_t directed,
 igraph_bool_t loops);

252

Graph generators

This is practically the nongrowing variant of igraph_establishment_game(). A given num-
ber of vertices are generated. Every vertex is assigned to a vertex type according to the given type
probabilities. Finally, every vertex pair is evaluated and an edge is created between them with a prob-
ability depending on the types of the vertices involved.

In other words, this function generates a graph according to a block-model. Vertices are divided into
groups (or blocks), and the probability the two vertices are connected depends on their groups only.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

types: The number of vertex types.

type_dist: Vector giving the distribution of vertex types. If NULL, all vertex types will
have equal probability. See also the fixed_sizes argument.

fixed_sizes: Boolean. If true, then the number of vertices with a given vertex type is fixed
and the type_dist argument gives these numbers for each vertex type. If
true, and type_dist is NULL, then the function tries to make vertex groups
of the same size. If this is not possible, then some groups will have an extra
vertex.

pref_matrix: Matrix giving the connection probabilities for different vertex types. This
should be symmetric if the requested graph is undirected.

node_type_vec: A vector where the individual generated vertex types will be stored. If NULL,
the vertex types won't be saved.

directed: Logical, whether to generate a directed graph. If undirected graphs are request-
ed, only the lower left triangle of the preference matrix is considered.

loops: Logical, whether loop edges are allowed.

Returns:

Error code.

Added in version 0.3.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_asymmetric_preference_game(), igraph_establishment_game(),
igraph_callaway_traits_game()

igraph_asymmetric_preference_game — Gener-
ates a graph with asymmetric vertex types and con-
nection preferences.

igraph_error_t igraph_asymmetric_preference_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t no_out_types,

253

Graph generators

 igraph_integer_t no_in_types,
 const igraph_matrix_t *type_dist_matrix,
 const igraph_matrix_t *pref_matrix,
 igraph_vector_int_t *node_type_out_vec,
 igraph_vector_int_t *node_type_in_vec,
 igraph_bool_t loops);

This is the asymmetric variant of igraph_preference_game(). A given number of vertices
are generated. Every vertex is assigned to an "outgoing" and an "incoming " vertex type according
to the given joint type probabilities. Finally, every vertex pair is evaluated and a directed edge is
created between them with a probability depending on the "outgoing" type of the source vertex and
the "incoming" type of the target vertex.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

no_out_types: The number of vertex out-types.

no_in_types: The number of vertex in-types.

type_dist_matrix: Matrix of size out_types * in_types, giving the joint distribu-
tion of vertex types. If NULL, incoming and outgoing vertex types are
independent and uniformly distributed.

pref_matrix: Matrix of size out_types * in_types, giving the connection prob-
abilities for different vertex types.

node_type_out_vec: A vector where the individual generated "outgoing" vertex types will be
stored. If NULL, the vertex types won't be saved.

node_type_in_vec: A vector where the individual generated "incoming" vertex types will be
stored. If NULL, the vertex types won't be saved.

loops: Logical, whether loop edges are allowed.

Returns:

Error code.

Added in version 0.3.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_preference_game()

igraph_recent_degree_game — Stochastic graph
generator based on the number of incident edges a
node has gained recently.

igraph_error_t igraph_recent_degree_game(igraph_t *graph, igraph_integer_t nodes,

254

Graph generators

 igraph_real_t power,
 igraph_integer_t time_window,
 igraph_integer_t m,
 const igraph_vector_int_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t zero_appeal,
 igraph_bool_t directed);

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph, this is the same as the number of time steps.

power: The exponent, the probability that a node gains a new edge is proportional to the
number of edges it has gained recently (in the last window time steps) to power.

time_window: Integer constant, the size of the time window to use to count the number of recent
edges.

m: Integer constant, the number of edges to add per time step if the outseq para-
meter is a null pointer or a zero-length vector.

outseq: The number of edges to add in each time step. This argument is ignored if it is a
null pointer or a zero length vector. In this case the constant m parameter is used.

outpref: Logical constant, if true the edges originated by a vertex also count as recent
incident edges. For most applications it is reasonable to set it to false.

zero_appeal: Constant giving the attractiveness of the vertices which haven't gained any edge
recently.

directed: Logical constant, whether to generate a directed graph.

Returns:

Error code.

Time complexity: O(|V|*log(|V|)+|E|), |V| is the number of vertices, |E| is the number of edges in the
graph.

igraph_barabasi_aging_game — Preferential at-
tachment with aging of vertices.

igraph_error_t igraph_barabasi_aging_game(igraph_t *graph,
 igraph_integer_t nodes,
 igraph_integer_t m,
 const igraph_vector_int_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t pa_exp,
 igraph_real_t aging_exp,
 igraph_integer_t aging_bins,
 igraph_real_t zero_deg_appeal,
 igraph_real_t zero_age_appeal,
 igraph_real_t deg_coef,
 igraph_real_t age_coef,

255

Graph generators

 igraph_bool_t directed);

This game starts with one vertex (if nodes > 0). In each step a new node is added, and it is connected to
m existing nodes. Existing nodes to connect to are chosen with probability dependent on their (in-)de-
gree (k) and age (l). The degree-dependent part is deg_coef * k^pa_exp + zero_deg_ap-
peal, while the age-dependent part is age_coef * l^aging_exp + zero_age_appeal,
which are multiplied to obtain the final weight.

The age l is based on the number of vertices in the network and the aging_bins argument: the age
of a node is incremented by 1 after each floor(nodes / aging_bins) + 1 time steps.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

m: The number of edges to add in each time step. Ignored if outseq is a non-
zero length vector.

outseq: The number of edges to add in each time step. If it is NULL or a zero-length
vector then it is ignored and the m argument is used instead.

outpref: Logical constant, whether the edges initiated by a vertex contribute to the
probability to gain a new edge.

pa_exp: The exponent of the preferential attachment, a small positive number usu-
ally, the value 1 yields the classic linear preferential attachment.

aging_exp: The exponent of the aging, this is a negative number usually.

aging_bins: Integer constant, the number of age bins to use.

zero_deg_appeal: The degree dependent part of the attractiveness of the zero degree vertices.

zero_age_appeal: The age dependent part of the attractiveness of the vertices of age zero. This
parameter is usually zero.

deg_coef: The coefficient for the degree.

age_coef: The coefficient for the age.

directed: Logical constant, whether to generate a directed graph.

Returns:

Error code.

Time complexity: O((|V|+|V|/aging_bins)*log(|V|)+|E|). |V| is the number of vertices, |E| the number
of edges.

igraph_recent_degree_aging_game — Preferential
attachment based on the number of edges gained re-
cently, with aging of vertices.

igraph_error_t igraph_recent_degree_aging_game(igraph_t *graph,
 igraph_integer_t nodes,

256

Graph generators

 igraph_integer_t m,
 const igraph_vector_int_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t pa_exp,
 igraph_real_t aging_exp,
 igraph_integer_t aging_bins,
 igraph_integer_t time_window,
 igraph_real_t zero_appeal,
 igraph_bool_t directed);

This game is very similar to igraph_barabasi_aging_game(), except that instead of the to-
tal number of incident edges the number of edges gained in the last time_window time steps are
counted.

The degree dependent part of the attractiveness is given by k to the power of pa_exp plus zero_ap-
peal; the age dependent part is l to the power to aging_exp. k is the number of edges gained in
the last time_window time steps, l is the age of the vertex.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

m: The number of edges to add in each time step. If the outseq argument is not a
null vector or a zero-length vector then it is ignored.

outseq: Vector giving the number of edges to add in each time step. If it is a null pointer
or a zero-length vector then it is ignored and the m argument is used.

outpref: Logical constant, if true the edges initiated by a vertex are also counted. Normally
it is false.

pa_exp: The exponent for the preferential attachment.

aging_exp: The exponent for the aging, normally it is negative: old vertices gain edges with
less probability.

aging_bins: Integer constant, the number of age bins to use.

time_window: The time window to use to count the number of incident edges for the vertices.

zero_appeal: The degree dependent part of the attractiveness for zero degree vertices.

directed: Logical constant, whether to create a directed graph.

Returns:

Error code.

Time complexity: O((|V|+|V|/aging_bins)*log(|V|)+|E|). |V| is the number of vertices, |E| the number
of edges.

igraph_lastcit_game — Simulates a citation net-
work, based on time passed since the last citation.

igraph_error_t igraph_lastcit_game(igraph_t *graph,

257

Graph generators

 igraph_integer_t nodes, igraph_integer_t edges_per_node,
 igraph_integer_t agebins,
 const igraph_vector_t *preference,
 igraph_bool_t directed);

This is a quite special stochastic graph generator, it models an evolving graph. In each time step
a single vertex is added to the network and it cites a number of other vertices (as specified by the
edges_per_step argument). The cited vertices are selected based on the last time they were cited.
Time is measured by the addition of vertices and it is binned into agebins bins. So if the current
time step is t and the last citation to a given i vertex was made in time step t0, then \c (t-t0)/binwidth
is calculated where binwidth is nodes/agebins+1, in the last expression '/' denotes integer division,
so the fraction part is omitted.

The preference argument specifies the preferences for the citation lags, i.e. its first elements con-
tains the attractivity of the very recently cited vertices, etc. The last element is special, it contains the
attractivity of the vertices which were never cited. This element should be bigger than zero.

Note that this function generates networks with multiple edges if edges_per_step is bigger than
one, call igraph_simplify() on the result to get rid of these edges.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

node: The number of vertices in the network.

edges_per_node: The number of edges to add in each time step.

agebins: The number of age bins to use.

preference: Pointer to an initialized vector of length agebins+1. This contains the "at-
tractivity" of the various age bins, the last element is the attractivity of the
vertices which were never cited, and it should be greater than zero. It is a good
idea to have all positive values in this vector. Preferences cannot be negative.

directed: Logical constant, whether to create directed networks.

Returns:

Error code.

See also:

igraph_barabasi_aging_game().

Time complexity: O(|V|*a+|E|*log|V|), |V| is the number of vertices, |E| is the total number of edges,
a is the agebins parameter.

igraph_cited_type_game — Simulates a citation
based on vertex types.

igraph_error_t igraph_cited_type_game(igraph_t *graph, igraph_integer_t nodes,
 const igraph_vector_int_t *types,
 const igraph_vector_t *pref,
 igraph_integer_t edges_per_step,
 igraph_bool_t directed);

258

Graph generators

Function to create a network based on some vertex categories. This function creates a citation network:
in each step a single vertex and edges_per_step citing edges are added. Nodes with different
categories may have different probabilities to get cited, as given by the pref vector.

Note that this function might generate networks with multiple edges if edges_per_step is greater
than one. You might want to call igraph_simplify() on the result to remove multiple edges.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the network.

types: Numeric vector giving the categories of the vertices, so it should contain
nodes non-negative integer numbers. Types are numbered from zero.

pref: The attractivity of the different vertex categories in a vector. Its length should
be the maximum element in types plus one (types are numbered from zero).

edges_per_step: Integer constant, the number of edges to add in each time step.

directed: Logical constant, whether to create a directed network.

Returns:

Error code.

See also:

igraph_citing_cited_type_game() for a bit more general game.

Time complexity: O((|V|+|E|)log|V|), |V| and |E| are number of vertices and edges, respectively.

igraph_citing_cited_type_game — Simulates a ci-
tation network based on vertex types.

igraph_error_t igraph_citing_cited_type_game(igraph_t *graph, igraph_integer_t nodes,
 const igraph_vector_int_t *types,
 const igraph_matrix_t *pref,
 igraph_integer_t edges_per_step,
 igraph_bool_t directed);

This game is similar to igraph_cited_type_game() but here the category of the citing vertex
is also considered.

An evolving citation network is modeled here, a single vertex and its edges_per_step citation
are added in each time step. The odds the a given vertex is cited by the new vertex depends on the
category of both the citing and the cited vertex and is given in the pref matrix. The categories of the
citing vertex correspond to the rows, the categories of the cited vertex to the columns of this matrix.
I.e. the element in row i and column j gives the probability that a j vertex is cited, if the category
of the citing vertex is i.

Note that this function might generate networks with multiple edges if edges_per_step is greater
than one. You might want to call igraph_simplify() on the result to remove multiple edges.

Arguments:

259

Graph generators

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the network.

types: A numeric vector of length nodes, containing the categories of the vertices.
The categories are numbered from zero.

pref: The preference matrix, a square matrix is required, both the number of rows
and columns should be the maximum element in types plus one (types are
numbered from zero).

edges_per_step: Integer constant, the number of edges to add in each time step.

directed: Logical constant, whether to create a directed network.

Returns:

Error code.

Time complexity: O((|V|+|E|)log|V|), |V| and |E| are number of vertices and edges, respectively.

igraph_sbm_game — Sample from a stochastic block
model.

igraph_error_t igraph_sbm_game(igraph_t *graph, igraph_integer_t n,
 const igraph_matrix_t *pref_matrix,
 const igraph_vector_int_t *block_sizes,
 igraph_bool_t directed, igraph_bool_t loops);

This function samples graphs from a stochastic block model by (doing the equivalent of) Bernoulli
trials for each potential edge with the probabilities given by the Bernoulli rate matrix, pref_ma-
trix. See Faust, K., & Wasserman, S. (1992a). Blockmodels: Interpretation and evaluation. Social
Networks, 14, 5-–61.

The order of the vertex IDs in the generated graph corresponds to the block_sizes argument.

Arguments:

graph: The output graph. This should be a pointer to an uninitialized graph.

n: Number of vertices.

pref_matrix: The matrix giving the Bernoulli rates. This is a KxK matrix, where K is the num-
ber of groups. The probability of creating an edge between vertices from groups
i and j is given by element (i,j).

block_sizes: An integer vector giving the number of vertices in each group.

directed: Boolean, whether to create a directed graph. If this argument is false, then pre-
f_matrix must be symmetric.

loops: Boolean, whether to create self-loops.

Returns:

Error code.

260

Graph generators

Time complexity: O(|V|+|E|+K^2), where |V| is the number of vertices, |E| is the number of edges,
and K is the number of groups.

See also:

igraph_erdos_renyi_game_gnp() for a simple Bernoulli graph.

igraph_hsbm_game — Hierarchical stochastic block
model.

igraph_error_t igraph_hsbm_game(igraph_t *graph, igraph_integer_t n,
 igraph_integer_t m, const igraph_vector_t *rho,
 const igraph_matrix_t *C, igraph_real_t p);

The function generates a random graph according to the hierarchical stochastic block model.

Arguments:

graph: The generated graph is stored here.

n: The number of vertices in the graph.

m: The number of vertices per block. n/m must be integer.

rho: The fraction of vertices per cluster, within a block. Must sum up to 1, and rho * m must
be integer for all elements of rho.

C: A square, symmetric numeric matrix, the Bernoulli rates for the clusters within a block.
Its size must mach the size of the rho vector.

p: The Bernoulli rate of connections between vertices in different blocks.

Returns:

Error code.

See also:

igraph_sbm_game() for the classic stochastic block model, igraph_hsbm_list_game()
for a more general version.

igraph_hsbm_list_game — Hierarchical stochastic
block model, more general version.

igraph_error_t igraph_hsbm_list_game(igraph_t *graph, igraph_integer_t n,
 const igraph_vector_int_t *mlist,
 const igraph_vector_list_t *rholist,
 const igraph_matrix_list_t *Clist,
 igraph_real_t p);

The function generates a random graph according to the hierarchical stochastic block model.

261

Graph generators

Arguments:

graph: The generated graph is stored here.

n: The number of vertices in the graph.

mlist: An integer vector of block sizes.

rholist: A list of rho vectors (igraph_vector_t objects), one for each block.

Clist: A list of square matrices (igraph_matrix_t objects), one for each block, specifying
the Bernoulli rates of connections within the block.

p: The Bernoulli rate of connections between vertices in different blocks.

Returns:

Error code.

See also:

igraph_sbm_game() for the classic stochastic block model, igraph_hsbm_game() for a
simpler general version.

igraph_dot_product_game — Generates a random
dot product graph.

igraph_error_t igraph_dot_product_game(igraph_t *graph, const igraph_matrix_t *vecs,
 igraph_bool_t directed);

In this model, each vertex is represented by a latent position vector. Probability of an edge between
two vertices are given by the dot product of their latent position vectors.

See also Christine Leigh Myers Nickel: Random dot product graphs, a model for social networks.
Dissertation, Johns Hopkins University, Maryland, USA, 2006.

Arguments:

graph: The output graph is stored here.

vecs: A matrix in which each latent position vector is a column. The dot product of the
latent position vectors should be in the [0,1] interval, otherwise a warning is given.
For negative dot products, no edges are added; dot products that are larger than one
always add an edge.

directed: Should the generated graph be directed?

Returns:

Error code.

Time complexity: O(n*n*m), where n is the number of vertices, and m is the length of the latent
vectors.

See also:

262

Graph generators

igraph_sample_dirichlet(), igraph_sample_sphere_volume(),
igraph_sample_sphere_surface() for functions to generate the latent vectors.

igraph_tree_game — Generates a random tree with
the given number of nodes.

igraph_error_t igraph_tree_game(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, igraph_random_tree_t method);

This function samples uniformly from the set of labelled trees, i.e. it generates each labelled tree with
the same probability.

Note that for n=0, the null graph is returned, which is not considered to be a tree by
igraph_is_tree().

Arguments:

graph: Pointer to an uninitialized graph object.

n: The number of nodes in the tree.

directed: Whether to create a directed tree. The edges are oriented away from the root.

method: The algorithm to use to generate the tree. Possible values:

IGRAPH_RAN-
DOM_TREE_PRUFER

This algorithm samples Prüfer sequences uni-
formly, then converts them to trees. Directed
trees are not currently supported.

IGRAPH_RANDOM_LERW This algorithm effectively performs a loop-
erased random walk on the complete graph to
uniformly sample its spanning trees (Wilson's
algorithm).

Returns:

Error code: IGRAPH_ENOMEM: there is not enough memory to perform the operation.
IGRAPH_EINVAL: invalid tree size

See also:

igraph_from_prufer()

igraph_correlated_game — Generates a random
graph correlated to an existing graph.

igraph_error_t igraph_correlated_game(const igraph_t *old_graph, igraph_t *new_graph,
 igraph_real_t corr, igraph_real_t p,
 const igraph_vector_int_t *permutation);

Sample a new graph by perturbing the adjacency matrix of a given simple graph and shuffling its
vertices.

263

Graph generators

Arguments:

old_graph: The original graph, it must be simple.

new_graph: The new graph will be stored here.

corr: A scalar in the unit interval [0,1], the target Pearson correlation between the ad-
jacency matrices of the original and the generated graph (the adjacency matrix
being used as a vector).

p: A numeric scalar, the probability of an edge between two vertices, it must in the
open (0,1) interval. Typically, the density of old_graph.

permutation: A permutation to apply to the vertices of the generated graph. It can also be a null
pointer, in which case the vertices will not be permuted.

Returns:

Error code

See also:

igraph_correlated_pair_game() for generating a pair of correlated random graphs in
one go.

igraph_correlated_pair_game — Generates pairs
of correlated random graphs.

igraph_error_t igraph_correlated_pair_game(igraph_t *graph1, igraph_t *graph2,
 igraph_integer_t n, igraph_real_t corr, igraph_real_t p,
 igraph_bool_t directed,
 const igraph_vector_int_t *permutation);

Sample two random graphs, with given correlation.

Arguments:

graph1: The first graph will be stored here.

graph2: The second graph will be stored here.

n: The number of vertices in both graphs.

corr: A scalar in the unit interval, the target Pearson correlation between the adjacency
matrices of the original the generated graph (the adjacency matrix being used as
a vector).

p: A numeric scalar, the probability of an edge between two vertices, it must in the
open (0,1) interval.

directed: Whether to generate directed graphs.

permutation: A permutation to apply to the vertices of the second graph. It can also be a null
pointer, in which case the vertices will not be permuted.

264

Graph generators

Returns:

Error code

See also:

igraph_correlated_game() for generating a correlated pair to a given graph.

igraph_simple_interconnected_islands_game —
Generates a random graph made of several intercon-
nected islands, each island being a random graph.

igraph_error_t igraph_simple_interconnected_islands_game(
 igraph_t *graph,
 igraph_integer_t islands_n,
 igraph_integer_t islands_size,
 igraph_real_t islands_pin,
 igraph_integer_t n_inter);

All islands are of the same size. Within an island, each edge is generated with the same probability.
A fixed number of additional edges are then generated for each unordered pair of islands to connect
them. The generated graph is guaranteed to be simple.

Arguments:

graph: Pointer to an uninitialized graph object.

islands_n: The number of islands in the graph.

islands_size: The size of islands in the graph.

islands_pin: The probability to create each possible edge within islands.

n_inter: The number of edges to create between two islands. It may be larger than is-
lands_size squared, but in this case it is assumed to be islands_size
squared.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter IGRAPH_ENOMEM: there is not enough memory
for the operation.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

Deprecated functions

igraph_erdos_renyi_game — Generates a random
(Erd#s-Rényi) graph.

igraph_error_t igraph_erdos_renyi_game(igraph_t *graph, igraph_erdos_renyi_t type,

265

Graph generators

 igraph_integer_t n, igraph_real_t p_or_m,
 igraph_bool_t directed, igraph_bool_t loops);

This function is deprecated; use igraph_erdos_renyi_game_gnm() or igraph_er-
dos_renyi_game_gnp() instead.

Arguments:

graph: Pointer to an uninitialized graph object.

type: The type of the random graph, possible values:

IGRAPH_ERDOS_RENYI_GNM G(n,m) graph, m edges are selected uniformly ran-
domly in a graph with n vertices.

IGRAPH_ERDOS_RENYI_GNP G(n,p) graph, every possible edge is included in
the graph with probability p.

n: The number of vertices in the graph.

p_or_m: This is the p parameter for G(n,p) graphs and the m parameter for G(n,m) graphs.

directed: Logical, whether to generate a directed graph.

loops: Logical, whether to generate loops (self) edges.

Returns:

Error code: IGRAPH_EINVAL: invalid type, n, p or m parameter. IGRAPH_ENOMEM: there is
not enough memory for the operation.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_barabasi_game(), igraph_growing_random_game(), igraph_er-
dos_renyi_game_gnm(), igraph_erdos_renyi_game_gnp()

igraph_lattice — Arbitrary dimensional square lat-
tices (deprecated).

igraph_error_t igraph_lattice(igraph_t *graph, const igraph_vector_int_t *dimvector,
 igraph_integer_t nei, igraph_bool_t directed, igraph_bool_t mutual,
 igraph_bool_t circular);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_square_lattice() instead.

igraph_tree — Creates a k-ary tree in which almost
all vertices have k children (deprecated alias).

266

Graph generators

igraph_error_t igraph_tree(igraph_t *graph, igraph_integer_t n, igraph_integer_t children,
 igraph_tree_mode_t type);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_kary_tree() instead.

267

Chapter 10. Games on graphs
Microscopic update rules

igraph_deterministic_optimal_imitation —
Adopt a strategy via deterministic optimal imitation.

igraph_error_t igraph_deterministic_optimal_imitation(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_optimal_t optimality,
 const igraph_vector_t *quantities,
 igraph_vector_int_t *strategies,
 igraph_neimode_t mode);

A simple deterministic imitation strategy where a vertex revises its strategy to that which yields a local
optimum. Here "local" is with respect to the immediate neighbours of the vertex. The vertex retains its
current strategy where this strategy yields a locally optimal quantity. The quantity in this case could
be a measure such as fitness.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex,
then no strategy update would take place. Furthermore, if graph has at least two
vertices but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a
vertex in graph. No checking is performed and it is your responsibility to ensure
that vid is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input
vertex has degree 0, then no strategy update would take place and vid would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vid are its in-neighbours (respectively out-neighbours), but vid has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, all) of vid.

optimality: Logical; controls the type of optimality to be used. Supported values are:

IGRAPH_MAXIMUM Use maximum deterministic imitation, where the strategy
of the vertex with maximum quantity (e.g. fitness) would
be adopted. We update the strategy of vid to that which
yields a local maximum.

IGRAPH_MINIMUM Use minimum deterministic imitation. That is, the strategy
of the vertex with minimum quantity would be imitated.
In other words, update to the strategy that yields a local
minimum.

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of
each entry of the vector as being generated by a function such as the fitness function
for the game. So if the vector represents fitness quantities, then each vector entry is
the fitness of some vertex. The length of this vector must be the same as the number
of vertices in the vertex set of graph.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer,

268

Games on graphs

whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as a row or column index of the payoff matrix. The length of this
vector must be the same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for vid. If graph is undirected,
then we use all the immediate neighbours of vid. Thus if you know that graph is
undirected, then it is safe to pass the value IGRAPH_ALL here. Supported values
are:

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a directed graph.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant
when graph is a directed graph.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only
relevant if graph is a digraph. Also use this value if graph is
undirected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the para-
meters graph, quantities, or strategies is a null pointer. (2) The vector quantities
or strategies has a length different from the number of vertices in graph. (3) The parameter
graph is the empty or null graph, i.e. the graph with zero vertices and edges.

Time complexity: O(2d), where d is the degree of the vertex vid.

Example 10.1. File examples/simple/
igraph_deterministic_optimal_imitation.c

igraph_moran_process — The Moran process in a
network setting.

igraph_error_t igraph_moran_process(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_t *quantities,
 igraph_vector_int_t *strategies,
 igraph_neimode_t mode);

This is an extension of the classic Moran process to a network setting. The Moran process is a model
of haploid (asexual) reproduction within a population having a fixed size. In the network setting, the
Moran process operates on a weighted graph. At each time step a vertex a is chosen for reproduction
and another vertex b is chosen for death. Vertex a gives birth to an identical clone c, which replaces b.
Vertex c is a clone of a in that c inherits both the current quantity (e.g. fitness) and current strategy of a.

The graph G representing the game network is assumed to be simple, i.e. free of loops and without
multiple edges. If, on the other hand, G has a loop incident on some vertex v, then it is possible that
when v is chosen for reproduction it would forgo this opportunity. In particular, when v is chosen for
reproduction and v is also chosen for death, the clone of v would be v itself with its current vertex ID.
In effect v forgoes its chance for reproduction.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. The Moran process will

269

Games on graphs

not take place in each of the following cases: (1) If graph has one vertex. (2) If
graph has at least two vertices but zero edges.

weights: A vector of all edge weights for graph. Thus weights[i] means the weight of the
edge with edge ID i. For the purpose of the Moran process, each weight is assumed
to be positive; it is your responsibility to ensure this condition holds. The length of
this vector must be the same as the number of edges in graph.

quantities: A vector of quantities providing the quantity of each vertex in graph. The quantity
of the new clone will be stored here. Think of each entry of the vector as being
generated by a function such as the fitness function for the game. So if the vector
represents fitness quantities, then each vector entry is the fitness of some vertex.
The length of this vector must be the same as the number of vertices in the vertex
set of graph. For the purpose of the Moran process, each vector entry is assumed
to be nonnegative; no checks will be performed for this. It is your responsibility
to ensure that at least one entry is positive. Furthermore, this vector cannot be a
vector of zeros; this condition will be checked.

strategies: A vector of the current strategies for the vertex population. The strategy of the new
clone will be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as a row or column index of the payoff matrix. The length of this
vector must be the same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for the vertex a chosen for reproduc-
tion. This is only relevant if graph is directed. If graph is undirected, then it is
safe to pass the value IGRAPH_ALL here. Supported values are:

IGRAPH_OUT Use the out-neighbours of a. This option is only relevant when
graph is directed.

IGRAPH_IN Use the in-neighbours of a. Again this option is only relevant
when graph is directed.

IGRAPH_ALL Use both the in- and out-neighbours of a. This option is only rel-
evant if graph is directed. Also use this value if graph is undi-
rected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the pa-
rameters graph, weights, quantities or strategies is a null pointer. (2) The vector
quantities or strategies has a length different from the number of vertices in graph. (3)
The vector weights has a length different from the number of edges in graph. (4) The parame-
ter graph is the empty or null graph, i.e. the graph with zero vertices and edges. (5) The vector
weights, or the combination of interest, sums to zero. (6) The vector quantities, or the com-
bination of interest, sums to zero.

Time complexity: depends on the random number generator, but is usually O(n) where n is the number
of vertices in graph.

References:

(Lieberman et al. 2005) E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dy-
namics on graphs. Nature, 433(7023):312--316, 2005.

(Moran 1958) P. A. P. Moran. Random processes in genetics. Mathe-
matical Proceedings of the Cambridge Philosophical Society,
54(1):60--71, 1958.

270

Games on graphs

igraph_roulette_wheel_imitation — Adopt a
strategy via roulette wheel selection.

igraph_error_t igraph_roulette_wheel_imitation(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_bool_t islocal,
 const igraph_vector_t *quantities,
 igraph_vector_int_t *strategies,
 igraph_neimode_t mode);

A simple stochastic imitation strategy where a vertex revises its strategy to that of a vertex u chosen
proportionate to u's quantity (e.g. fitness). This is a special case of stochastic imitation, where a can-
didate is not chosen uniformly at random but proportionate to its quantity.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex,
then no strategy update would take place. Furthermore, if graph has at least two
vertices but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a
vertex in graph. No checking is performed and it is your responsibility to ensure
that vid is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input
vertex has degree 0, then no strategy update would take place and vid would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vid are its in-neighbours (respectively out-neighbours), but vid has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, all) of vid.

islocal: Boolean; this flag controls which perspective to use in computing the relative quan-
tity. If true then we use the local perspective; otherwise we use the global perspec-
tive. The local perspective for vid is the set of all immediate neighbours of vid.
In contrast, the global perspective for vid is the vertex set of graph.

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of
each entry of the vector as being generated by a function such as the fitness function
for the game. So if the vector represents fitness quantities, then each vector entry is
the fitness of some vertex. The length of this vector must be the same as the number
of vertices in the vertex set of graph. For the purpose of roulette wheel selection,
each vector entry is assumed to be nonnegative; no checks will be performed for
this. It is your responsibility to ensure that at least one entry is nonzero. Further-
more, this vector cannot be a vector of zeros; this condition will be checked.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as a row or column index of the payoff matrix. The length of this
vector must be the same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for vid. This is only relevant if we
are considering the local perspective, i.e. if islocal is true. If we are consider-
ing the global perspective, then it is safe to pass the value IGRAPH_ALL here. If
graph is undirected, then we use all the immediate neighbours of vid. Thus if
you know that graph is undirected, then it is safe to pass the value IGRAPH_ALL
here. Supported values are:

271

Games on graphs

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a digraph and we are considering the local perspective.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant
when graph is a directed graph and we are considering the local
perspective.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only
relevant if graph is a digraph. Also use this value if graph is
undirected or we are considering the global perspective.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the para-
meters graph, quantities, or strategies is a null pointer. (2) The vector quantities
or strategies has a length different from the number of vertices in graph. (3) The parame-
ter graph is the empty or null graph, i.e. the graph with zero vertices and edges. (4) The vector
quantities sums to zero.

Time complexity: O(n) where n is the number of vertices in the perspective to consider. If we consider
the global perspective, then n is the number of vertices in the vertex set of graph. On the other hand,
for the local perspective n is the degree of vid, excluding loops.

Reference:

(Yu & Gen 2010) X. Yu and M. Gen. Introduction to Evolutionary Algorithms. Springer,
2010, pages 18--20.

Example 10.2. File examples/simple/
igraph_roulette_wheel_imitation.c

igraph_stochastic_imitation — Adopt a strategy
via stochastic imitation with uniform selection.

igraph_error_t igraph_stochastic_imitation(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_imitate_algorithm_t algo,
 const igraph_vector_t *quantities,
 igraph_vector_int_t *strategies,
 igraph_neimode_t mode);

A simple stochastic imitation strategy where a vertex revises its strategy to that of a vertex chosen
uniformly at random from its local neighbourhood. This is called stochastic imitation via uniform
selection, where the strategy to imitate is chosen via some random process. For the purposes of this
function, we use uniform selection from a pool of candidates.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex,
then no strategy update would take place. Furthermore, if graph has at least two
vertices but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a
vertex in graph. No checking is performed and it is your responsibility to ensure

272

Games on graphs

that vid is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input
vertex has degree 0, then no strategy update would take place and vid would retain
its current strategy. Strategy update would also not take place if the local neigh-
bourhood of vid are its in-neighbours (respectively out-neighbours), but vid has
zero in-neighbours (respectively out-neighbours). Loops are ignored in computing
the degree (in, out, all) of vid.

algo: This flag controls which algorithm to use in stochastic imitation. Supported values
are:

IGRAPH_IMITATE_AUGMENTED Augmented imitation. Vertex vid imitates
the strategy of the chosen vertex u provid-
ed that doing so would increase the quantity
(e.g. fitness) of vid. Augmented imitation
can be thought of as "imitate if better".

IGRAPH_IMITATE_BLIND Blind imitation. Vertex vid blindly imi-
tates the strategy of the chosen vertex u, re-
gardless of whether doing so would increase
or decrease the quantity of vid.

IGRAPH_IMITATE_CONTRACT-
ED

Contracted imitation. Here vertex vid im-
itates the strategy of the chosen vertex u
if doing so would decrease the quantity of
vid. Think of contracted imitation as "im-
itate if worse".

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of
each entry of the vector as being generated by a function such as the fitness function
for the game. So if the vector represents fitness quantities, then each vector entry is
the fitness of some vertex. The length of this vector must be the same as the number
of vertices in the vertex set of graph.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer,
whose interpretation depends on the payoff matrix of the game. Generally we use
the strategy ID as a row or column index of the payoff matrix. The length of this
vector must be the same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for vid. If graph is undirected,
then we use all the immediate neighbours of vid. Thus if you know that graph is
undirected, then it is safe to pass the value IGRAPH_ALL here. Supported values
are:

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a directed graph.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant
when graph is a directed graph.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only
relevant if graph is a digraph. Also use this value if graph is
undirected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the para-
meters graph, quantities, or strategies is a null pointer. (2) The vector quantities
or strategies has a length different from the number of vertices in graph. (3) The parameter

273

Games on graphs

graph is the empty or null graph, i.e. the graph with zero vertices and edges. (4) The parameter
algo refers to an unsupported stochastic imitation algorithm.

Time complexity: depends on the uniform random number generator, but should usually be O(1).

Example 10.3. File examples/simple/
igraph_stochastic_imitation.c

Epidemic models

igraph_sir — Performs a number of SIR epidemics
model runs on a graph.

igraph_error_t igraph_sir(const igraph_t *graph, igraph_real_t beta,
 igraph_real_t gamma, igraph_integer_t no_sim,
 igraph_vector_ptr_t *result);

The SIR model is a simple model from epidemiology. The individuals of the population might be in
three states: susceptible, infected and recovered. Recovered people are assumed to be immune to the
disease. Susceptibles become infected with a rate that depends on their number of infected neighbors.
Infected people become recovered with a constant rate. See these parameters below.

This function runs multiple simulations, all starting with a single uniformly randomly chosen infected
individual. A simulation is stopped when no infected individuals are left.

Arguments:

graph: The graph to perform the model on. For directed graphs edge directions are ignored and
a warning is given.

beta: The rate of infection of an individual that is susceptible and has a single infected neighbor.
The infection rate of a susceptible individual with n infected neighbors is n times beta.
Formally this is the rate parameter of an exponential distribution.

gamma: The rate of recovery of an infected individual. Formally, this is the rate parameter of an
exponential distribution.

no_sim: The number of simulation runs to perform.

result: The result of the simulation is stored here, in a list of igraph_sir_t objects. To deal-
locate memory, the user needs to call igraph_sir_destroy on each element, before
destroying the pointer vector itself using igraph_vector_ptr_destroy_all().

Returns:

Error code.

Time complexity: O(no_sim * (|V| + |E| log(|V|))).

igraph_sir_t — The result of one SIR model simula-
tion.

274

Games on graphs

typedef struct igraph_sir_t {
 igraph_vector_t times;
 igraph_vector_int_t no_s, no_i, no_r;
} igraph_sir_t;

Data structure to store the results of one simulation of the SIR (susceptible-infected-recovered) model
on a graph. It has the following members. They are all (real or integer) vectors, and they are of the
same length.

Values:

times: A vector, the times of the events are stored here.

no_s: An integer vector, the number of susceptibles in each time step is stored here.

no_i: An integer vector, the number of infected individuals at each time step, is stored here.

no_r: An integer vector, the number of recovered individuals is stored here at each time step.

igraph_sir_destroy — Deallocates memory associ-
ated with a SIR simulation run.

void igraph_sir_destroy(igraph_sir_t *sir);

Arguments:

sir: The igraph_sir_t object storing the simulation.

275

Chapter 11. Vertex and edge selectors
and sequences, iterators
About selectors, iterators

Everything about vertices and vertex selectors also applies to edges and edge selectors unless explicitly
noted otherwise.

The vertex (and edge) selector notion was introduced in igraph 0.2. It is a way to reference a sequence
of vertices or edges independently of the graph.

While this might sound quite mysterious, it is actually very simple. For example, all vertices of a graph
can be selected by igraph_vs_all() and the graph independence means that igraph_vs_al-
l() is not parametrized by a graph object. That is, igraph_vs_all() is the general concept of
selecting all vertices of a graph. A vertex selector is then a way to specify the class of vertices to be
visited. The selector might specify that all vertices of a graph or all the neighbours of a vertex are to
be visited. A vertex selector is a way of saying that you want to visit a bunch of vertices, as opposed
to a vertex iterator which is a concrete plan for visiting each of the chosen vertices of a specific graph.

To determine the actual vertex IDs implied by a vertex selector, you need to apply the concept of
selecting vertices to a specific graph object. This can be accomplished by instantiating a vertex iterator
using a specific vertex selection concept and a specific graph object. The notion of vertex iterators
can be thought of in the following way. Given a specific graph object and the class of vertices to be
visited, a vertex iterator is a road map, plan or route for how to visit the chosen vertices.

Some vertex selectors have immediate versions. These have the prefix igraph_vss instead of
igraph_vs, e.g. igraph_vss_all() instead of igraph_vs_all(). The immediate versions
are to be used in the parameter list of the igraph functions, such as igraph_degree(). These
functions are not associated with any igraph_vs_t object, so they have no separate constructors and
destructors (destroy functions).

Vertex selector constructors
Vertex selectors are created by vertex selector constructors, can be instantiated with
igraph_vit_create(), and are destroyed with igraph_vs_destroy().

igraph_vs_all — Vertex set, all vertices of a graph.

igraph_error_t igraph_vs_all(igraph_vs_t *vs);

Arguments:

vs: Pointer to an uninitialized igraph_vs_t object.

Returns:

Error code.

See also:

igraph_vss_all(), igraph_vs_destroy()

276

Vertex and edge selectors
and sequences, iterators

This selector includes all vertices of a given graph in increasing vertex ID order.

Time complexity: O(1).

igraph_vs_adj — Adjacent vertices of a vertex.

igraph_error_t igraph_vs_adj(igraph_vs_t *vs,
 igraph_integer_t vid, igraph_neimode_t mode);

All neighboring vertices of a given vertex are selected by this selector. The mode argument controls
the type of the neighboring vertices to be selected. The vertices are visited in increasing vertex ID
order, as of igraph version 0.4.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

vid: Vertex ID, the center of the neighborhood.

mode: Decides the type of the neighborhood for directed graphs. This parameter is ignored for
undirected graphs. Possible values:

IGRAPH_OUT All vertices to which there is a directed edge from vid. That is, all the
out-neighbors of vid.

IGRAPH_IN All vertices from which there is a directed edge to vid. In other words,
all the in-neighbors of vid.

IGRAPH_ALL All vertices to which or from which there is a directed edge from/to vid.
That is, all the neighbors of vid considered as if the graph is undirected.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_nonadj — Non-adjacent vertices of a ver-
tex.

igraph_error_t igraph_vs_nonadj(igraph_vs_t *vs, igraph_integer_t vid,
 igraph_neimode_t mode);

All non-neighboring vertices of a given vertex. The mode argument controls the type of neigh-
boring vertices not to select. Instead of selecting immediate neighbors of vid as is done by
igraph_vs_adj(), the current function selects vertices that are not immediate neighbors of vid.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

277

Vertex and edge selectors
and sequences, iterators

vid: Vertex ID, the “center” of the non-neighborhood.

mode: The type of neighborhood not to select in directed graphs. Possible values:

IGRAPH_OUT All vertices will be selected except those to which there is a directed edge
from vid. That is, we select all vertices excluding the out-neighbors of
vid.

IGRAPH_IN All vertices will be selected except those from which there is a directed
edge to vid. In other words, we select all vertices but the in-neighbors
of vid.

IGRAPH_ALL All vertices will be selected except those from or to which there is a di-
rected edge to or from vid. That is, we select all vertices of vid except
for its immediate neighbors.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

Example 11.1. File examples/simple/igraph_vs_nonadj.c

igraph_vs_none — Empty vertex set.

igraph_error_t igraph_vs_none(igraph_vs_t *vs);

Creates an empty vertex selector.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

Returns:

Error code.

See also:

igraph_vss_none(), igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_1 — Vertex set with a single vertex.

igraph_error_t igraph_vs_1(igraph_vs_t *vs, igraph_integer_t vid);

278

Vertex and edge selectors
and sequences, iterators

This vertex selector selects a single vertex.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

vid: The vertex ID to be selected.

Returns:

Error Code.

See also:

igraph_vss_1(), igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_vector — Vertex set based on a vector.

igraph_error_t igraph_vs_vector(igraph_vs_t *vs,
 const igraph_vector_int_t *v);

This function makes it possible to handle an igraph_vector_int_t temporarily as a vertex selector. The
vertex selector should be thought of as a view into the vector. If you make changes to the vector
that also affects the vertex selector. Destroying the vertex selector does not destroy the vector. Do
not destroy the vector before destroying the vertex selector, or you might get strange behavior. Since
selectors are not tied to any specific graph, this function does not check whether the vertex IDs in
the vector are valid.

Arguments:

vs: Pointer to an uninitialized vertex selector.

v: Pointer to a igraph_vector_int_t object.

Returns:

Error code.

See also:

igraph_vss_vector(), igraph_vs_destroy()

Time complexity: O(1).

Example 11.2. File examples/simple/igraph_vs_vector.c

igraph_vs_vector_small — Create a vertex set by
giving its elements.

igraph_error_t igraph_vs_vector_small(igraph_vs_t *vs, ...);

279

Vertex and edge selectors
and sequences, iterators

This function can be used to create a vertex selector with a few of vertices. Do not forget to include a
-1 after the last vertex ID. The behavior of the function is undefined if you don't use a -1 properly.

Note that the vertex IDs supplied will be parsed as value of type int so you cannot supply arbitrarily
large (too large for int) vertex IDs here.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

...: Additional parameters, these will be the vertex IDs to be included in the vertex selector. Sup-
ply a -1 after the last vertex ID.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(n), the number of vertex IDs supplied.

igraph_vs_vector_copy — Vertex set based on a
vector, with copying.

igraph_error_t igraph_vs_vector_copy(igraph_vs_t *vs, const igraph_vector_int_t *v);

This function makes it possible to handle an igraph_vector_int_t permanently as a vertex selector. The
vertex selector creates a copy of the original vector, so the vector can safely be destroyed after creating
the vertex selector. Changing the original vector will not affect the vertex selector. The vertex selector
is responsible for deleting the copy made by itself. Since selectors are not tied to any specific graph,
this function does not check whether the vertex IDs in the vector are valid.

Arguments:

vs: Pointer to an uninitialized vertex selector.

v: Pointer to a igraph_vector_int_t object.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_range — Vertex set, an interval of ver-
tices.

280

Vertex and edge selectors
and sequences, iterators

igraph_error_t igraph_vs_range(igraph_vs_t *vs, igraph_integer_t start, igraph_integer_t end);

Creates a vertex selector containing all vertices with vertex ID equal to or bigger than from and
smaller than to. Note that the interval is closed from the left and open from the right, following C
conventions.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

start: The first vertex ID to be included in the vertex selector.

end: The first vertex ID not to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vss_range(), igraph_vs_destroy()

Time complexity: O(1).

Example 11.3. File examples/simple/igraph_vs_seq.c

Generic vertex selector operations

igraph_vs_copy — Creates a copy of a vertex selec-
tor.

igraph_error_t igraph_vs_copy(igraph_vs_t* dest, const igraph_vs_t* src);

Arguments:

src: The selector being copied.

dest: An uninitialized selector that will contain the copy.

igraph_vs_destroy — Destroy a vertex set.

void igraph_vs_destroy(igraph_vs_t *vs);

This function should be called for all vertex selectors when they are not needed. The memory allocated
for the vertex selector will be deallocated. Do not call this function on vertex selectors created with
the immediate versions of the vertex selector constructors (starting with igraph_vss).

Arguments:

vs: Pointer to a vertex selector object.

281

Vertex and edge selectors
and sequences, iterators

Time complexity: operating system dependent, usually O(1).

igraph_vs_is_all — Check whether all vertices are
included.

igraph_bool_t igraph_vs_is_all(const igraph_vs_t *vs);

This function checks whether the vertex selector object was created by igraph_vs_all() or
igraph_vss_all(). Note that the vertex selector might contain all vertices in a given graph but
if it wasn't created by the two constructors mentioned here the return value will be false.

Arguments:

vs: Pointer to a vertex selector object.

Returns:

true if the vertex selector contains all vertices and false otherwise.

Time complexity: O(1).

igraph_vs_size — Returns the size of the vertex se-
lector.

igraph_error_t igraph_vs_size(const igraph_t *graph, const igraph_vs_t *vs,
 igraph_integer_t *result);

The size of the vertex selector is the number of vertices it will yield when it is iterated over.

Arguments:

graph: The graph over which we will iterate.

result: The result will be returned here.

igraph_vs_type — Returns the type of the vertex se-
lector.

igraph_vs_type_t igraph_vs_type(const igraph_vs_t *vs);

Immediate vertex selectors

igraph_vss_all — All vertices of a graph (immediate
version).

282

Vertex and edge selectors
and sequences, iterators

igraph_vs_t igraph_vss_all(void);

Immediate vertex selector for all vertices in a graph. It can be used conveniently when some vertex
property (e.g. betweenness, degree, etc.) should be calculated for all vertices.

Returns:

A vertex selector for all vertices in a graph.

See also:

igraph_vs_all()

Time complexity: O(1).

igraph_vss_none — Empty vertex set (immediate
version).

igraph_vs_t igraph_vss_none(void);

The immediate version of the empty vertex selector.

Returns:

An empty vertex selector.

See also:

igraph_vs_none()

Time complexity: O(1).

igraph_vss_1 — Vertex set with a single vertex (im-
mediate version).

igraph_vs_t igraph_vss_1(igraph_integer_t vid);

The immediate version of the single-vertex selector.

Arguments:

vid: The vertex to be selected.

Returns:

A vertex selector containing a single vertex.

See also:

igraph_vs_1()

Time complexity: O(1).

283

Vertex and edge selectors
and sequences, iterators

igraph_vss_vector — Vertex set based on a vector
(immediate version).

igraph_vs_t igraph_vss_vector(const igraph_vector_int_t *v);

This is the immediate version of igraph_vs_vector.

Arguments:

v: Pointer to a igraph_vector_int_t object.

Returns:

A vertex selector object containing the vertices in the vector.

See also:

igraph_vs_vector()

Time complexity: O(1).

igraph_vss_range — An interval of vertices (immedi-
ate version).

igraph_vs_t igraph_vss_range(igraph_integer_t start, igraph_integer_t end);

The immediate version of igraph_vs_range().

Arguments:

start: The first vertex ID to be included in the vertex selector.

end: The first vertex ID not to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vs_range()

Time complexity: O(1).

Vertex iterators

igraph_vit_create — Creates a vertex iterator from
a vertex selector.

284

Vertex and edge selectors
and sequences, iterators

igraph_error_t igraph_vit_create(const igraph_t *graph, igraph_vs_t vs, igraph_vit_t *vit);

This function instantiates a vertex selector object with a given graph. This is the step when the actual
vertex IDs are created from the logical notion of the vertex selector based on the graph. E.g. a vertex
selector created with igraph_vs_all() contains knowledge that all vertices are included in a (yet
indefinite) graph. When instantiating it a vertex iterator object is created, this contains the actual vertex
IDs in the graph supplied as a parameter.

The same vertex selector object can be used to instantiate any number vertex iterators.

Arguments:

graph: An igraph_t object, a graph.

vs: A vertex selector object.

vit: Pointer to an uninitialized vertex iterator object.

Returns:

Error code.

See also:

igraph_vit_destroy().

Time complexity: it depends on the vertex selector type. O(1) for vertex selectors creat-
ed with igraph_vs_all(), igraph_vs_none(), igraph_vs_1, igraph_vs_vector,
igraph_vs_range(), igraph_vs_vector(), igraph_vs_vector_small(). O(d) for
igraph_vs_adj(), d is the number of vertex IDs to be included in the iterator. O(|V|) for
igraph_vs_nonadj(), |V| is the number of vertices in the graph.

igraph_vit_destroy — Destroys a vertex iterator.

void igraph_vit_destroy(const igraph_vit_t *vit);

Deallocates memory allocated for a vertex iterator.

Arguments:

vit: Pointer to an initialized vertex iterator object.

See also:

igraph_vit_create()

Time complexity: operating system dependent, usually O(1).

Stepping over the vertices
After creating an iterator with igraph_vit_create(), it points to the first vertex in the
vertex determined by the vertex selector (if there is any). The IGRAPH_VIT_NEXT() macro
steps to the next vertex, IGRAPH_VIT_END() checks whether there are more vertices to vis-
it, IGRAPH_VIT_SIZE() gives the total size of the vertices visited so far and to be visit-

285

Vertex and edge selectors
and sequences, iterators

ed. IGRAPH_VIT_RESET() resets the iterator, it will point to the first vertex again. Final-
ly IGRAPH_VIT_GET() gives the current vertex pointed to by the iterator (call this only if
IGRAPH_VIT_END() is false).

Here is an example on how to step over the neighbors of vertex 0:

igraph_vs_t vs;
igraph_vit_t vit;
...
igraph_vs_adj(&vs, 0, IGRAPH_ALL);
igraph_vit_create(&graph, vs, &vit);
while (!IGRAPH_VIT_END(vit)) {
 printf(" %" IGRAPH_PRId, IGRAPH_VIT_GET(vit));
 IGRAPH_VIT_NEXT(vit);
}
printf("\n");
...
igraph_vit_destroy(&vit);
igraph_vs_destroy(&vs);

IGRAPH_VIT_NEXT — Next vertex.

#define IGRAPH_VIT_NEXT(vit)

Steps the iterator to the next vertex. Only call this function if IGRAPH_VIT_END() returns false.

Arguments:

vit: The vertex iterator to step.

Time complexity: O(1).

IGRAPH_VIT_END — Are we at the end?

#define IGRAPH_VIT_END(vit)

Checks whether there are more vertices to step to.

Arguments:

vit: The vertex iterator to check.

Returns:

Logical value, if true there are no more vertices to step to.

Time complexity: O(1).

IGRAPH_VIT_SIZE — Size of a vertex iterator.

#define IGRAPH_VIT_SIZE(vit)

286

Vertex and edge selectors
and sequences, iterators

Gives the number of vertices in a vertex iterator.

Arguments:

vit: The vertex iterator.

Returns:

The number of vertices.

Time complexity: O(1).

IGRAPH_VIT_RESET — Reset a vertex iterator.

#define IGRAPH_VIT_RESET(vit)

Resets a vertex iterator. After calling this macro the iterator will point to the first vertex.

Arguments:

vit: The vertex iterator.

Time complexity: O(1).

IGRAPH_VIT_GET — Query the current position.

#define IGRAPH_VIT_GET(vit)

Gives the vertex ID of the current vertex pointed to by the iterator.

Arguments:

vit: The vertex iterator.

Returns:

The vertex ID of the current vertex.

Time complexity: O(1).

Edge selector constructors

igraph_es_all — Edge set, all edges.

igraph_error_t igraph_es_all(igraph_es_t *es,
 igraph_edgeorder_type_t order);

Arguments:

es: Pointer to an uninitialized edge selector object.

287

Vertex and edge selectors
and sequences, iterators

order: Constant giving the order in which the edges will be included in the selector. Possible val-
ues: IGRAPH_EDGEORDER_ID, edge ID order. IGRAPH_EDGEORDER_FROM, vertex
ID order, the id of the source vertex counts for directed graphs. The order of the incident
edges of a given vertex is arbitrary. IGRAPH_EDGEORDER_TO, vertex ID order, the ID
of the target vertex counts for directed graphs. The order of the incident edges of a given
vertex is arbitrary. For undirected graph the latter two is the same.

Returns:

Error code.

See also:

igraph_ess_all(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_incident — Edges incident on a given
vertex.

igraph_error_t igraph_es_incident(igraph_es_t *es,
 igraph_integer_t vid, igraph_neimode_t mode);

Arguments:

es: Pointer to an uninitialized edge selector object.

vid: Vertex ID, of which the incident edges will be selected.

mode: Constant giving the type of the incident edges to select. This is ignored for undirected
graphs. Possible values: IGRAPH_OUT, outgoing edges; IGRAPH_IN, incoming edges;
IGRAPH_ALL, all edges.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(1).

igraph_es_none — Empty edge selector.

igraph_error_t igraph_es_none(igraph_es_t *es);

Arguments:

es: Pointer to an uninitialized edge selector object to initialize.

288

Vertex and edge selectors
and sequences, iterators

Returns:

Error code.

See also:

igraph_ess_none(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_1 — Edge selector containing a single
edge.

igraph_error_t igraph_es_1(igraph_es_t *es, igraph_integer_t eid);

Arguments:

es: Pointer to an uninitialized edge selector object.

eid: Edge ID of the edge to select.

Returns:

Error code.

See also:

igraph_ess_1(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_vector — Handle a vector as an edge se-
lector.

igraph_error_t igraph_es_vector(igraph_es_t *es, const igraph_vector_int_t *v);

Creates an edge selector which serves as a view into a vector containing edge IDs. Do not destroy
the vector before destroying the edge selector. Since selectors are not tied to any specific graph, this
function does not check whether the edge IDs in the vector are valid.

Arguments:

es: Pointer to an uninitialized edge selector.

v: Vector containing edge IDs.

Returns:

Error code.

See also:

289

Vertex and edge selectors
and sequences, iterators

igraph_ess_vector(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_range — Edge selector, a sequence of
edge IDs.

igraph_error_t igraph_es_range(igraph_es_t *es, igraph_integer_t start, igraph_integer_t end);

Creates an edge selector containing all edges with edge ID equal to or bigger than from and smaller
than to. Note that the interval is closed from the left and open from the right, following C conventions.

Arguments:

vs: Pointer to an uninitialized edge selector object.

start: The first edge ID to be included in the edge selector.

end: The first edge ID not to be included in the edge selector.

Returns:

Error code.

See also:

igraph_ess_range(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_pairs — Edge selector, multiple edges
defined by their endpoints in a vector.

igraph_error_t igraph_es_pairs(igraph_es_t *es, const igraph_vector_int_t *v,
 igraph_bool_t directed);

The edges between the given pairs of vertices will be included in the edge selection. The vertex pairs
must be defined in the vector v, the first element of the vector is the first vertex of the first edge to be
selected, the second element is the second vertex of the first edge, the third element is the first vertex
of the second edge and so on.

Arguments:

es: Pointer to an uninitialized edge selector object.

v: The vector containing the endpoints of the edges.

directed: Whether the graph is directed or not.

Returns:

Error code.

290

Vertex and edge selectors
and sequences, iterators

See also:

igraph_es_pairs_small(), igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

Example 11.4. File examples/simple/igraph_es_pairs.c

igraph_es_pairs_small — Edge selector, multiple
edges defined by their endpoints as arguments.

igraph_error_t igraph_es_pairs_small(igraph_es_t *es, igraph_bool_t directed, int first, ...);

The edges between the given pairs of vertices will be included in the edge selection. The vertex pairs
must be given as the arguments of the function call, the third argument is the first vertex of the first
edge, the fourth argument is the second vertex of the first edge, the fifth is the first vertex of the second
edge and so on. The last element of the argument list must be -1 to denote the end of the argument list.

Note that the vertex IDs supplied will be parsed as int's so you cannot supply arbitrarily large (too
large for int) vertex IDs here.

Arguments:

es: Pointer to an uninitialized edge selector object.

directed: Whether the graph is directed or not.

...: The additional arguments give the edges to be included in the selector, as pairs of ver-
tex IDs. The last argument must be -1. The first parameter is present for technical
reasons and represents the first variadic argument.

Returns:

Error code.

See also:

igraph_es_pairs(), igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

igraph_es_path — Edge selector, edge IDs on a
path.

igraph_error_t igraph_es_path(igraph_es_t *es, const igraph_vector_int_t *v,
 igraph_bool_t directed);

This function takes a vector of vertices and creates a selector of edges between those vertices. Vector
{0, 3, 4, 7} will select edges (0 -> 3), (3 -> 4), (4 -> 7). If these edges don't exist then trying to create
an iterator using this selector will fail.

Arguments:

291

Vertex and edge selectors
and sequences, iterators

es: Pointer to an uninitialized edge selector object.

v: Pointer to a vector of vertex IDs along the path.

directed: If edge directions should be taken into account. This will be ignored if the graph to
select from is undirected.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(n), the number of vertices.

igraph_es_vector_copy — Edge set, based on a
vector, with copying.

igraph_error_t igraph_es_vector_copy(igraph_es_t *es, const igraph_vector_int_t *v);

This function makes it possible to handle an igraph_vector_int_t permanently as an edge selector. The
edge selector creates a copy of the original vector, so the vector can safely be destroyed after creating
the edge selector. Changing the original vector will not affect the edge selector. The edge selector is
responsible for deleting the copy made by itself. Since selectors are not tied to any specific graph, this
function does not check whether the edge IDs in the vector are valid.

Arguments:

es: Pointer to an uninitialized edge selector.

v: Pointer to a igraph_vector_int_t object.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(1).

Immediate edge selectors

igraph_ess_all — Edge set, all edges (immediate
version).

igraph_es_t igraph_ess_all(igraph_edgeorder_type_t order);

292

Vertex and edge selectors
and sequences, iterators

The immediate version of the all-edges selector.

Arguments:

order: Constant giving the order of the edges in the edge selector. See igraph_es_all() for
the possible values.

Returns:

The edge selector.

See also:

igraph_es_all()

Time complexity: O(1).

igraph_ess_none — Immediate empty edge selector.

igraph_es_t igraph_ess_none(void);

Immediate version of the empty edge selector.

Returns:

Initialized empty edge selector.

See also:

igraph_es_none()

Time complexity: O(1).

igraph_ess_1 — Immediate version of the single
edge edge selector.

igraph_es_t igraph_ess_1(igraph_integer_t eid);

Arguments:

eid: The ID of the edge.

Returns:

The edge selector.

See also:

igraph_es_1()

Time complexity: O(1).

293

Vertex and edge selectors
and sequences, iterators

igraph_ess_vector — Immediate vector view edge
selector.

igraph_es_t igraph_ess_vector(const igraph_vector_int_t *v);

This is the immediate version of the vector of edge IDs edge selector.

Arguments:

v: The vector of edge IDs.

Returns:

Edge selector, initialized.

See also:

igraph_es_vector()

Time complexity: O(1).

igraph_ess_range — Immediate version of the se-
quence edge selector.

igraph_es_t igraph_ess_range(igraph_integer_t start, igraph_integer_t end);

Arguments:

start: The first edge ID to be included in the edge selector.

end: The first edge ID not to be included in the edge selector.

Returns:

The initialized edge selector.

See also:

igraph_es_range()

Time complexity: O(1).

Generic edge selector operations

igraph_es_as_vector — Transform edge selector
into vector.

294

Vertex and edge selectors
and sequences, iterators

igraph_error_t igraph_es_as_vector(const igraph_t *graph, igraph_es_t es,
 igraph_vector_int_t *v);

Call this function on an edge selector to transform it into a vector. This is only implemented for
sequence and vector selectors. If the edges do not exist in the graph, this will result in an error.

Arguments:

graph: Pointer to a graph to check if the edges in the selector exist.

es: An edge selector object.

v: Pointer to initialized vector. The result will be stored here.

Time complexity: O(n), the number of edges in the selector.

igraph_es_copy — Creates a copy of an edge selec-
tor.

igraph_error_t igraph_es_copy(igraph_es_t* dest, const igraph_es_t* src);

Arguments:

src: The selector being copied.

dest: An uninitialized selector that will contain the copy.

See also:

igraph_es_destroy()

igraph_es_destroy — Destroys an edge selector ob-
ject.

void igraph_es_destroy(igraph_es_t *es);

Call this function on an edge selector when it is not needed any more. Do not call this function on
edge selectors created by immediate constructors, those don't need to be destroyed.

Arguments:

es: Pointer to an edge selector object.

Time complexity: operating system dependent, usually O(1).

igraph_es_is_all — Check whether an edge selec-
tor includes all edges.

igraph_bool_t igraph_es_is_all(const igraph_es_t *es);

295

Vertex and edge selectors
and sequences, iterators

Arguments:

es: Pointer to an edge selector object.

Returns:

true if es was created with igraph_es_all() or igraph_ess_all(), and false oth-
erwise.

Time complexity: O(1).

igraph_es_size — Returns the size of the edge se-
lector.

igraph_error_t igraph_es_size(const igraph_t *graph, const igraph_es_t *es,
 igraph_integer_t *result);

The size of the edge selector is the number of edges it will yield when it is iterated over.

Arguments:

graph: The graph over which we will iterate.

result: The result will be returned here.

igraph_es_type — Returns the type of the edge se-
lector.

igraph_es_type_t igraph_es_type(const igraph_es_t *es);

Edge iterators

igraph_eit_create — Creates an edge iterator from
an edge selector.

igraph_error_t igraph_eit_create(const igraph_t *graph, igraph_es_t es, igraph_eit_t *eit);

This function creates an edge iterator based on an edge selector and a graph.

The same edge selector can be used to create many edge iterators, also for different graphs.

Arguments:

graph: An igraph_t object for which the edge selector will be instantiated.

es: The edge selector to instantiate.

296

Vertex and edge selectors
and sequences, iterators

eit: Pointer to an uninitialized edge iterator.

Returns:

Error code.

See also:

igraph_eit_destroy()

Time complexity: depends on the type of the edge selector. For edge selectors created
by igraph_es_all(), igraph_es_none(), igraph_es_1(), igraph_es_vector(),
igraph_es_seq() it is O(1). For igraph_es_incident() it is O(d) where d is the number
of incident edges of the vertex.

igraph_eit_destroy — Destroys an edge iterator.

void igraph_eit_destroy(const igraph_eit_t *eit);

Arguments:

eit: Pointer to an edge iterator to destroy.

See also:

igraph_eit_create()

Time complexity: operating system dependent, usually O(1).

Stepping over the edges
Just like for vertex iterators, macros are provided for stepping over a sequence of edges:
IGRAPH_EIT_NEXT() goes to the next edge, IGRAPH_EIT_END() checks whether there are
more edges to visit, IGRAPH_EIT_SIZE() gives the number of edges in the edge sequence,
IGRAPH_EIT_RESET() resets the iterator to the first edge and IGRAPH_EIT_GET() returns the
id of the current edge.

IGRAPH_EIT_NEXT — Next edge.

#define IGRAPH_EIT_NEXT(eit)

Steps the iterator to the next edge. Call this function only if IGRAPH_EIT_END() returns false.

Arguments:

eit: The edge iterator to step.

Time complexity: O(1).

IGRAPH_EIT_END — Are we at the end?

297

Vertex and edge selectors
and sequences, iterators

#define IGRAPH_EIT_END(eit)

Checks whether there are more edges to step to.

Arguments:

wit: The edge iterator to check.

Returns:

Logical value, if true there are no more edges to step to.

Time complexity: O(1).

IGRAPH_EIT_SIZE — Number of edges in the iterator.

#define IGRAPH_EIT_SIZE(eit)

Gives the number of edges in an edge iterator.

Arguments:

eit: The edge iterator.

Returns:

The number of edges.

Time complexity: O(1).

IGRAPH_EIT_RESET — Reset an edge iterator.

#define IGRAPH_EIT_RESET(eit)

Resets an edge iterator. After calling this macro the iterator will point to the first edge.

Arguments:

eit: The edge iterator.

Time complexity: O(1).

IGRAPH_EIT_GET — Query an edge iterator.

#define IGRAPH_EIT_GET(eit)

Gives the edge ID of the current edge pointed to by an iterator.

Arguments:

eit: The edge iterator.

298

Vertex and edge selectors
and sequences, iterators

Returns:

The id of the current edge.

Time complexity: O(1).

Deprecated functions

igraph_es_seq — Edge selector, a sequence of edge
IDs, with inclusive endpoints (deprecated).

igraph_error_t igraph_es_seq(igraph_es_t *es, igraph_integer_t from, igraph_integer_t to);

All edge IDs between from and to (inclusive) will be included in the edge selection.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_es_range() instead.

Arguments:

es: Pointer to an uninitialized edge selector object.

from: The first edge ID to be included.

to: The last edge ID to be included.

Returns:

Error code.

See also:

igraph_ess_seq(), igraph_es_destroy()

Time complexity: O(1).

igraph_ess_seq — Immediate version of the se-
quence edge selector, with inclusive endpoints.

igraph_es_t igraph_ess_seq(igraph_integer_t from, igraph_integer_t to);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_ess_range() instead.

Arguments:

299

Vertex and edge selectors
and sequences, iterators

from: The first edge ID to include.

to: The last edge ID to include.

Returns:

The initialized edge selector.

See also:

igraph_es_seq()

Time complexity: O(1).

igraph_vs_seq — Vertex set, an interval of vertices
with inclusive endpoints (deprecated).

igraph_error_t igraph_vs_seq(igraph_vs_t *vs, igraph_integer_t from, igraph_integer_t to);

Creates a vertex selector containing all vertices with vertex ID equal to or bigger than from and equal
to or smaller than to. Note that both endpoints are inclusive, contrary to C conventions.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_vs_range() instead.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

from: The first vertex ID to be included in the vertex selector.

to: The last vertex ID to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vs_range(), igraph_vss_seq(), igraph_vs_destroy()

Time complexity: O(1).

Example 11.5. File examples/simple/igraph_vs_seq.c

igraph_vss_seq — An interval of vertices with inclu-
sive endpoints (immediate version, deprecated).

300

Vertex and edge selectors
and sequences, iterators

igraph_vs_t igraph_vss_seq(igraph_integer_t from, igraph_integer_t to);

The immediate version of igraph_vs_seq().

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_vss_range() instead.

Arguments:

from: The first vertex ID to be included in the vertex selector.

to: The last vertex ID to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vss_range(), igraph_vs_seq()

Time complexity: O(1).

301

Chapter 12. Graph, vertex and edge
attributes

Attributes are numbers, boolean values or strings associated with the vertices or edges of a graph, or
with the graph itself. E.g. you may label vertices with symbolic names or attach numeric weights to
the edges of a graph. In addition to these three basic types, a custom object type is supported as well.

igraph attributes are designed to be flexible and extensible. In igraph attributes are implemented via
an interface abstraction: any type implementing the functions in the interface, can be used for storing
vertex, edge and graph attributes. This means that different attribute implementations can be used
together with igraph. This is reasonable: if igraph is used from Python attributes can be of any Python
type, from R all R types are allowed. There is also an experimental attribute implementation to be
used when programming in C, but by default it is currently turned off.

First we briefly look over how attribute handlers can be implemented. This is not something a user does
every day. It is rather typically the job of the high level interface writers. (But it is possible to write
an interface without implementing attributes.) Then we show the experimental C attribute handler.

The Attribute Handler Interface
It is possible to attach an attribute handling interface to igraph. This is simply a table of functions, of
type igraph_attribute_table_t. These functions are invoked to notify the attribute handling
code about the structural changes in a graph. See the documentation of this type for details.

By default there is no attribute interface attached to igraph. To attach one, call igraph_set_at-
tribute_table with your new table. This is normally done on program startup, and is kept un-
touched for the program's lifetime. It must be done before any graph object is created, as graphs cre-
ated with a given attribute handler cannot be manipulated while a different attribute handler is active.

igraph_attribute_table_t — Table of functions to
perform operations on attributes.

typedef struct igraph_attribute_table_t {
 igraph_error_t (*init)(igraph_t *graph, igraph_vector_ptr_t *attr);
 void (*destroy)(igraph_t *graph);
 igraph_error_t (*copy)(igraph_t *to, const igraph_t *from, igraph_bool_t ga,
 igraph_bool_t va, igraph_bool_t ea);
 igraph_error_t (*add_vertices)(igraph_t *graph, igraph_integer_t nv, igraph_vector_ptr_t *attr);
 igraph_error_t (*permute_vertices)(const igraph_t *graph,
 igraph_t *newgraph,
 const igraph_vector_int_t *idx);
 igraph_error_t (*combine_vertices)(const igraph_t *graph,
 igraph_t *newgraph,
 const igraph_vector_int_list_t *merges,
 const igraph_attribute_combination_t *comb);
 igraph_error_t (*add_edges)(igraph_t *graph, const igraph_vector_int_t *edges,
 igraph_vector_ptr_t *attr);
 igraph_error_t (*permute_edges)(const igraph_t *graph,
 igraph_t *newgraph, const igraph_vector_int_t *idx);
 igraph_error_t (*combine_edges)(const igraph_t *graph,
 igraph_t *newgraph,
 const igraph_vector_int_list_t *merges,

302

Graph, vertex and edge attributes

 const igraph_attribute_combination_t *comb);
 igraph_error_t (*get_info)(const igraph_t *graph,
 igraph_strvector_t *gnames, igraph_vector_int_t *gtypes,
 igraph_strvector_t *vnames, igraph_vector_int_t *vtypes,
 igraph_strvector_t *enames, igraph_vector_int_t *etypes);
 igraph_bool_t (*has_attr)(const igraph_t *graph, igraph_attribute_elemtype_t type,
 const char *name);
 igraph_error_t (*gettype)(const igraph_t *graph, igraph_attribute_type_t *type,
 igraph_attribute_elemtype_t elemtype, const char *name);
 igraph_error_t (*get_numeric_graph_attr)(const igraph_t *graph, const char *name,
 igraph_vector_t *value);
 igraph_error_t (*get_string_graph_attr)(const igraph_t *graph, const char *name,
 igraph_strvector_t *value);
 igraph_error_t (*get_bool_graph_attr)(const igraph_t *igraph, const char *name,
 igraph_vector_bool_t *value);
 igraph_error_t (*get_numeric_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_vector_t *value);
 igraph_error_t (*get_string_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_strvector_t *value);
 igraph_error_t (*get_bool_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_vector_bool_t *value);
 igraph_error_t (*get_numeric_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_vector_t *value);
 igraph_error_t (*get_string_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_strvector_t *value);
 igraph_error_t (*get_bool_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_vector_bool_t *value);
} igraph_attribute_table_t;

This type collects the functions defining an attribute handler. It has the following members:

Values:

init: This function is called whenever a new graph object is cre-
ated, right after it is created but before any vertices or edges
are added. It is supposed to set the attr member of the
igraph_t object, which is guaranteed to be set to a null point-
er before this function is called. It is expected to return an error
code.

destroy: This function is called whenever the graph object is destroyed,
right before freeing the allocated memory. It is supposed to do
any cleanup operations that are need to dispose of the attr
member of the igraph_t object properly. The caller will set
the attr member to a null pointer after this function returns.

copy: This function is called when copying a graph with
igraph_copy, after the structure of the graph has been al-
ready copied. It is supposed to populate the attr member of
the target igraph_t object. The attr member of the target
is guaranteed to be set to a null pointer before this function is
called. It is expected to return an error code.

303

Graph, vertex and edge attributes

add_vertices: Called when vertices are added to a graph, before adding the
vertices themselves. The number of vertices to add is supplied
as an argument. Expected to return an error code.

permute_vertices: Called when a new graph is created based on an existing one
such that there is a mapping from the vertices of the new graph
back to the vertices of the old graph (e.g. if vertices are removed
from a graph). The supplied index vector defines which old ver-
tex a new vertex corresponds to. Its length must be the same
as the number of vertices in the new graph. Note that the old
and the new graph may be the same. If the two graph instances
are not the same, implementors may safely assume that the new
graph has no vertex attributes yet (but it may already have graph
or edge attributes by the time this function is called).

combine_vertices: This function is called when the creation of a new graph in-
volves a merge (contraction, etc.) of vertices from another
graph. The function is after the new graph was created. An ar-
gument specifies how several vertices from the old graph map
to a single vertex in the new graph. It is guaranteed that the old
and the new graph instances are different when this callback
is called. Implementors may safely assume that the new graph
has no vertex attributes yet (but it may already have graph or
edge attributes by the time this function is called).

add_edges: Called when new edges have been added. The number of new
edges are supplied as well. It is expected to return an error code.

permute_edges: Called when a new graph is created and some of the new edges
should carry the attributes of some of the old edges. The idx
vector shows the mapping between the old edges and the new
ones. Its length is the same as the number of edges in the new
graph, and for each edge it gives the ID of the old edge (the
edge in the old graph). Note that the old and the new graph
instances may be the same. If the two graph instances are not
the same, implementors may safely assume that the new graph
has no edge attributes yet (but it may already have graph or
vertex attributes by the time this function is called).

combine_edges: This function is called when the creation of a new graph in-
volves a merge (contraction, etc.) of edges from another graph.
The function is after the new graph was created. An argument
specifies how several edges from the old graph map to a single
edge in the new graph. It is guaranteed that the old and the new
graph instances are different when this callback is called. Im-
plementors may safely assume that the new graph has no edge
attributes yet (but it may already have graph or vertex attributes
by the time this function is called).

get_info: Query the attributes of a graph, the names and types should be
returned.

has_attr: Check whether a graph has the named graph/vertex/edge at-
tribute.

gettype: Query the type of a graph/vertex/edge attribute.

get_numeric_graph_attr: Query a numeric graph attribute. The value should be placed as
the first element of the value vector.

304

Graph, vertex and edge attributes

get_string_graph_attr: Query a string graph attribute. The value should be placed as
the first element of the value string vector.

get_bool_graph_attr: Query a boolean graph attribute. The value should be placed as
the first element of the value boolean vector.

get_numeric_vertex_attr: Query a numeric vertex attribute, for the vertices included in
vs.

get_string_vertex_attr: Query a string vertex attribute, for the vertices included in vs.

get_bool_vertex_attr: Query a boolean vertex attribute, for the vertices included in
vs.

get_numeric_edge_attr: Query a numeric edge attribute, for the edges included in es.

get_string_edge_attr: Query a string edge attribute, for the edges included in es.

get_bool_edge_attr: Query a boolean edge attribute, for the edges included in es.

Note that the get_*_*_attr are allowed to convert the attributes to numeric or string. E.g. if a
vertex attribute is a GNU R complex data type, then get_string_vertex_attribute may
serialize it into a string, but this probably makes sense only if add_vertices is able to deserialize it.

igraph_set_attribute_table — Attach an attribute
table.

igraph_attribute_table_t *
igraph_set_attribute_table(const igraph_attribute_table_t * table);

This function attaches attribute handling code to the igraph library. Note that the attribute handler table
is not thread-local even if igraph is compiled in thread-local mode. In the vast majority of cases, this
is not a significant restriction.

Attribute handlers are normally attached on program startup, and are left active for the program's
lifetime. This is because a graph object created with a given attribute handler must not be manipulated
while a different attribute handler is active.

Arguments:

table: Pointer to an igraph_attribute_table_t object containing the functions for at-
tribute manipulation. Supply NULL here if you don't want attributes.

Returns:

Pointer to the old attribute handling table.

Time complexity: O(1).

igraph_attribute_type_t — The possible types of
the attributes.

typedef enum { IGRAPH_ATTRIBUTE_UNSPECIFIED = 0,
 IGRAPH_ATTRIBUTE_DEFAULT IGRAPH_DEPRECATED_ENUMVAL = IGRAPH_ATTRIBUTE_UNSPECIFIED,

305

Graph, vertex and edge attributes

 IGRAPH_ATTRIBUTE_NUMERIC = 1,
 IGRAPH_ATTRIBUTE_BOOLEAN = 2,
 IGRAPH_ATTRIBUTE_STRING = 3,
 IGRAPH_ATTRIBUTE_OBJECT = 127
 } igraph_attribute_type_t;

Note that this is only the type communicated by the attribute interface towards igraph functions. E.g.
in the R attribute handler, it is safe to say that all complex R object attributes are strings, as long as
this interface is able to serialize them into strings. See also igraph_attribute_table_t.

Values:

IGRAPH_AT-
TRIBUTE_UNSPECIFIED:

Currently used internally as a "null value" or "placeholder val-
ue" in some algorithms. Attribute records with this type must
not be passed to igraph functions.

IGRAPH_ATTRIBUTE_NU-
MERIC:

Numeric attribute.

IGRAPH_AT-
TRIBUTE_BOOLEAN:

Logical values, true or false.

IGRAPH_ATTRIBUTE_STRING: Attribute that can be converted to a string.

IGRAPH_ATTRIBUTE_OBJECT: Custom attribute type, to be used for special data types by client
applications. The R and Python interfaces use this for attributes
that hold R or Python objects. Usually ignored by igraph func-
tions.

Handling attribute combination lists
Several graph operations may collapse multiple vertices or edges into a single one. Attribute combi-
nation lists are used to indicate to the attribute handler how to combine the attributes of the original
vertices or edges and how to derive the final attribute value that is to be assigned to the collapsed
vertex or edge. For example, igraph_simplify() removes loops and combines multiple edges
into a single one; in case of a graph with an edge attribute named weight the attribute combination
list can tell the attribute handler whether the weight of a collapsed edge should be the sum, the mean
or some other function of the weights of the original edges that were collapsed into one.

One attribute combination list may contain several attribute combination records, one for each vertex
or edge attribute that is to be handled during the operation.

igraph_attribute_combination_init — Initialize
attribute combination list.

igraph_error_t igraph_attribute_combination_init(igraph_attribute_combination_t *comb);

Arguments:

comb: The uninitialized attribute combination list.

Returns:

Error code.

306

Graph, vertex and edge attributes

Time complexity: O(1)

igraph_attribute_combination_add — Add com-
bination record to attribute combination list.

igraph_error_t igraph_attribute_combination_add(igraph_attribute_combination_t *comb,
 const char *name,
 igraph_attribute_combination_type_t type,
 igraph_function_pointer_t func);

Arguments:

comb: The attribute combination list.

name: The name of the attribute. If the name already exists the attribute combination record will
be replaced. Use NULL to add a default combination record for all atributes not in the list.

type: The type of the attribute combination. See igraph_attribute_combina-
tion_type_t for the options.

func: Function to be used if type is IGRAPH_ATTRIBUTE_COMBINE_FUNCTION. This func-
tion is called by the concrete attribute handler attached to igraph, and its calling signature
depends completely on the attribute handler. For instance, if you are using attributes from
C and you have attached the C attribute handler, you need to follow the documentation of
the C attribute handler for more details.

Returns:

Error code.

Time complexity: O(n), where n is the number of current attribute combinations.

igraph_attribute_combination_remove — Re-
move a record from an attribute combination list.

igraph_error_t igraph_attribute_combination_remove(igraph_attribute_combination_t *comb,
 const char *name);

Arguments:

comb: The attribute combination list.

name: The attribute name of the attribute combination record to remove. It will be ignored if the
named attribute does not exist. It can be NULL to remove the default combination record.

Returns:

Error code. This currently always returns IGRAPH_SUCCESS.

Time complexity: O(n), where n is the number of records in the attribute combination list.

307

Graph, vertex and edge attributes

igraph_attribute_combination_destroy — De-
stroy attribute combination list.

void igraph_attribute_combination_destroy(igraph_attribute_combination_t *comb);

Arguments:

comb: The attribute combination list.

Time complexity: O(n), where n is the number of records in the attribute combination list.

igraph_attribute_combination_type_t — The
possible types of attribute combinations.

typedef enum {
 IGRAPH_ATTRIBUTE_COMBINE_IGNORE = 0,
 IGRAPH_ATTRIBUTE_COMBINE_DEFAULT = 1,
 IGRAPH_ATTRIBUTE_COMBINE_FUNCTION = 2,
 IGRAPH_ATTRIBUTE_COMBINE_SUM = 3,
 IGRAPH_ATTRIBUTE_COMBINE_PROD = 4,
 IGRAPH_ATTRIBUTE_COMBINE_MIN = 5,
 IGRAPH_ATTRIBUTE_COMBINE_MAX = 6,
 IGRAPH_ATTRIBUTE_COMBINE_RANDOM = 7,
 IGRAPH_ATTRIBUTE_COMBINE_FIRST = 8,
 IGRAPH_ATTRIBUTE_COMBINE_LAST = 9,
 IGRAPH_ATTRIBUTE_COMBINE_MEAN = 10,
 IGRAPH_ATTRIBUTE_COMBINE_MEDIAN = 11,
 IGRAPH_ATTRIBUTE_COMBINE_CONCAT = 12
} igraph_attribute_combination_type_t;

Values:

IGRAPH_ATTRIBUTE_COM-
BINE_IGNORE:

Ignore old attributes, use an empty value.

IGRAPH_ATTRIBUTE_COM-
BINE_DEFAULT:

Use the default way to combine attributes (decided by the at-
tribute handler implementation).

IGRAPH_ATTRIBUTE_COM-
BINE_FUNCTION:

Supply your own function to combine attributes.

IGRAPH_ATTRIBUTE_COM-
BINE_SUM:

Take the sum of the attributes.

IGRAPH_ATTRIBUTE_COM-
BINE_PROD:

Take the product of the attributes.

IGRAPH_ATTRIBUTE_COM-
BINE_MIN:

Take the minimum attribute.

IGRAPH_ATTRIBUTE_COM-
BINE_MAX:

Take the maximum attribute.

308

Graph, vertex and edge attributes

IGRAPH_ATTRIBUTE_COM-
BINE_RANDOM:

Take a random attribute.

IGRAPH_ATTRIBUTE_COM-
BINE_FIRST:

Take the first attribute.

IGRAPH_ATTRIBUTE_COM-
BINE_LAST:

Take the last attribute.

IGRAPH_ATTRIBUTE_COM-
BINE_MEAN:

Take the mean of the attributes.

IGRAPH_ATTRIBUTE_COM-
BINE_MEDIAN:

Take the median of the attributes.

IGRAPH_ATTRIBUTE_COM-
BINE_CONCAT:

Concatenate the attributes.

igraph_attribute_combination — Initialize at-
tribute combination list and add records.

igraph_error_t igraph_attribute_combination(
 igraph_attribute_combination_t *comb, ...);

Arguments:

comb: The uninitialized attribute combination list.

...: A list of 'name, type[, func]', where:

name: The name of the attribute. If the name already exists the attribute combination record will
be replaced. Use NULL to add a default combination record for all atributes not in the list.

type: The type of the attribute combination. See igraph_attribute_combina-
tion_type_t for the options.

func: Function to be used if type is IGRAPH_ATTRIBUTE_COMBINE_FUNCTION. The list
is closed by setting the name to IGRAPH_NO_MORE_ATTRIBUTES.

Returns:

Error code.

Time complexity: O(n^2), where n is the number attribute combinations records to add.

Example 12.1. File examples/simple/
igraph_attribute_combination.c

Accessing attributes from C
There is an experimental attribute handler that can be used from C code. In this section we show how
this works. This attribute handler is by default not attached (the default is no attribute handler), so
we first need to attach it:

309

Graph, vertex and edge attributes

igraph_set_attribute_table(&igraph_cattribute_table);

Now the attribute functions are available. Please note that the attribute handler must be attached before
you call any other igraph functions, otherwise you might end up with graphs without attributes and
an active attribute handler, which might cause unexpected program behaviour. The rule is that you
attach the attribute handler in the beginning of your main() and never touch it again. Detaching the
attribute handler might lead to memory leaks.

It is not currently possible to have attribute handlers on a per-graph basis. All graphs in an application
must be managed with the same attribute handler. This also applies to the default case when there is
no attribute handler at all.

The C attribute handler supports attaching real numbers, boolean values and character strings as at-
tributes. No vector values are allowed. For example, vertices have a name attribute holding a single
string value for each vertex, but it is not possible to have a coords attribute which is a vector of
numbers per vertex.

The functions documented in this section are specific to the C attribute handler. Code using these
functions will not function when a different attribute handler is attached.

Example 12.2. File examples/simple/cattributes.c

Example 12.3. File examples/simple/cattributes2.c

Example 12.4. File examples/simple/cattributes3.c

Example 12.5. File examples/simple/cattributes4.c

Query attributes

igraph_cattribute_list — List all attributes.

igraph_error_t igraph_cattribute_list(const igraph_t *graph,
 igraph_strvector_t *gnames, igraph_vector_int_t *gtypes,
 igraph_strvector_t *vnames, igraph_vector_int_t *vtypes,
 igraph_strvector_t *enames, igraph_vector_int_t *etypes);

See igraph_attribute_type_t for the various attribute types.

Arguments:

graph: The input graph.

gnames: String vector, the names of the graph attributes.

gtypes: Numeric vector, the types of the graph attributes.

vnames: String vector, the names of the vertex attributes.

vtypes: Numeric vector, the types of the vertex attributes.

enames: String vector, the names of the edge attributes.

310

Graph, vertex and edge attributes

etypes: Numeric vector, the types of the edge attributes.

Returns:

Error code.

Naturally, the string vector with the attribute names and the numeric vector with the attribute types
are in the right order, i.e. the first name corresponds to the first type, etc. Time complexity: O(Ag+Av
+Ae), the number of all attributes.

igraph_cattribute_has_attr — Checks whether a (graph,
vertex or edge) attribute exists.

igraph_bool_t igraph_cattribute_has_attr(const igraph_t *graph,
 igraph_attribute_elemtype_t type,
 const char *name);

Arguments:

graph: The graph.

type: The type of the attribute, IGRAPH_ATTRIBUTE_GRAPH, IGRAPH_AT-
TRIBUTE_VERTEX or IGRAPH_ATTRIBUTE_EDGE.

name: Character constant, the name of the attribute.

Returns:

Logical value, true if the attribute exists, false otherwise.

Time complexity: O(A), the number of (graph, vertex or edge) attributes, assuming attribute names
are not too long.

igraph_cattribute_GAN — Query a numeric graph attribute.

igraph_real_t igraph_cattribute_GAN(const igraph_t *graph, const char *name);

Returns the value of the given numeric graph attribute. If the attribute does not exist, a warning is
issued and NaN is returned.

Arguments:

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

GAN for a simpler interface.

311

Graph, vertex and edge attributes

Time complexity: O(Ag), the number of graph attributes.

GAN — Query a numeric graph attribute.

#define GAN(graph,n)

This is shorthand for igraph_cattribute_GAN().

Arguments:

graph: The graph.

n: The name of the attribute.

Returns:

The value of the attribute.

igraph_cattribute_GAB — Query a boolean graph attribute.

igraph_bool_t igraph_cattribute_GAB(const igraph_t *graph, const char *name);

Returns the value of the given boolean graph attribute. If the attribute does not exist, a warning is
issued and false is returned.

Arguments:

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

GAB for a simpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAB — Query a boolean graph attribute.

#define GAB(graph,n)

This is shorthand for igraph_cattribute_GAB().

Arguments:

graph: The graph.

n: The name of the attribute.

312

Graph, vertex and edge attributes

Returns:

The value of the attribute.

igraph_cattribute_GAS — Query a string graph attribute.

const char *igraph_cattribute_GAS(const igraph_t *graph, const char *name);

Returns a const pointer to the string graph attribute specified in name. The value must not be modified.
If the attribute does not exist, a warning is issued and an empty string is returned.

Arguments:

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

GAS for a simpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAS — Query a string graph attribute.

#define GAS(graph,n)

This is shorthand for igraph_cattribute_GAS().

Arguments:

graph: The graph.

n: The name of the attribute.

Returns:

The value of the attribute.

igraph_cattribute_VAN — Query a numeric vertex attribute.

igraph_real_t igraph_cattribute_VAN(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

If the attribute does not exist, a warning is issued and NaN is returned. See igraph_cattribut-
e_VANV() for an error-checked version.

313

Graph, vertex and edge attributes

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

VAN macro for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAN — Query a numeric vertex attribute.

#define VAN(graph,n,v)

This is shorthand for igraph_cattribute_VAN().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

The value of the attribute.

igraph_cattribute_VANV — Query a numeric vertex attribute
for many vertices.

igraph_error_t igraph_cattribute_VANV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_vector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The vertices to query.

result: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

314

Graph, vertex and edge attributes

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'.

VANV — Query a numeric vertex attribute for all vertices.

#define VANV(graph,n,vec)

This is a shorthand for igraph_cattribute_VANV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_VAB — Query a boolean vertex attribute.

igraph_bool_t igraph_cattribute_VAB(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

If the vertex attribute does not exist, a warning is issued and false is returned. See igraph_cat-
tribute_VABV() for an error-checked version.

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

VAB macro for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAB — Query a boolean vertex attribute.

315

Graph, vertex and edge attributes

#define VAB(graph,n,v)

This is shorthand for igraph_cattribute_VAB().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

The value of the attribute.

igraph_cattribute_VABV — Query a boolean vertex attribute
for many vertices.

igraph_error_t igraph_cattribute_VABV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_vector_bool_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The vertices to query.

result: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if
needed.

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'.

VABV — Query a boolean vertex attribute for all vertices.

#define VABV(graph,n,vec)

This is a shorthand for igraph_cattribute_VABV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if needed.

316

Graph, vertex and edge attributes

Returns:

Error code.

igraph_cattribute_VAS — Query a string vertex attribute.

const char *igraph_cattribute_VAS(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

Returns a const pointer to the string vertex attribute specified in name. The value must not be mod-
ified. If the vertex attribute does not exist, a warning is issued and an empty string is returned. See
igraph_cattribute_VASV() for an error-checked version.

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

The macro VAS for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAS — Query a string vertex attribute.

#define VAS(graph,n,v)

This is shorthand for igraph_cattribute_VAS().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

The value of the attribute.

igraph_cattribute_VASV — Query a string vertex attribute for
many vertices.

317

Graph, vertex and edge attributes

igraph_error_t igraph_cattribute_VASV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_strvector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The vertices to query.

result: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'. (We assume that the string attributes
have a bounded length.)

VASV — Query a string vertex attribute for all vertices.

#define VASV(graph,n,vec)

This is a shorthand for igraph_cattribute_VASV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_EAN — Query a numeric edge attribute.

igraph_real_t igraph_cattribute_EAN(const igraph_t *graph, const char *name,
 igraph_integer_t eid);

If the attribute does not exist, a warning is issued and NaN is returned. See igraph_cattribut-
e_EANV() for an error-checked version.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

318

Graph, vertex and edge attributes

Returns:

The value of the attribute.

See also:

EAN for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAN — Query a numeric edge attribute.

#define EAN(graph,n,e)

This is shorthand for igraph_cattribute_EAN().

Arguments:

graph: The graph.

n: The name of the attribute.

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EANV — Query a numeric edge attribute for
many edges.

igraph_error_t igraph_cattribute_EANV(const igraph_t *graph, const char *name,
 igraph_es_t eids, igraph_vector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

eids: The edges to query.

result: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'.

EANV — Query a numeric edge attribute for all edges.

319

Graph, vertex and edge attributes

#define EANV(graph,n,vec)

This is a shorthand for igraph_cattribute_EANV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_EAB — Query a boolean edge attribute.

igraph_bool_t igraph_cattribute_EAB(const igraph_t *graph, const char *name,
 igraph_integer_t eid);

If the edge attribute does not exist, a warning is issued and false is returned. See igraph_cat-
tribute_EABV() for an error-checked version.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

Returns:

The value of the attribute.

See also:

EAB for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAB — Query a boolean edge attribute.

#define EAB(graph,n,e)

This is shorthand for igraph_cattribute_EAB().

Arguments:

graph: The graph.

n: The name of the attribute.

320

Graph, vertex and edge attributes

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EABV — Query a boolean edge attribute for
many edges.

igraph_error_t igraph_cattribute_EABV(const igraph_t *graph, const char *name,
 igraph_es_t eids, igraph_vector_bool_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

eids: The edges to query.

result: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if
needed.

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'.

EABV — Query a boolean edge attribute for all edges.

#define EABV(graph,n,vec)

This is a shorthand for igraph_cattribute_EABV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_EAS — Query a string edge attribute.

const char *igraph_cattribute_EAS(const igraph_t *graph, const char *name,

321

Graph, vertex and edge attributes

 igraph_integer_t eid);

Returns a const pointer to the string edge attribute specified in name. The value must not be mod-
ified. If the edge attribute does not exist, a warning is issued and an empty string is returned. See
igraph_cattribute_EASV() for an error-checked version.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

Returns:

The value of the attribute.

\se EAS if you want to type less. Time complexity: O(Ae), the number of edge attributes.

EAS — Query a string edge attribute.

#define EAS(graph,n,e)

This is shorthand for igraph_cattribute_EAS().

Arguments:

graph: The graph.

n: The name of the attribute.

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EASV — Query a string edge attribute for
many edges.

igraph_error_t igraph_cattribute_EASV(const igraph_t *graph, const char *name,
 igraph_es_t eids, igraph_strvector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The edges to query.

result: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

322

Graph, vertex and edge attributes

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'. (We assume that the string attributes
have a bounded length.)

EASV — Query a string edge attribute for all edges.

#define EASV(graph,n,vec)

This is a shorthand for igraph_cattribute_EASV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Set attributes

igraph_cattribute_GAN_set — Set a numeric graph attribute.

igraph_error_t igraph_cattribute_GAN_set(igraph_t *graph, const char *name,
 igraph_real_t value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute.

Returns:

Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAN — Set a numeric graph attribute

#define SETGAN(graph,n,value)

This is a shorthand for igraph_cattribute_GAN_set().

323

Graph, vertex and edge attributes

Arguments:

graph: The graph.

n: The name of the attribute.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_GAB_set — Set a boolean graph attribute.

igraph_error_t igraph_cattribute_GAB_set(igraph_t *graph, const char *name,
 igraph_bool_t value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute.

Returns:

Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAB — Set a boolean graph attribute

#define SETGAB(graph,n,value)

This is a shorthand for igraph_cattribute_GAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_GAS_set — Set a string graph attribute.

324

Graph, vertex and edge attributes

igraph_error_t igraph_cattribute_GAS_set(igraph_t *graph, const char *name,
 const char *value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute. It will be copied.

Returns:

Error code.

\se SETGAS if you want to type less. Time complexity: O(1).

SETGAS — Set a string graph attribute

#define SETGAS(graph,n,value)

This is a shorthand for igraph_cattribute_GAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAN_set — Set a numeric vertex attribute.

igraph_error_t igraph_cattribute_VAN_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, igraph_real_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

value: The (new) value of the attribute.

Returns:

325

Graph, vertex and edge attributes

Error code.

See also:

SETVAN for a simpler way.

Time complexity: O(n), the number of vertices if the attribute is new, O(|vid|) otherwise.

SETVAN — Set a numeric vertex attribute

#define SETVAN(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAN_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAB_set — Set a boolean vertex attribute.

igraph_error_t igraph_cattribute_VAB_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, igraph_bool_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETVAB for a simpler way.

326

Graph, vertex and edge attributes

Time complexity: O(n), the number of vertices if the attribute is new, O(|vid|) otherwise.

SETVAB — Set a boolean vertex attribute

#define SETVAB(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAS_set — Set a string vertex attribute.

igraph_error_t igraph_cattribute_VAS_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, const char *value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETVAS for a simpler way.

Time complexity: O(n*l), n is the number of vertices, l is the length of the string to set. If the attribute
if not new then only O(|vid|*l).

SETVAS — Set a string vertex attribute

327

Graph, vertex and edge attributes

#define SETVAS(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_EAN_set — Set a numeric edge attribute.

igraph_error_t igraph_cattribute_EAN_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, igraph_real_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETEAN for a simpler way.

Time complexity: O(e), the number of edges if the attribute is new, O(|eid|) otherwise.

SETEAN — Set a numeric edge attribute

#define SETEAN(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAN_set().

Arguments:

328

Graph, vertex and edge attributes

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_EAB_set — Set a boolean edge attribute.

igraph_error_t igraph_cattribute_EAB_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, igraph_bool_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETEAB for a simpler way.

Time complexity: O(e), the number of edges if the attribute is new, O(|eid|) otherwise.

SETEAB — Set a boolean edge attribute

#define SETEAB(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

329

Graph, vertex and edge attributes

Returns:

Error code.

igraph_cattribute_EAS_set — Set a string edge attribute.

igraph_error_t igraph_cattribute_EAS_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, const char *value);

The attribute will be added if not present already. If present it will be overwritten. The same value
is set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETEAS for a simpler way.

Time complexity: O(e*l), n is the number of edges, l is the length of the string to set. If the attribute
if not new then only O(|eid|*l).

SETEAS — Set a string edge attribute

#define SETEAS(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

Returns:

Error code.

330

Graph, vertex and edge attributes

igraph_cattribute_VAN_setv — Set a numeric vertex attribute
for all vertices.

igraph_error_t igraph_cattribute_VAN_setv(igraph_t *graph, const char *name,
 const igraph_vector_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of vertices.

Returns:

Error code.

See also:

SETVANV for a simpler way.

Time complexity: O(n), the number of vertices.

SETVANV — Set a numeric vertex attribute for all vertices

#define SETVANV(graph,n,v)

This is a shorthand for igraph_cattribute_VAN_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_VAB_setv — Set a boolean vertex attribute
for all vertices.

igraph_error_t igraph_cattribute_VAB_setv(igraph_t *graph, const char *name,
 const igraph_vector_bool_t *v);

The attribute will be added if not present yet.

331

Graph, vertex and edge attributes

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this boolean vector must match the number of
vertices.

Returns:

Error code.

See also:

SETVANV for a simpler way.

Time complexity: O(n), the number of vertices.

SETVABV — Set a boolean vertex attribute for all vertices

#define SETVABV(graph,n,v)

This is a shorthand for igraph_cattribute_VAB_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_VAS_setv — Set a string vertex attribute
for all vertices.

igraph_error_t igraph_cattribute_VAS_setv(igraph_t *graph, const char *name,
 const igraph_strvector_t *sv);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

sv: String vector, the new attribute values. The length of this vector must match the number
of vertices.

332

Graph, vertex and edge attributes

Returns:

Error code.

See also:

SETVASV for a simpler way.

Time complexity: O(n+l), n is the number of vertices, l is the total length of the strings.

SETVASV — Set a string vertex attribute for all vertices

#define SETVASV(graph,n,v)

This is a shorthand for igraph_cattribute_VAS_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_EAN_setv — Set a numeric edge attribute
for all edges.

igraph_error_t igraph_cattribute_EAN_setv(igraph_t *graph, const char *name,
 const igraph_vector_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:

SETEANV for a simpler way.

Time complexity: O(e), the number of edges.

333

Graph, vertex and edge attributes

SETEANV — Set a numeric edge attribute for all edges

#define SETEANV(graph,n,v)

This is a shorthand for igraph_cattribute_EAN_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

igraph_cattribute_EAB_setv — Set a boolean edge attribute
for all edges.

igraph_error_t igraph_cattribute_EAB_setv(igraph_t *graph, const char *name,
 const igraph_vector_bool_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:

SETEABV for a simpler way.

Time complexity: O(e), the number of edges.

SETEABV — Set a boolean edge attribute for all edges

#define SETEABV(graph,n,v)

This is a shorthand for igraph_cattribute_EAB_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

334

Graph, vertex and edge attributes

v: Vector containing the new values of the attributes.

igraph_cattribute_EAS_setv — Set a string edge attribute for
all edges.

igraph_error_t igraph_cattribute_EAS_setv(igraph_t *graph, const char *name,
 const igraph_strvector_t *sv);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

sv: String vector, the new attribute values. The length of this vector must match the number
of edges.

Returns:

Error code.

See also:

SETEASV for a simpler way.

Time complexity: O(e+l), e is the number of edges, l is the total length of the strings.

SETEASV — Set a string edge attribute for all edges

#define SETEASV(graph,n,v)

This is a shorthand for igraph_cattribute_EAS_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Remove attributes

igraph_cattribute_remove_g — Remove a graph attribute.

void igraph_cattribute_remove_g(igraph_t *graph, const char *name);

Arguments:

335

Graph, vertex and edge attributes

graph: The graph object.

name: Name of the graph attribute to remove.

See also:

DELGA for a simpler way.

DELGA — Remove a graph attribute.

#define DELGA(graph,n)

A shorthand for igraph_cattribute_remove_g().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_v — Remove a vertex attribute.

void igraph_cattribute_remove_v(igraph_t *graph, const char *name);

Arguments:

graph: The graph object.

name: Name of the vertex attribute to remove.

See also:

DELVA for a simpler way.

DELVA — Remove a vertex attribute.

#define DELVA(graph,n)

A shorthand for igraph_cattribute_remove_v().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_e — Remove an edge attribute.

336

Graph, vertex and edge attributes

void igraph_cattribute_remove_e(igraph_t *graph, const char *name);

Arguments:

graph: The graph object.

name: Name of the edge attribute to remove.

See also:

DELEA for a simpler way.

DELEA — Remove an edge attribute.

#define DELEA(graph,n)

A shorthand for igraph_cattribute_remove_e().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_all — Remove all graph/ver-
tex/edge attributes.

void igraph_cattribute_remove_all(igraph_t *graph, igraph_bool_t g,
 igraph_bool_t v, igraph_bool_t e);

Arguments:

graph: The graph object.

g: Boolean, whether to remove graph attributes.

v: Boolean, whether to remove vertex attributes.

e: Boolean, whether to remove edge attributes.

See also:

DELGAS, DELVAS, DELEAS, DELALL for simpler ways.

DELGAS — Remove all graph attributes.

#define DELGAS(graph)

337

Graph, vertex and edge attributes

Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

DELVAS — Remove all vertex attributes.

#define DELVAS(graph)

Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

DELEAS — Remove all edge attributes.

#define DELEAS(graph)

Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

DELALL — Remove all attributes.

#define DELALL(graph)

All graph, vertex and edges attributes will be removed. Calls igraph_cattribute_re-
move_all().

Arguments:

graph: The graph.

Custom attribute combination functions
The C attribute handler supports combining the attributes of multiple vertices of edges into a single
attribute during a vertex or edge contraction operation via a user-defined function. This is achieved by
setting the type of the attribute combination to IGRAPH_ATTRIBUTE_COMBINE_FUNCTION and
passing in a pointer to the custom combination function when specifying attribute combinations in
igraph_attribute_combination() or igraph_attribute_combination_add() .
For the C attribute handler, the signature of the function depends on the type of the underlying attribute.
For numeric attributes, use:

 igraph_error_t function(const igraph_vector_t *input, igraph_real_t *output);

where input will receive a vector containing the value of the attribute for all the vertices or edges
being combined, and output must be filled by the function to the combined value. Similarly, for

338

Graph, vertex and edge attributes

Boolean attributes, the function takes a boolean vector in input and must return the combined
Boolean value in output:

 igraph_error_t function(const igraph_vector_bool_t *input, igraph_bool_t *output);

For string attributes, the signature is slightly different:

 igraph_error_t function(const igraph_strvector_t *input, char **output);

In case of strings, all strings in the input vector are owned by igraph and must not be modified or freed
in the combination handler. The string returned to the caller in output remains owned by the caller;
igraph will make a copy it and store the copy in the appropriate part of the data structure holding the
vertex or edge attributes.

339

Chapter 13. Structural properties of
graphs

These functions usually calculate some structural property of a graph, like its diameter, the degree
of the nodes, etc.

Basic properties

igraph_are_adjacent — Decides whether two ver-
tices are adjacent.

igraph_error_t igraph_are_adjacent(const igraph_t *graph,
 igraph_integer_t v1, igraph_integer_t v2,
 igraph_bool_t *res);

Decides whether there are any edges that have v1 and v2 as endpoints. This function is of course
symmetric for undirected graphs.

Arguments:

graph: The graph object.

v1: The first vertex.

v2: The second vertex.

res: Boolean, true if there is an edge from v1 to v2, false otherwise.

Returns:

The error code IGRAPH_EINVVID is returned if an invalid vertex ID is given.

Time complexity: O(min(log(d1), log(d2))), d1 is the (out-)degree of v1 and d2 is the (in-)degree
of v2.

Sparsifiers

igraph_spanner — Calculates a spanner of a graph
with a given stretch factor.

igraph_error_t igraph_spanner(const igraph_t *graph, igraph_vector_int_t *spanner,
 igraph_real_t stretch, const igraph_vector_t *weights);

A spanner of a graph G = (V,E) with a stretch t is a subgraph H = (V,Es) such that Es is a
subset of E and the distance between any pair of nodes in H is at most t times the distance in G. The
returned graph is always a spanner of the given graph with the specified stretch. For weighted graphs
the number of edges in the spanner is O(k n^(1 + 1 / k)), where k is k = (t + 1) /
2, m is the number of edges and n is the number of nodes in G. For unweighted graphs the number
of edges is O(n^(1 + 1 / k) + kn).

340

Structural properties of graphs

This function is based on the algorithm of Baswana and Sen: "A Simple and Linear Time Randomized
Algorithm for Computing Sparse Spanners in Weighted Graphs". https://doi.org/10.1002/rsa.20130

Arguments:

graph: An undirected connected graph object. If the graph is directed, the directions of the
edges will be ignored.

spanner: An initialized vector, the IDs of the edges that constitute the calculated spanner will be
returned here. Use igraph_subgraph_from_edges() to extract the spanner as
a separate graph object.

stretch: The stretch factor t of the spanner.

weights: The edge weights or NULL.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

Time complexity: The algorithm is a randomized Las Vegas algorithm. The expected running time is
O(km) where k is the value mentioned above and m is the number of edges.

(Shortest)-path related functions

igraph_distances — Length of the shortest paths
between vertices.

igraph_error_t igraph_distances(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t from, const igraph_vs_t to,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

res: The result of the calculation, a matrix. A pointer to an initialized matrix, to be more precise.
The matrix will be resized if needed. It will have the same number of rows as the length
of the from argument, and its number of columns is the number of vertices in the to
argument. One row of the matrix shows the distances from/to a given vertex to the ones in
to. For the unreachable vertices IGRAPH_INFINITY is returned.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

341

https://doi.org/10.1002/rsa.20130

Structural properties of graphs

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n(|V|+|E|)), n is the number of vertices to calculate, |V| and |E| are the number
of vertices and edges in the graph.

See also:

igraph_get_shortest_paths() to get the paths themselves, igraph_dis-
tances_dijkstra() for the weighted version with non-negative weights, igraph_dis-
tances_bellman_ford() if you also have negative weights.

Example 13.1. File examples/simple/distances.c

igraph_distances_cutoff — Length of the shortest
paths between vertices, with cutoff.

igraph_error_t igraph_distances_cutoff(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t from, const igraph_vs_t to,
 igraph_neimode_t mode, igraph_real_t cutoff);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This function is similar to igraph_distances(), but paths longer than cutoff will not be con-
sidered.

Arguments:

graph: The graph object.

res: The result of the calculation, a matrix. A pointer to an initialized matrix, to be more
precise. The matrix will be resized if needed. It will have the same number of rows as
the length of the from argument, and its number of columns is the number of vertices
in the to argument. One row of the matrix shows the distances from/to a given vertex to
the ones in to. For the unreachable vertices IGRAPH_INFINITY is returned.

from: The source vertices._d

to: The target vertices. It is not allowed to include a vertex twice or more.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

342

Structural properties of graphs

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the computa-
tion.

cutoff: The maximal length of paths that will be considered. When the distance of two vertices
is greater than this value, it will be returned as IGRAPH_INFINITY. Negative cutoffs
are treated as infinity.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(s |E| + |V|), where s is the number of source vertices to use, and |V| and |E| are
the number of vertices and edges in the graph.

See also:

igraph_distances_dijkstra_cutoff() for the weighted version with non-negative
weights.

Example 13.2. File examples/simple/distances.c

igraph_distances_dijkstra — Weighted shortest
path lengths between vertices.

igraph_error_t igraph_distances_dijkstra(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function implements Dijkstra's algorithm, which can find the weighted shortest path lengths from
a source vertex to all other vertices. This function allows specifying a set of source and target vertices.
The algorithm is run independently for each source and the results are retained only for the specified
targets. This implementation uses a binary heap for efficiency.

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here. The matrix
will be resized as needed. Each row contains the distances from a single source, to the
vertices given in the to argument. Unreachable vertices have distance IGRAPH_IN-
FINITY.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

343

Structural properties of graphs

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an er-
ror is returned. If this is a null pointer, then the unweighted version, igraph_dis-
tances() is called.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It
is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s*|E|log|V|+|V|), where |V| is the number of vertices, |E| the number of edges and
s the number of sources.

See also:

igraph_distances() for a (slightly) faster unweighted version or igraph_dis-
tances_bellman_ford() for a weighted variant that works in the presence of negative edge
weights (but no negative loops)

Example 13.3. File examples/simple/distances.c

igraph_distances_dijkstra_cutoff — Weighted
shortest path lengths between vertices, with cutoff.

igraph_error_t igraph_distances_dijkstra_cutoff(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_real_t cutoff);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This function is similar to igraph_distances_dijkstra(), but paths longer than cutoff
will not be considered.

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here. The matrix
will be resized as needed. Each row contains the distances from a single source, to
the vertices given in the to argument. Vertices that are not reachable within distance
cutoff will be assigned distance IGRAPH_INFINITY.

from: The source vertices.

344

Structural properties of graphs

to: The target vertices. It is not allowed to include a vertex twice or more.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an er-
ror is returned. If this is a null pointer, then the unweighted version, igraph_dis-
tances() is called. Edges with positive infinite weights are ignored.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It
is ignored for undirected graphs.

cutoff: The maximal length of paths that will be considered. When the distance of two vertices
is greater than this value, it will be returned as IGRAPH_INFINITY. Negative cutoffs
are treated as infinity.

Returns:

Error code.

Time complexity: at most O(s |E| log|V| + |V|), where |V| is the number of vertices, |E| the number of
edges and s the number of sources. The cutoff parameter will limit the number of edges traversed
from each source vertex, which reduces the computation time.

See also:

igraph_distances_cutoff() for a (slightly) faster unweighted version.

Example 13.4. File examples/simple/distances.c

igraph_distances_bellman_ford — Weighted
shortest path lengths between vertices, allowing nega-
tive weights.

igraph_error_t igraph_distances_bellman_ford(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function implements the Bellman-Ford algorithm to find the weighted shortest paths to all vertices
from a single source, allowing negative weights. It is run independently for the given sources. If there
are no negative weights, you are better off with igraph_distances_dijkstra() .

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here, the matrix
will be resized if needed. Each row contains the distances from a single source, to all
vertices in the graph, in the order of vertex IDs. For unreachable vertices the matrix
contains IGRAPH_INFINITY.

from: The source vertices.

to: The target vertices.

345

Structural properties of graphs

weights: The edge weights. There must not be any closed loop in the graph that has a negative
total weight (since this would allow us to decrease the weight of any path containing
at least a single vertex of this loop infinitely). Additionally, no edge weight may be
NaN. If either case does not hold, an error is returned. If this is a null pointer, then the
unweighted version, igraph_distances() is called.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It
is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s*|E|*|V|), where |V| is the number of vertices, |E| the number of edges and s the
number of sources.

See also:

igraph_distances() for a faster unweighted version or igraph_distances_dijk-
stra() if you do not have negative edge weights.

Example 13.5. File examples/simple/bellman_ford.c

igraph_distances_johnson — Weighted shortest
path lengths between vertices, using Johnson's algo-
rithm.

igraph_error_t igraph_distances_johnson(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights);

This algorithm supports directed graphs with negative edge weights, and performs better than the
Bellman-Ford method when distances are calculated from many different sources, the typical use case
being all-pairs distance calculations. It works by using a single-source Bellman-Ford run to transform
all edge weights to non-negative ones, then invoking Dijkstra's algorithm with the new weights. See
the Wikipedia page for more details: http://en.wikipedia.org/wiki/Johnson's_algorithm.

If no edge weights are supplied, then the unweighted version, igraph_distances() is called.
If none of the supplied edge weights are negative, then Dijkstra's algorithm is used by calling
igraph_distances_dijkstra().

Note that Johnson's algorithm applies only to directed graphs. This function rejects undirected graphs
with any negative edge weights, even when the from and to vertices are all in connected components
that are free of negative weights.

References:

Donald B. Johnson: Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM 24, 1 (1977),
1–13. https://doi.org/10.1145/321992.321993

Arguments:

346

http://en.wikipedia.org/wiki/Johnson's_algorithm
https://doi.org/10.1145/321992.321993

Structural properties of graphs

graph: The input graph. If negative weights are present, it should be directed.

res: Pointer to an initialized matrix, the result will be stored here, one line for each source
vertex, one column for each target vertex.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

weights: Optional edge weights. If it is a null-pointer, then the unweighted breadth-first search
based igraph_distances() will be called. Edges with positive infinite weights
are ignored.

Returns:

Error code.

Time complexity: O(s|V|log|V|+|V||E|), |V| and |E| are the number of vertices and edges, s is the number
of source vertices.

See also:

igraph_distances() for a faster unweighted version, igraph_distances_dijk-
stra() if you do not have negative edge weights, igraph_distances_bellman_ford()
if you only need to calculate shortest paths from a couple of sources.

igraph_distances_floyd_warshall — Weighted
all-pairs shortest path lengths with the Floyd-Warshall
algorithm.

igraph_error_t igraph_distances_floyd_warshall(
 const igraph_t *graph, igraph_matrix_t *res,
 igraph_vs_t from, igraph_vs_t to,
 const igraph_vector_t *weights, igraph_neimode_t mode,
 const igraph_floyd_warshall_algorithm_t method);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

The Floyd-Warshall algorithm computes weighted shortest path lengths between all pairs of vertices at
the same time. It is useful with very dense weighted graphs, as its running time is primarily determined
by the vertex count, and is not sensitive to the graph density. In sparse graphs, other methods such as
the Dijkstra or Bellman-Ford algorithms will perform significantly better.

In addition to the original Floyd-Warshall algorithm, igraph contains implementations of variants that
offer better asymptotic complexity as well as better practical running times for most instances. See
the reference below for more information.

Note that internally this function always computes the distance matrix for all pairs of vertices. The
from and to parameters only serve to subset this matrix, but do not affect the time or memory taken
by the calculation.

347

Structural properties of graphs

Reference:

Brodnik, A., Grgurovi#, M., Požar, R.: Modifications of the Floyd-Warshall algorithm with nearly
quadratic expected-time, Ars Mathematica Contemporanea, vol. 22, issue 1, p. #P1.01 (2021). https://
doi.org/10.26493/1855-3974.2467.497

Arguments:

graph: The graph object.

res: An intialized matrix, the distances will be stored here.

from: The source vertices.

to: The target vertices.

weights: The edge weights. If NULL, all weights are assumed to be 1. Negative weights are
allowed, but the graph must not contain negative cycles. Edges with positive infinite
weights are ignored.

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the compu-
tation.

method: The type of the algorithm used.

IGRAPH_FLOYD_WARSHAL-
L_AUTOMATIC

tried to select the best performing variant for the
current graph; presently this option always uses
the "Tree" method.

IGRAPH_FLOYD_WARSHAL-
L_ORIGINAL

the basic Floyd-Warshall algorithm.

IGRAPH_FLOYD_WARSHAL-
L_TREE

the "Tree" speedup of Brodnik et al., faster than
the original algorithm in most cases.

Returns:

Error code. IGRAPH_ENEGLOOP is returned if a negative-weight cycle is found.

See also:

igraph_distances(), igraph_distances_dijkstra(), igraph_dis-
tances_bellman_ford(), igraph_distances_johnson()

Time complexity: The original variant has complexity O(|V|^3 + |E|). The "Tree" variant has expect-
ed-case complexity of O(|V|^2 log^2 |V|) according to Brodnik et al., while its worst-time complexity
remains O(|V|^3). Here |V| denotes the number of vertices and |E| is the number of edges.

igraph_get_shortest_paths — Shortest paths from
a vertex.

348

https://doi.org/10.26493/1855-3974.2467.497
https://doi.org/10.26493/1855-3974.2467.497

Structural properties of graphs

igraph_error_t igraph_get_shortest_paths(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,
 igraph_vector_int_list_t *edges,
 igraph_integer_t from, const igraph_vs_t to,
 igraph_neimode_t mode,
 igraph_vector_int_t *parents,
 igraph_vector_int_t *inbound_edges);

Finds unweighted shortest paths from a single source vertex to the specified sets of target vertices.
If there is more than one geodesic between two vertices, this function gives only one of them. Use
igraph_get_all_shortest_paths() to find all shortest paths.

Arguments:

graph: The graph object.

vertices: The result, the IDs of the vertices along the paths. This is a list of integer
vectors where each element is an igraph_vector_int_t object. The list
will be resized as needed. Supply a null pointer here if you don't need these
vectors.

edges: The result, the IDs of the edges along the paths. This is a list of integer vectors
where each element is an igraph_vector_int_t object. The list will be
resized as needed. Supply a null pointer here if you don't need these vectors.

from: The ID of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times.

mode: The type of shortest paths to be used for the calculation in directed graphs.
Possible values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the
computation.

parents: A pointer to an initialized igraph vector or NULL. If not NULL, a vector con-
taining the parent of each vertex in the single source shortest path tree is re-
turned here. The parent of vertex i in the tree is the vertex from which vertex
i was reached. The parent of the start vertex (in the from argument) is -1.
If the parent is -2, it means that the given vertex was not reached from the
source during the search. Note that the search terminates if all the vertices in
to are reached.

inbound_edges: A pointer to an initialized igraph vector or NULL. If not NULL, a vector con-
taining the inbound edge of each vertex in the single source shortest path tree
is returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i was reached. The start vertex and vertices that were not reached dur-
ing the search will have -1 in the corresponding entry of the vector. Note that
the search terminates if all the vertices in to are reached.

Returns:

Error code:

349

Structural properties of graphs

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex ID

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

See also:

igraph_distances() if you only need the path lengths but not the paths
themselves; igraph_get_shortest_paths_dijkstra() for the weighted version;
igraph_get_all_shortest_paths() to return all shortest paths between (source, target)
pairs.

Example 13.6. File examples/simple/
igraph_get_shortest_paths.c

igraph_get_shortest_path — Shortest path from
one vertex to another one.

igraph_error_t igraph_get_shortest_path(const igraph_t *graph,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 igraph_neimode_t mode);

Calculates and returns a single unweighted shortest path from a given vertex to another one. If there
is more than one shortest path between the two vertices, then an arbitrary one is returned.

This function is a wrapper to igraph_get_shortest_paths() for the special case when only
one target vertex is considered.

Arguments:

graph: The input graph, it can be directed or undirected. Directed paths are considered in
directed graphs.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex
IDs along the path are stored here, including the source and target vertices.

edges: Pointer to an initialized vector or a null pointer. If not a null pointer, then the edge
IDs along the path are stored here.

from: The ID of the source vertex.

to: The ID of the target vertex.

mode: A constant specifying how edge directions are considered in directed graphs. Valid
modes are: IGRAPH_OUT, follows edge directions; IGRAPH_IN, follows the oppo-
site directions; and IGRAPH_ALL, ignores edge directions. This argument is ignored
for undirected graphs.

350

Structural properties of graphs

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges in the graph.

See also:

igraph_get_shortest_paths() for the version with more target vertices.

igraph_get_shortest_paths_dijkstra — Weight-
ed shortest paths from a vertex.

igraph_error_t igraph_get_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,
 igraph_vector_int_list_t *edges,
 igraph_integer_t from,
 igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_vector_int_t *parents,
 igraph_vector_int_t *inbound_edges);

Finds weighted shortest paths from a single source vertex to the specified sets of target vertices us-
ing Dijkstra's algorithm. If there is more than one path with the smallest weight between two ver-
tices, this function gives only one of them. To find all such paths, use igraph_get_all_short-
est_paths_dijkstra().

Arguments:

graph: The graph object.

vertices: The result, the IDs of the vertices along the paths. This is a list of integer
vectors where each element is an igraph_vector_int_t object. The list
will be resized as needed. Supply a null pointer here if you don't need these
vectors.

edges: The result, the IDs of the edges along the paths. This is a list of integer vectors
where each element is an igraph_vector_int_t object. The list will be
resized as needed. Supply a null pointer here if you don't need these vectors.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times. *

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algo-
rithm to work. Additionally, no edge weight may be NaN. If either case does
not hold, an error is returned. If this is a null pointer, then the unweighted ver-
sion, igraph_get_shortest_paths() is called.

mode: The type of shortest paths to be use for the calculation in directed graphs.
Possible values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

351

Structural properties of graphs

IGRAPH_ALL the directed graph is considered as an undirected one for the
computation.

parents: A pointer to an initialized igraph vector or null. If not null, a vector containing
the parent of each vertex in the single source shortest path tree is returned here.
The parent of vertex i in the tree is the vertex from which vertex i was reached.
The parent of the start vertex (in the from argument) is -1. If the parent is
-2, it means that the given vertex was not reached from the source during the
search. Note that the search terminates if all the vertices in to are reached.

inbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector contain-
ing the inbound edge of each vertex in the single source shortest path tree is
returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i was reached. The start vertex and vertices that were not reached during
the search will have -1 in the corresponding entry of the vector. Note that the
search terminates if all the vertices in to are reached.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex ID

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|E|log|V|+|V|), where |V| is the number of vertices and |E| is the number of edges

See also:

igraph_distances_dijkstra() if you only need the path length but not the
paths themselves; igraph_get_shortest_paths() if all edge weights are equal;
igraph_get_all_shortest_paths() to find all shortest paths between (source, target)
pairs; igraph_get_shortest_paths_bellman_ford() if some edge weighted are neg-
ative.

Example 13.7. File examples/simple/
igraph_get_shortest_paths_dijkstra.c

igraph_get_shortest_path_dijkstra — Weight-
ed shortest path from one vertex to another one (Dijk-
stra).

igraph_error_t igraph_get_shortest_path_dijkstra(const igraph_t *graph,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Finds a weighted shortest path from a single source vertex to a single target, using Dijkstra's algorithm.
If more than one shortest path exists, an arbitrary one is returned.

352

Structural properties of graphs

This function is a special case (and a wrapper) to igraph_get_shortest_paths_dijk-
stra().

Arguments:

graph: The input graph, it can be directed or undirected.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex
IDs along the path are stored here, including the source and target vertices.

edges: Pointer to an initialized vector or a null pointer. If not a null pointer, then the edge
IDs along the path are stored here.

from: The ID of the source vertex.

to: The ID of the target vertex.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algo-
rithm to work. Additionally, no edge weight may be NaN. If either case does not
hold, an error is returned. If this is a null pointer, then the unweighted version,
igraph_get_shortest_paths() is called.

mode: A constant specifying how edge directions are considered in directed graphs.
IGRAPH_OUT follows edge directions, IGRAPH_IN follows the opposite directions,
and IGRAPH_ALL ignores edge directions. This argument is ignored for undirected
graphs.

Returns:

Error code.

Time complexity: O(|E|log|V|+|V|), |V| is the number of vertices, |E| is the number of edges in the
graph.

See also:

igraph_get_shortest_paths_dijkstra() for the version with more target vertices.

igraph_get_shortest_paths_bellman_ford —
Weighted shortest paths from a vertex, allowing nega-
tive weights.

igraph_error_t igraph_get_shortest_paths_bellman_ford(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,
 igraph_vector_int_list_t *edges,
 igraph_integer_t from,
 igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_vector_int_t *parents,
 igraph_vector_int_t *inbound_edges);

This function calculates weighted shortest paths from or to a single vertex using the Bellman-Ford
algorithm, whihc can handle negative weights. When there is more than one shortest path between two

353

Structural properties of graphs

vertices, only one of them is returned. When there are no negative weights, igraph_get_short-
est_paths_dijkstra() is likely to be faster.

Arguments:

graph: The input graph, can be directed.

vertices: The result, the IDs of the vertices along the paths. This is a list of integer
vectors where each element is an igraph_vector_int_t object. The list
will be resized as needed. Supply a null pointer here if you don't need these
vectors.

edges: The result, the IDs of the edges along the paths. This is a list of integer vectors
where each element is an igraph_vector_int_t object. The list will be
resized as needed. Supply a null pointer here if you don't need these vectors.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the shortest paths
will be calculated. A vertex might be given multiple times.

weights: The edge weights. There must not be any closed loop in the graph that has a
negative total weight (since this would allow us to decrease the weight of any
path containing at least a single vertex of this loop infinitely). If this is a null
pointer, then the unweighted version, igraph_get_shortest_paths()
is called. Edges with positive infinite weights are ignored.

mode: For directed graphs; whether to follow paths along edge directions
(IGRAPH_OUT), or the opposite (IGRAPH_IN), or ignore edge directions
completely (IGRAPH_ALL). It is ignored for undirected graphs.

parents: A pointer to an initialized igraph vector or null. If not null, a vector containing
the parent of each vertex in the single source shortest path tree is returned here.
The parent of vertex i in the tree is the vertex from which vertex i was reached.
The parent of the start vertex (in the from argument) is -1. If the parent is
-2, it means that the given vertex was not reached from the source during the
search. Note that the search terminates if all the vertices in to are reached.

inbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector contain-
ing the inbound edge of each vertex in the single source shortest path tree is
returned here. The inbound edge of vertex i in the tree is the edge via which
vertex i was reached. The start vertex and vertices that were not reached during
the search will have -1 in the corresponding entry of the vector. Note that the
search terminates if all the vertices in to are reached.

Returns:

Error code:

IGRAPH_ENOMEM Not enough memory for temporary data.

IGRAPH_EINVAL The weight vector doesn't math the number of edges.

IGRAPH_EINVVID from is invalid vertex ID

IGRAPH_ENEGLOOP Bellman-ford algorithm encounted a negative loop.

Time complexity: O(|E|*|V|), where |V| is the number of vertices, |E| the number of edges.

See also:

354

Structural properties of graphs

igraph_distances_bellman_ford() to compute only shortest path lengths, but not the
paths themselves; igraph_get_shortest_paths() for a faster unweighted version or
igraph_get_shortest_paths_dijkstra() if you do not have negative edge weights.

igraph_get_shortest_path_bellman_ford —
Weighted shortest path from one vertex to another one
(Bellman-Ford).

igraph_error_t igraph_get_shortest_path_bellman_ford(const igraph_t *graph,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Finds a weighted shortest path from a single source vertex to a single target using the Bellman-Ford
algorithm.

This function is a special case (and a wrapper) to igraph_get_shortest_paths_bell-
man_ford().

Arguments:

graph: The input graph, it can be directed or undirected.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex
IDs along the path are stored here, including the source and target vertices.

edges: Pointer to an initialized vector or a null pointer. If not a null pointer, then the edge
IDs along the path are stored here.

from: The ID of the source vertex.

to: The ID of the target vertex.

weights: The edge weights. There must not be any closed loop in the graph that has a negative
total weight (since this would allow us to decrease the weight of any path containing at
least a single vertex of this loop infinitely). If this is a null pointer, then the unweighted
version is called.

mode: A constant specifying how edge directions are considered in directed graphs.
IGRAPH_OUT follows edge directions, IGRAPH_IN follows the opposite directions,
and IGRAPH_ALL ignores edge directions. This argument is ignored for undirected
graphs.

Returns:

Error code.

Time complexity: O(|E|log|E|+|V|), |V| is the number of vertices, |E| is the number of edges in the graph.

See also:

igraph_get_shortest_paths_bellman_ford() for the version with more target ver-
tices.

355

Structural properties of graphs

igraph_get_shortest_path_astar — A* gives the
shortest path from one vertex to another, with heuris-
tic.

igraph_error_t igraph_get_shortest_path_astar(const igraph_t *graph,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_astar_heuristic_func_t *heuristic,
 void *extra);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Calculates a shortest path from a single source vertex to a single target, using the A* algorithm. A*
tries to find a shortest path by starting at from and moving to vertices that lie on a path with the lowest
estimated length. This length estimate is the sum of two numbers: the distance from the source (from)
to the intermediate vertex, and the value returned by the heuristic function. The heuristic function
provides an estimate the distance between intermediate candidate vertices and the target vertex to.
The A* algorithm is guaranteed to give the correct shortest path (if one exists) only if the heuristic
does not overestimate distances, i.e. if the heuristic function is admissible.

Arguments:

graph: The input graph, it can be directed or undirected.

vertices: Pointer to an initialized vector or the NULL pointer. If not NULL, then the vertex IDs
along the path are stored here, including the source and target vertices.

edges: Pointer to an initialized vector or the NULL pointer. If not NULL, then the edge IDs
along the path are stored here.

from: The ID of the source vertex.

to: The ID of the target vertex.

weights: Optional edge weights. Supply NULL for unweighted graphs. All edge weights must
be non-negative. Additionally, no edge weight may be NaN. If either case does not
hold, an error is returned. Edges with positive infinite weights are ignored.

mode: A constant specifying how edge directions are considered in directed graphs.
IGRAPH_OUT follows edge directions, IGRAPH_IN follows the opposite direc-
tions, and IGRAPH_ALL ignores edge directions. This argument is ignored for undi-
rected graphs.

heuristic: A function that provides distance estimates to the target vertex. See igraph_as-
tar_heuristic_func_t for more information.

extra: This is passed on to the heuristic function.

356

Structural properties of graphs

Returns:

Error code.

Time complexity: In the worst case, O(|E|log|V|+|V|), where |V| is the number of vertices and |E| is
the number of edges in the graph. The running time depends on the accuracy of the distance estimates
returned by the heuristic function. Assuming that the heuristic is admissible, the better the estimates,
the shortert the running time.

igraph_astar_heuristic_func_t — Distance esti-
mator for A* algorithm.

typedef igraph_error_t igraph_astar_heuristic_func_t(
 igraph_real_t *result,
 igraph_integer_t from, igraph_integer_t to,
 void *extra);

igraph_get_shortest_path_astar() uses a heuristic based on a distance estimate to the
target vertex to guide its search, and determine which vertex to try next. The heurstic function is expect-
ed to compute an estimate of the distance between from and to. In order for igraph_get_short-
est_path_astar() to find an exact shortest path, the distance must not be overestimated, i.e. the
heuristic function must be admissible.

Arguments:

result: The result of the heuristic, i.e. the estimated distance. A lower value will mean this vertex
will be a better candidate for exploration.

from: The vertex ID of the candidate vertex will be passed here.

to: The vertex ID of the endpoint of the path, i.e. the to parameter given to
igraph_get_shortest_path_astar(), will be passed here.

extra: The extra argument that was passed to igraph_get_shortest_path_as-
tar().

Returns:

Error code. Must return IGRAPH_SUCCESS if there were no errors. This can be used to
break off the algorithm if something unexpected happens, like a failed memory allocation
(IGRAPH_ENOMEM).

See also:

igraph_get_shortest_path_astar()

igraph_get_all_shortest_paths — All shortest
paths (geodesics) from a vertex.

igraph_error_t igraph_get_all_shortest_paths(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,

357

Structural properties of graphs

 igraph_vector_int_list_t *edges,
 igraph_vector_int_t *nrgeo,
 igraph_integer_t from, const igraph_vs_t to,
 igraph_neimode_t mode);

When there is more than one shortest path between two vertices, all of them will be returned. Every
edge is considered separately, therefore in graphs with multi-edges, this function may produce a very
large number of results.

Arguments:

graph: The graph object.

vertices: The result, the IDs of the vertices along the paths. This is a list of integer vectors where
each element is an igraph_vector_int_t object. Each vector object contains
the vertices along a shortest path from from to another vertex. The vectors are ordered
according to their target vertex: first the shortest paths to vertex 0, then to vertex 1,
etc. No data is included for unreachable vertices. The list will be resized as needed.
Supply a null pointer here if you don't need these vectors.

edges: The result, the IDs of the edges along the paths. This is a list of integer vectors where
each element is an igraph_vector_int_t object. Each vector object contains
the edges along a shortest path from from to another vertex. The vectors are ordered
according to their target vertex: first the shortest paths to vertex 0, then to vertex 1,
etc. No data is included for unreachable vertices. The list will be resized as needed.
Supply a null pointer here if you don't need these vectors.

nrgeo: Pointer to an initialized igraph_vector_int_t object or NULL. If not NULL the
number of shortest paths from from are stored here for every vertex in the graph.
Note that the values will be accurate only for those vertices that are in the target vertex
sequence (see to), since the search terminates as soon as all the target vertices have
been found.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the shortest paths will be
calculated. A vertex might be given multiple times.

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex ID.

IGRAPH_EINVMODE invalid mode argument.

Added in version 0.2.

Time complexity: O(|V|+|E|) for most graphs, O(|V|^2) in the worst case.

358

Structural properties of graphs

igraph_get_all_shortest_paths_dijkstra — All
weighted shortest paths (geodesics) from a vertex.

igraph_error_t igraph_get_all_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,
 igraph_vector_int_list_t *edges,
 igraph_vector_int_t *nrgeo,
 igraph_integer_t from, igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

vertices: Pointer to an initialized integer vector list or NULL. If not NULL, then each vector
object contains the vertices along a shortest path from from to another vertex. The
vectors are ordered according to their target vertex: first the shortest paths to vertex
0, then to vertex 1, etc. No data is included for unreachable vertices.

edges: Pointer to an initialized integer vector list or NULL. If not NULL, then each vector
object contains the edges along a shortest path from from to another vertex. The
vectors are ordered according to their target vertex: first the shortest paths to vertex
0, then to vertex 1, etc. No data is included for unreachable vertices.

nrgeo: Pointer to an initialized igraph_vector_int_t object or NULL. If not NULL the number
of shortest paths from from are stored here for every vertex in the graph. Note that
the values will be accurate only for those vertices that are in the target vertex sequence
(see to), since the search terminates as soon as all the target vertices have been found.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the shortest paths will be
calculated. A vertex might be given multiple times.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error
is returned. If this is a null pointer, then the unweighted version, igraph_get_al-
l_shortest_paths() is called.

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

359

Structural properties of graphs

IGRAPH_EINVVID from is an invalid vertex ID

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|E|log|V|+|V|), where |V| is the number of vertices and |E| is the number of edges

See also:

igraph_distances_dijkstra() if you only need the path length but not the paths them-
selves, igraph_get_all_shortest_paths() if all edge weights are equal.

Example 13.8. File examples/simple/
igraph_get_all_shortest_paths_dijkstra.c

igraph_get_k_shortest_paths — k shortest paths
between two vertices.

igraph_error_t igraph_get_k_shortest_paths(
 const igraph_t *graph, const igraph_vector_t *weights,
 igraph_vector_int_list_t *vertex_paths,
 igraph_vector_int_list_t *edge_paths,
 igraph_integer_t k, igraph_integer_t from, igraph_integer_t to,
 igraph_neimode_t mode
);

This function returns the k shortest paths between two vertices, in order of increasing lengths.

Reference:

Yen, Jin Y.: An algorithm for finding shortest routes from all source nodes to a given destination in
general networks. Quarterly of Applied Mathematics. 27 (4): 526–530. (1970) https://doi.org/10.1090/
qam/253822

Arguments:

graph: The graph object.

weights: The edge weights of the graph. Can be NULL for an unweighted graph. Infinite
weights will be treated as missing edges.

vertex_paths: Pointer to an initialized list of integer vectors, the result will be stored here in
igraph_vector_int_t objects. Each vector object contains the vertex IDs
along the kth shortest path between from and to, where k is the vector list
index. May be NULL if the vertex paths are not needed.

edge_paths: Pointer to an initialized list of integer vectors, the result will be stored here in
igraph_vector_int_t objects. Each vector object contains the edge IDs
along the kth shortest path between from and to, where k is the vector list
index. May be NULL if the edge paths are not needed.

k: The number of paths.

from: The ID of the vertex from which the paths are calculated.

to: The ID of the vertex to which the paths are calculated.

360

https://doi.org/10.1090/qam/253822
https://doi.org/10.1090/qam/253822

Structural properties of graphs

mode: The type of paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT The outgoing paths of from are calculated.

IGRAPH_IN The incoming paths of from are calculated.

IGRAPH_ALL The directed graph is considered as an undirected one for the
computation.

Returns:

Error code:

IGRAPH_ENOMEM Not enough memory for temporary data.

IGRAPH_EINVVID from or to is an invalid vertex id.

IGRAPH_EINVMODE Invalid mode argument.

IGRAPH_EINVAL Invalid argument.

See also:

igraph_get_all_simple_paths(), igraph_get_shortest_paths(),
igraph_get_shortest_paths_dijkstra()

Time complexity: k |V| (|V| log|V| + |E|), where |V| is the number of vertices, and |E| is the number
of edges.

igraph_get_all_simple_paths — List all simple
paths from one source.

igraph_error_t igraph_get_all_simple_paths(const igraph_t *graph,
 igraph_vector_int_t *res,
 igraph_integer_t from,
 const igraph_vs_t to,
 igraph_integer_t cutoff,
 igraph_neimode_t mode);

A path is simple if its vertices are unique, i.e. no vertex is visited more than once.

Note that potentially there are exponentially many paths between two vertices of a graph, and you
may run out of memory when using this function when the graph has many cycles. Consider using the
cutoff parameter when you do not need long paths.

Arguments:

graph: The input graph.

res: Initialized integer vector. The paths are returned here in terms of their vertices, separated
by -1 markers. The paths are included in arbitrary order, as they are found.

from: The start vertex.

to: The target vertices.

361

Structural properties of graphs

cutoff: Maximum length of path that is considered. If negative, paths of all lengths are consid-
ered.

mode: The type of the paths to consider, it is ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_get_k_shortest_paths()

Time complexity: O(n!) in the worst case, n is the number of vertices.

igraph_average_path_length — Calculates the av-
erage unweighted shortest path length between all
vertex pairs.

igraph_error_t igraph_average_path_length(const igraph_t *graph,
 igraph_real_t *res, igraph_real_t *unconn_pairs,
 igraph_bool_t directed, igraph_bool_t unconn);

If no vertex pairs can be included in the calculation, for example because the graph has fewer than
two vertices, or if the graph has no edges and unconn is set to true, NaN is returned.

Arguments:

graph: The graph object.

res: Pointer to a real number, this will contain the result.

unconn_pairs: Pointer to a real number. If not a null pointer, the number of ordered vertex pairs
where the second vertex is unreachable from the first one will be stored here.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If true, only those vertex pairs
will be included in the calculation between which there is a path. If false,
IGRAPH_INFINITY is returned for disconnected graphs.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for data structures

Time complexity: O(|V| |E|), the number of vertices times the number of edges.

See also:

igraph_average_path_length_dijkstra() for the weighted version.

Example 13.9. File examples/simple/
igraph_average_path_length.c

362

Structural properties of graphs

igraph_average_path_length_dijkstra — Cal-
culates the average weighted shortest path length be-
tween all vertex pairs.

igraph_error_t igraph_average_path_length_dijkstra(const igraph_t *graph,
 igraph_real_t *res, igraph_real_t *unconn_pairs,
 const igraph_vector_t *weights,
 igraph_bool_t directed, igraph_bool_t unconn);

If no vertex pairs can be included in the calculation, for example because the graph has fewer than
two vertices, or if the graph has no edges and unconn is set to true, NaN is returned.

All distinct ordered vertex pairs are taken into account.

Arguments:

graph: The graph object.

res: Pointer to a real number, this will contain the result.

unconn_pairs: Pointer to a real number. If not a null pointer, the number of ordered vertex pairs
where the second vertex is unreachable from the first one will be stored here.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algo-
rithm to work. Additionally, no edge weight may be NaN. If either case does not
hold, an error is returned. If this is a null pointer, then the unweighted version,
igraph_average_path_length() is called. Edges with positive infinite
weight are ignored.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: If true, only those pairs are considered for the calculation between which there
is a path. If false, IGRAPH_INFINITY is returned for disconnected graphs.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for data structures

IGRAPH_EINVAL invalid weight vector

Time complexity: O(|V| |E| log|E| + |V|), where |V| is the number of vertices and |E| is the number
of edges.

See also:

igraph_average_path_length() for a slightly faster unweighted version.

Example 13.10. File examples/simple/igraph_grg_game.c

igraph_path_length_hist — Create a histogram of
all shortest path lengths.

363

Structural properties of graphs

igraph_error_t igraph_path_length_hist(const igraph_t *graph, igraph_vector_t *res,
 igraph_real_t *unconnected, igraph_bool_t directed);

This function calculates a histogram, by calculating the shortest path length between each pair of ver-
tices. For directed graphs both directions might be considered and then every pair of vertices appears
twice in the histogram.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here. The first (i.e. zeroth)
element contains the number of shortest paths of length 1, etc. The supplied vector
is resized as needed.

unconnected: Pointer to a real number, the number of pairs for which the second vertex is not
reachable from the first is stored here.

directed: Whether to consider directed paths in a directed graph (if not zero). This argument
is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

See also:

igraph_average_path_length() and igraph_distances()

igraph_diameter — Calculates the diameter of a
graph (longest geodesic).

igraph_error_t igraph_diameter(const igraph_t *graph, igraph_real_t *res,
 igraph_integer_t *from, igraph_integer_t *to,
 igraph_vector_int_t *vertex_path, igraph_vector_int_t *edge_path,
 igraph_bool_t directed, igraph_bool_t unconn);

The diameter of a graph is the length of the longest shortest path it has, i.e. the maximum eccentricity
of the graph's vertices. This function computes both the diameter, as well as a corresponding path.
The diameter of the null graph is considered be infinity by convention. If the graph has no vertices,
IGRAPH_NAN is returned.

Arguments:

graph: The graph object.

res: Pointer to a real number, if not NULL then it will contain the diameter (the actual
distance).

from: Pointer to an integer, if not NULL it will be set to the source vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

to: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

364

Structural properties of graphs

vertex_path: Pointer to an initialized vector. If not NULL the actual longest geodesic path in
terms of vertices will be stored here. The vector will be resized as needed.

edge_path: Pointer to an initialized vector. If not NULL the actual longest geodesic path in
terms of edges will be stored here. The vector will be resized as needed.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If true the longest geodesic within a
component will be returned, otherwise IGRAPH_INFINITY is returned.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

See also:

igraph_diameter_dijkstra() for the weighted version, igraph_radius() for the
minimum eccentricity.

Example 13.11. File examples/simple/igraph_diameter.c

igraph_diameter_dijkstra — Calculates the
weighted diameter of a graph using Dijkstra's algo-
rithm.

igraph_error_t igraph_diameter_dijkstra(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_real_t *res,
 igraph_integer_t *from,
 igraph_integer_t *to,
 igraph_vector_int_t *vertex_path,
 igraph_vector_int_t *edge_path,
 igraph_bool_t directed,
 igraph_bool_t unconn);

This function computes the weighted diameter of a graph, defined as the longest weighted shortest
path, or the maximum weighted eccentricity of the graph's vertices. A corresponding shortest path, as
well as its endpoints, can also be optionally computed. If the graph has no vertices, IGRAPH_NAN
is returned.

Arguments:

graph: The input graph, can be directed or undirected.

weights: The edge weights of the graph. Can be NULL for an unweighted graph. Edges
with positive infinite weight are ignored.

res: Pointer to a real number, if not NULL then it will contain the diameter (the actual
distance).

from: Pointer to an integer, if not NULL it will be set to the source vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

365

Structural properties of graphs

to: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter
path. If the graph has no diameter path, it will be set to -1.

vertex_path: Pointer to an initialized vector. If not NULL the actual longest geodesic path in
terms of vertices will be stored here. The vector will be resized as needed.

edge_path: Pointer to an initialized vector. If not NULL the actual longest geodesic path in
terms of edges will be stored here. The vector will be resized as needed.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If true the longest geodesic within a
component will be returned, otherwise IGRAPH_INFINITY is returned.

Returns:

Error code.

Time complexity: O(|V||E|*log|E|), |V| is the number of vertices, |E| is the number of edges.

See also:

igraph_diameter() for the unweighted version, igraph_radius_dijkstra() for the
minimum weighted eccentricity.

igraph_girth — The girth of a graph is the length of
the shortest cycle in it.

igraph_error_t igraph_girth(const igraph_t *graph, igraph_real_t *girth,
 igraph_vector_int_t *circle);

The current implementation works for undirected graphs only, directed graphs are treated as undirected
graphs. Self-loops and multiple edges are ignored, i.e. cycles of length 1 or 2 are not considered.

For graphs that contain no cycles, and only for such graphs, infinity is returned.

The first implementation of this function was done by Keith Briggs, thanks Keith.

Reference:

Alon Itai and Michael Rodeh: Finding a minimum circuit in a graph Proceedings of the ninth annual
ACM symposium on Theory of computing , 1-10, 1977. https://doi.org/10.1145/800105.803390

Arguments:

graph: The input graph. Edge directions will be ignored.

girth: Pointer to an igraph_real_t, if not NULL then the result will be stored here.

circle: Pointer to an initialized vector, the vertex IDs in the shortest circle will be stored here.
If NULL then it is ignored.

Returns:

Error code.

366

https://doi.org/10.1145/800105.803390

Structural properties of graphs

Time complexity: O((|V|+|E|)^2), |V| is the number of vertices, |E| is the number of edges in the general
case. If the graph has no cycles at all then the function needs O(|V|+|E|) time to realize this and then
it stops.

Example 13.12. File examples/simple/igraph_girth.c

igraph_eccentricity — Eccentricity of some ver-
tices.

igraph_error_t igraph_eccentricity(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_vs_t vids,
 igraph_neimode_t mode);

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolated vertices have ec-
centricity zero.

Arguments:

graph: The input graph, it can be directed or undirected.

res: Pointer to an initialized vector, the result is stored here.

vids: The vertices for which the eccentricity is calculated.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that follow edge
directions; IGRAPH_IN, paths that follow the opposite directions; and IGRAPH_ALL,
paths that ignore edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(v*(|V|+|E|)), where |V| is the number of vertices, |E| is the number of edges and
v is the number of vertices for which eccentricity is calculated.

See also:

igraph_radius().

Example 13.13. File examples/simple/igraph_eccentricity.c

igraph_eccentricity_dijkstra — Eccentricity of
some vertices, using weighted edges.

igraph_error_t igraph_eccentricity_dijkstra(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_t *res,

367

Structural properties of graphs

 igraph_vs_t vids,
 igraph_neimode_t mode);

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolated vertices have ec-
centricity zero.

Arguments:

graph: The input graph, it can be directed or undirected.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error
is returned. If this is a null pointer, then the unweighted version, igraph_eccen-
tricity() is called. Edges with positive infinite weights are ignored.

res: Pointer to an initialized vector, the result is stored here.

vids: The vertices for which the eccentricity is calculated.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that fol-
low edge directions; IGRAPH_IN, paths that follow the opposite directions; and
IGRAPH_ALL, paths that ignore edge directions. This argument is ignored for undi-
rected graphs.

Returns:

Error code.

Time complexity: O(|V| |E| log|V| + |V|), where |V| is the number of vertices, |E| the number of edges.

igraph_radius — Radius of a graph.

igraph_error_t igraph_radius(const igraph_t *graph, igraph_real_t *radius,
 igraph_neimode_t mode);

The radius of a graph is the defined as the minimum eccentricity of its vertices, see igraph_ec-
centricity().

Arguments:

graph: The input graph, it can be directed or undirected.

radius: Pointer to a real variable, the result is stored here.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that follow edge
directions; IGRAPH_IN, paths that follow the opposite directions; and IGRAPH_ALL,
paths that ignore edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V|(|V|+|E|)), where |V| is the number of vertices and |E| is the number of edges.

See also:

368

Structural properties of graphs

igraph_radius_dijkstra() for the weighted version, igraph_diameter() for the
maximum eccentricity, igraph_eccentricity() for the eccentricities of all vertices.

Example 13.14. File examples/simple/igraph_radius.c

igraph_radius_dijkstra — Radius of a graph, us-
ing weighted edges.

igraph_error_t igraph_radius_dijkstra(const igraph_t *graph, const igraph_vector_t *weights,
 igraph_real_t *radius, igraph_neimode_t mode);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

The radius of a graph is the defined as the minimum eccentricity of its vertices, see igraph_ec-
centricity().

Arguments:

graph: The input graph, it can be directed or undirected.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error
is returned. If this is a null pointer, then the unweighted version, igraph_radius()
is called. Edges with positive infinite weights are ignored.

radius: Pointer to a real variable, the result is stored here.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that fol-
low edge directions; IGRAPH_IN, paths that follow the opposite directions; and
IGRAPH_ALL, paths that ignore edge directions. This argument is ignored for undi-
rected graphs.

Returns:

Error code.

Time complexity: O(|V| |E| log|V| + |V|), where |V| is the number of vertices, |E| the number of edges.

See also:

igraph_radius() for the unweighted version, igraph_diameter_dijkstra() for the
maximum weighted eccentricity, igraph_eccentricity_dijkstra() for weighted eccen-
tricities of all vertices.

igraph_graph_center — Central vertices of a graph.

igraph_error_t igraph_graph_center(

369

Structural properties of graphs

 const igraph_t *graph, igraph_vector_int_t *res, igraph_neimode_t mode
);

The central vertices of a graph are calculated by finding the vertices with the minimum eccentricity.
This concept is typically applied to (strongly) connected graphs. In disconnected graphs, the smallest
eccentricity is taken across all components.

Arguments:

graph: The input graph, it can be directed or undirected.

res: Pointer to an initialized vector, the result is stored here.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that follow edge
directions; IGRAPH_IN, paths that follow the opposite directions; and IGRAPH_ALL,
paths that ignore edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V| (|V|+|E|)), where |V| is the number of vertices and |E| is the number of edges.

See also:

igraph_graph_center_dijkstra(), igraph_eccentricity(), igraph_ra-
dius()

igraph_graph_center_dijkstra — Central vertices
of a graph, using weighted edges.

igraph_error_t igraph_graph_center_dijkstra(
 const igraph_t *graph, const igraph_vector_t *weights, igraph_vector_int_t *res, igraph_neimode_t mode
);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

The central vertices of a graph are calculated by finding the vertices with the minimum eccentrici-
ty. This function takes edge weights into account and uses Dijkstra's algorithm for the shortest path
calculation. The concept of the graph center is typically applied to (strongly) connected graphs. In
disconnected graphs, the smallest eccentricity is taken across all components.

Arguments:

graph: The input graph, it can be directed or undirected.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an error is
returned. If this is a null pointer, then the unweighted version, igraph_graph_cen-
ter() is called. Edges with positive infinite weights are ignored.

370

Structural properties of graphs

res: Pointer to an initialized vector, the result is stored here.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that fol-
low edge directions; IGRAPH_IN, paths that follow the opposite directions; and
IGRAPH_ALL, paths that ignore edge directions. This argument is ignored for undi-
rected graphs.

Returns:

Error code.

Time complexity: O(|V| |E| log|V| + |V|), where |V| is the number of vertices, |E| the number of edges.

See also:

igraph_graph_center(), igraph_eccentricity_dijkstra(), igraph_ra-
dius_dijkstra()

igraph_pseudo_diameter — Approximation and
lower bound of diameter.

igraph_error_t igraph_pseudo_diameter(const igraph_t *graph,
 igraph_real_t *diameter,
 igraph_integer_t vid_start,
 igraph_integer_t *from,
 igraph_integer_t *to,
 igraph_bool_t directed,
 igraph_bool_t unconn);

This algorithm finds a pseudo-peripheral vertex and returns its eccentricity. This value can be used as
an approximation and lower bound of the diameter of a graph.

A pseudo-peripheral vertex is a vertex v, such that for every vertex u which is as far away from v as
possible, v is also as far away from u as possible. The process of finding one depends on where the
search starts, and for a disconnected graph the maximum diameter found will be that of the component
vid_start is in.

Arguments:

graph: The input graph, if it is directed, its edge directions are ignored.

diameter: Pointer to a real variable, the result is stored here.

vid_start: Id of the starting vertex. If this is negative, a random starting vertex is chosen.

from: Pointer to an integer, if not NULL it will be set to the source vertex of the diameter
path. If unconn is false, and a disconnected graph is detected, this is set to -1.

to: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter
path. If unconn is false, and a disconnected graph is detected, this is set to -1.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If true the longest geodesic within a
component will be returned, otherwise IGRAPH_INFINITY is returned.

371

Structural properties of graphs

Returns:

Error code.

Time complexity: O(|V||E|)), where |V| is the number of vertices and |E| is the number of edges.

See also:

igraph_eccentricity(), igraph_diameter().

igraph_pseudo_diameter_dijkstra — Approxi-
mation and lower bound of the diameter of a weighted
graph.

igraph_error_t igraph_pseudo_diameter_dijkstra(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_real_t *diameter,
 igraph_integer_t vid_start,
 igraph_integer_t *from,
 igraph_integer_t *to,
 igraph_bool_t directed,
 igraph_bool_t unconn);

This algorithm finds a pseudo-peripheral vertex and returns its weighted eccentricity. This value can
be used as an approximation and lower bound of the diameter of a graph.

A pseudo-peripheral vertex is a vertex v, such that for every vertex u which is as far away from v as
possible, v is also as far away from u as possible. The process of finding one depends on where the
search starts, and for a disconnected graph the maximum diameter found will be that of the component
vid_start is in.

If the graph has no vertices, IGRAPH_NAN is returned.

Arguments:

graph: The input graph, can be directed or undirected.

weights: The edge weights of the graph. Can be NULL for an unweighted graph. All weights
should be non-negative. Edges with positive infinite weights are ignored.

diameter: This will contain the weighted pseudo-diameter.

vid_start: Id of the starting vertex. If this is negative, a random starting vertex is chosen.

from: If not NULL this will be set to the source vertex of the diameter path. If the graph
has no diameter path, it will be set to -1.

to: If not NULL this will be set to the target vertex of the diameter path. If the graph has
no diameter path, it will be set to -1.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If true the longest geodesic within a
component will be returned, otherwise IGRAPH_INFINITY is returned.

Returns:

372

Structural properties of graphs

Error code.

Time complexity: O(|V||E|*log|E|), |V| is the number of vertices, |E| is the number of edges.

See also:

igraph_diameter_dijkstra()

igraph_voronoi — Voronoi partitioning of a graph.

igraph_error_t igraph_voronoi(
 const igraph_t *graph,
 igraph_vector_int_t *membership,
 igraph_vector_t *distances,
 const igraph_vector_int_t *generators,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_voronoi_tiebreaker_t tiebreaker);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

To obtain a Voronoi partitioning of a graph, we start with a set of generator vertices, which will define
the partitions. Each vertex is assigned to the generator vertex from (or to) which it is closest.

This function uses a BFS search for unweighted graphs and Dijkstra's algorithm for weights ones.

Arguments:

graph: The graph to partition.

membership: If not NULL, the Voronoi partition of each vertex will be stored here. member-
ship[v] will be set to the index in generators of the generator vertex that v
belongs to. For vertices that are not reachable from any generator, -1 is returned.

distances: If not NULL, the distance of each vertex to its respective generator will be stored
here. For vertices which are not reachable from any generator, IGRAPH_INFINI-
TY is returned.

generators: Vertex IDs of the generator vertices.

weights: The edge weights, interpreted as lengths in the shortest path calculation. All weights
must be non-negative.

mode: In directed graphs, whether to compute distances from generator vertices to other
vertices (IGRAPH_OUT), to generator vertices from other vertices (IGRAPH_IN),
or ignore edge directions entirely (IGRAPH_ALL).

tiebreaker: Controls which generator vertex to assign a vertex to when it is at equal distance
from/to multiple generator vertices.

IGRAPH_VORONOI_FIRST as-
sign the vertex to the
first generator vertex.

373

Structural properties of graphs

IGRAPH_VORONOI_LAST as-
sign the vertex to the
last generator vertex.

IGRAPH_VORONOI_RANDOM
assign the vertex to a
random generator vertex.
Note that IGRAPH_VORONOI_RANDOM does not guarantee that all partitions will
be contiguous. For example, if 1 and 2 are chosen as generators for the graph 1-3,
2-3, 3-4, then 3 and 4 are at equal distance from both generators. If 3 is assigned
to 2 but 4 is assigned to 1, then the partition {1, 4} will not induce a connected
subgraph.

Returns:

Error code.

Time complexity: In weighted graphs, O((log |S|) |E| (log |V|) + |V|), and in unweighted graphs O((log
|S|) |E| + |V|), where |S| is the number of generator vertices, and |V| and |E| are the number of vertices
and edges in the graph.

See also:

igraph_distances(), igraph_distances_dijkstra().

igraph_vertex_path_from_edge_path — Converts
a path of edge IDs to the traversed vertex IDs.

igraph_error_t igraph_vertex_path_from_edge_path(
 const igraph_t *graph, igraph_integer_t start,
 const igraph_vector_int_t *edge_path, igraph_vector_int_t *vertex_path,
 igraph_neimode_t mode
);

This function is useful when you have a sequence of edge IDs representing a continuous path in a graph
and you would like to obtain the vertex IDs that the path traverses. The function is used implicitly by
several shortest path related functions to convert a path of edge IDs to the corresponding representation
that describes the path in terms of vertex IDs instead.

Arguments:

graph: the graph that the edge IDs refer to

start: the start vertex of the path

edge_path: the sequence of edge IDs that describe the path

vertex_path: the sequence of vertex IDs traversed will be returned here

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory, IGRAPH_EINVAL if the edge path
does not start at the given vertex or if there is at least one edge whose start vertex does not match
the end vertex of the previous edge

374

Structural properties of graphs

Widest-path related functions

igraph_get_widest_path — Widest path from one
vertex to another one.

igraph_error_t igraph_get_widest_path(const igraph_t *graph,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Calculates a single widest path from a single vertex to another one, using Dijkstra's algorithm.

This function is a special case (and a wrapper) to igraph_get_widest_paths().

Arguments:

graph: The input graph, it can be directed or undirected.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex
IDs along the path are stored here, including the source and target vertices.

edges: Pointer to an initialized vector or a null pointer. If not a null pointer, then the edge
IDs along the path are stored here.

from: The id of the source vertex.

to: The id of the target vertex.

weights: The edge weights. Edge weights can be negative. If this is a null pointer or if any
edge weight is NaN, then an error is returned. Edges with positive infinite weight are
ignored.

mode: A constant specifying how edge directions are considered in directed graphs.
IGRAPH_OUT follows edge directions, IGRAPH_IN follows the opposite directions,
and IGRAPH_ALL ignores edge directions. This argument is ignored for undirected
graphs.

Returns:

Error code.

Time complexity: O(|E|log|E|+|V|), |V| is the number of vertices, |E| is the number of edges in the graph.

See also:

igraph_get_widest_paths() for the version with more target vertices.

igraph_get_widest_paths — Widest paths from a
single vertex.

375

Structural properties of graphs

igraph_error_t igraph_get_widest_paths(const igraph_t *graph,
 igraph_vector_int_list_t *vertices,
 igraph_vector_int_list_t *edges,
 igraph_integer_t from,
 igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_vector_int_t *parents,
 igraph_vector_int_t *inbound_edges);

Calculates the widest paths from a single node to all other specified nodes, using a modified Dijkstra's
algorithm. If there is more than one path with the largest width between two vertices, this function
gives only one of them.

Arguments:

graph: The graph object.

vertices: The result, the IDs of the vertices along the paths. This is a list of integer
vectors where each element is an igraph_vector_int_t object. The list
will be resized as needed. Supply a null pointer here if you don't need these
vectors.

edges: The result, the IDs of the edges along the paths. This is a list of integer vectors
where each element is an igraph_vector_int_t object. The list will be
resized as needed. Supply a null pointer here if you don't need these vectors.

from: The id of the vertex from/to which the widest paths are calculated.

to: Vertex sequence with the IDs of the vertices to/from which the widest paths
will be calculated. A vertex might be given multiple times.

weights: The edge weights. Edge weights can be negative. If this is a null pointer or if
any edge weight is NaN, then an error is returned. Edges with positive infinite
weight are ignored.

mode: The type of widest paths to be used for the calculation in directed graphs.
Possible values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the
computation.

parents: A pointer to an initialized igraph vector or null. If not null, a vector containing
the parent of each vertex in the single source widest path tree is returned here.
The parent of vertex i in the tree is the vertex from which vertex i was reached.
The parent of the start vertex (in the from argument) is -1. If the parent is
-2, it means that the given vertex was not reached from the source during the
search. Note that the search terminates if all the vertices in to are reached.

inbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector containing
the inbound edge of each vertex in the single source widest path tree is returned
here. The inbound edge of vertex i in the tree is the edge via which vertex i was
reached. The start vertex and vertices that were not reached during the search
will have -1 in the corresponding entry of the vector. Note that the search
terminates if all the vertices in to are reached.

376

Structural properties of graphs

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex ID

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|E|log|E|+|V|), where |V| is the number of vertices in the graph and |E| is the
number of edges

See also:

igraph_widest_path_widths_dijkstra() or igraph_widest_path_width-
s_floyd_warshall() if you only need the widths of the paths but not the paths themselves.

igraph_widest_path_widths_dijkstra — Widths
of widest paths between vertices.

igraph_error_t igraph_widest_path_widths_dijkstra(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function implements a modified Dijkstra's algorithm, which can find the widest path widths from
a source vertex to all other vertices. This function allows specifying a set of source and target vertices.
The algorithm is run independently for each source and the results are retained only for the specified
targets. This implementation uses a binary heap for efficiency.

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here. The matrix
will be resized as needed. Each row contains the widths from a single source, to the ver-
tices given in the to argument. Unreachable vertices have width IGRAPH_NEGIN-
FINITY, and vertices have a width of IGRAPH_POSINFINITY to themselves.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

weights: The edge weights. Edge weights can be negative. If this is a null pointer or if any edge
weight is NaN, then an error is returned. Edges with positive infinite weight are ignored.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It
is ignored for undirected graphs.

Returns:

Error code.

377

Structural properties of graphs

Time complexity: O(s*(|E|log|E|+|V|)), where |V| is the number of vertices in the graph, |E| the number
of edges and s the number of sources.

See also:

igraph_widest_path_widths_floyd_warshall() for a variant that runs faster on
dense graphs.

igraph_widest_path_widths_floyd_warshall —
Widths of widest paths between vertices.

igraph_error_t igraph_widest_path_widths_floyd_warshall(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function implements a modified Floyd-Warshall algorithm, to find the widest path widths be-
tween a set of source and target vertices. It is primarily useful for all-pairs path widths in very dense
graphs, as its running time is manily determined by the vertex count, and is not sensitive to the graph
density. In sparse graphs, other methods such as the Dijkstra algorithm, will perform better.

Note that internally this function always computes the path width matrix for all pairs of vertices. The
from and to parameters only serve to subset this matrix, but do not affect the time taken by the
calculation.

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here. The matrix
will be resized as needed. Each row contains the widths from a single source, to the ver-
tices given in the to argument. Unreachable vertices have width IGRAPH_NEGIN-
FINITY, and vertices have a width of IGRAPH_POSINFINITY to themselves.

from: The source vertices.

to: The target vertices.

weights: The edge weights. Edge weights can be negative. If this is a null pointer or if any edge
weight is NaN, then an error is returned. Edges with positive infinite weight are ignored.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It
is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V|^3), where |V| is the number of vertices in the graph.

See also:

igraph_widest_path_widths_dijkstra() for a variant that runs faster on sparse
graphs.

378

Structural properties of graphs

Efficiency measures

igraph_global_efficiency — Calculates the global
efficiency of a network.

igraph_error_t igraph_global_efficiency(const igraph_t *graph, igraph_real_t *res,
 const igraph_vector_t *weights,
 igraph_bool_t directed);

The global efficiency of a network is defined as the average of inverse distances between all pairs of
vertices: E_g = 1/(N*(N-1)) sum_{i!=j} 1/d_ij, where N is the number of vertices. The
inverse distance between pairs that are not reachable from each other is considered to be zero. For
graphs with fewer than 2 vertices, NaN is returned.

Reference: V. Latora and M. Marchiori, Efficient Behavior of Small-World Networks, Phys. Rev.
Lett. 87, 198701 (2001). https://dx.doi.org/10.1103/PhysRevLett.87.198701

Arguments:

graph: The graph object.

res: Pointer to a real number, this will contain the result.

weights: The edge weights. All edge weights must be non-negative for Dijkstra's algorithm to
work. Additionally, no edge weight may be NaN. If either case does not hold, an er-
ror is returned. If this is a null pointer, then the unweighted version, igraph_av-
erage_path_length() is used in calculating the global efficiency. Edges with
positive infinite weights are ignored.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for data structures

IGRAPH_EINVAL invalid weight vector

Time complexity: O(|V| |E| log|E| + |V|) for weighted graphs and O(|V| |E|) for unweighted ones. |V|
denotes the number of vertices and |E| denotes the number of edges.

igraph_local_efficiency — Calculates the local
efficiency around each vertex in a network.

igraph_error_t igraph_local_efficiency(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids,
 const igraph_vector_t *weights,
 igraph_bool_t directed, igraph_neimode_t mode);

379

https://dx.doi.org/10.1103/PhysRevLett.87.198701

Structural properties of graphs

The local efficiency of a network around a vertex is defined as follows: We remove the vertex and
compute the distances (shortest path lengths) between its neighbours through the rest of the network.
The local efficiency around the removed vertex is the average of the inverse of these distances.

The inverse distance between two vertices which are not reachable from each other is considered to
be zero. The local efficiency around a vertex with fewer than two neighbours is taken to be zero by
convention.

Reference: I. Vragovi#, E. Louis, and A. Díaz-Guilera, Efficiency of informational transfer in regular
and complex networks, Phys. Rev. E 71, 1 (2005). http://dx.doi.org/10.1103/PhysRevE.71.036122

Arguments:

graph: The graph object.

res: Pointer to an initialized vector, this will contain the result.

vids: The vertices around which the local efficiency will be calculated.

weights: The edge weights. All edge weights must be non-negative. Additionally, no edge
weight may be NaN. If either case does not hold, an error is returned. If this is a
null pointer, then the unweighted version, igraph_average_path_length()
is called. Edges with positive infinite weights are ignored.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

mode: How to determine the local neighborhood of each vertex in directed graphs. Ignored
in undirected graphs.

IGRAPH_ALL take both in- and out-neighbours; this is a reasonable default for
high-level interfaces.

IGRAPH_OUT take only out-neighbours

IGRAPH_IN take only in-neighbours

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for data structures

IGRAPH_EINVAL invalid weight vector

Time complexity: O(|E|^2 log|E|) for weighted graphs and O(|E|^2) for unweighted ones. |E| denotes
the number of edges.

See also:

igraph_average_local_efficiency()

igraph_average_local_efficiency — Calculates
the average local efficiency in a network.

igraph_error_t igraph_average_local_efficiency(const igraph_t *graph, igraph_real_t *res,
 const igraph_vector_t *weights,
 igraph_bool_t directed, igraph_neimode_t mode);

380

http://dx.doi.org/10.1103/PhysRevE.71.036122

Structural properties of graphs

For the null graph, zero is returned by convention.

Arguments:

graph: The graph object.

res: Pointer to a real number, this will contain the result.

weights: The edge weights. They must be all non-negative. If a null pointer is given, all weights
are assumed to be 1. Edges with positive infinite weight are ignored.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

mode: How to determine the local neighborhood of each vertex in directed graphs. Ignored
in undirected graphs.

IGRAPH_ALL take both in- and out-neighbours; this is a reasonable default for
high-level interfaces.

IGRAPH_OUT take only out-neighbours

IGRAPH_IN take only in-neighbours

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for data structures

IGRAPH_EINVAL invalid weight vector

Time complexity: O(|E|^2 log|E|) for weighted graphs and O(|E|^2) for unweighted ones. |E| denotes
the number of edges.

See also:

igraph_local_efficiency()

Neighborhood of a vertex

igraph_neighborhood_size — Calculates the size
of the neighborhood of a given vertex.

igraph_error_t igraph_neighborhood_size(const igraph_t *graph, igraph_vector_int_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode,
 igraph_integer_t mindist);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than
the order. I.e., order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 is order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function calculates the size of the neighborhood of the given order for the given vertices.

Arguments:

381

Structural properties of graphs

graph: The input graph.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from the
source vertex in at most order steps are counted. For IGRAPH_IN all vertices from
which the source vertex is reachable in at most order steps are counted. IGRAPH_ALL
ignores the direction of the edges. This argument is ignored for undirected graphs.

mindist: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If this is two, then its neighbors are not counted either, etc.

Returns:

Error code.

See also:

igraph_neighborhood() for calculating the actual neighborhood, igraph_neighbor-
hood_graphs() for creating separate graphs from the neighborhoods.

Time complexity: O(n*d*o), where n is the number vertices for which the calculation is performed,
d is the average degree, o is the order.

igraph_neighborhood — Calculate the neighbor-
hood of vertices.

igraph_error_t igraph_neighborhood(const igraph_t *graph, igraph_vector_int_list_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode, igraph_integer_t mindist);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than
the order. I.e., order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 is order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function calculates the vertices within the neighborhood of the specified vertices.

Arguments:

graph: The input graph.

res: An initialized list of integer vectors. The result of the calculation will be stored here.
The list will be resized as needed.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from
the source vertex in at most order steps are included. For IGRAPH_IN all ver-

382

Structural properties of graphs

tices from which the source vertex is reachable in at most order steps are included.
IGRAPH_ALL ignores the direction of the edges. This argument is ignored for undi-
rected graphs.

mindist: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If this is two, then its neighbors are not counted either, etc.

Returns:

Error code.

See also:

igraph_neighborhood_size() to calculate the size of the neighborhood,
igraph_neighborhood_graphs() for creating graphs from the neighborhoods.

Time complexity: O(n*d*o), n is the number of vertices for which the calculation is performed, d is
the average degree, o is the order.

igraph_neighborhood_graphs — Create graphs
from the neighborhood(s) of some vertex/vertices.

igraph_error_t igraph_neighborhood_graphs(const igraph_t *graph, igraph_graph_list_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode,
 igraph_integer_t mindist);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than
the order. Ie. order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors,
order 2 is order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function finds every vertex in the neighborhood of a given parameter vertex and creates the
induced subgraph from these vertices.

The first version of this function was written by Vincent Matossian, thanks Vincent.

Arguments:

graph: The input graph.

res: Pointer to a list of graphs, the result will be stored here. Each item in the list is an
igraph_t object. The list will be resized as needed.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from the
source vertex in at most order steps are counted. For IGRAPH_IN all vertices from
which the source vertex is reachable in at most order steps are counted. IGRAPH_ALL
ignores the direction of the edges. This argument is ignored for undirected graphs.

mindist: The minimum distance to include a vertex in the counting. Vertices reachable with a
path shorter than this value are excluded. If this is one, then the starting vertex is not
counted. If this is two, then its neighbors are not counted either, etc.

383

Structural properties of graphs

Returns:

Error code.

See also:

igraph_neighborhood_size() for calculating the neighborhood sizes only,
igraph_neighborhood() for calculating the neighborhoods (but not creating graphs).

Time complexity: O(n*(|V|+|E|)), where n is the number vertices for which the calculation is per-
formed, |V| and |E| are the number of vertices and edges in the original input graph.

Local scan statistics
The scan statistic is a summary of the locality statistics that is computed from the local neighborhood
of each vertex. For details, see Priebe, C. E., Conroy, J. M., Marchette, D. J., Park, Y. (2005). Scan
Statistics on Enron Graphs. Computational and Mathematical Organization Theory.

"Us" statistics

igraph_local_scan_0 — Local scan-statistics, k=0

igraph_error_t igraph_local_scan_0(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

K=0 scan-statistics is arbitrarily defined as the vertex degree for unweighted, and the vertex strength
for weighted graphs. See igraph_degree() and igraph_strength().

Arguments:

graph: The input graph

res: An initialized vector, the results are stored here.

weights: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN means in-
coming and IGRAPH_ALL means all edges.

Returns:

Error code.

igraph_local_scan_1_ecount — Local scan-statistics, k=1,
edge count and sum of weights

igraph_error_t igraph_local_scan_1_ecount(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

384

Structural properties of graphs

Count the number of edges or the sum the edge weights in the 1-neighborhood of vertices.

Arguments:

graph: The input graph

res: An initialized vector, the results are stored here.

weights: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN means in-
coming and IGRAPH_ALL means all edges.

Returns:

Error code.

igraph_local_scan_k_ecount — Sum the number of edges or
the weights in k-neighborhood of every vertex.

igraph_error_t igraph_local_scan_k_ecount(const igraph_t *graph, igraph_integer_t k,
 igraph_vector_t *res,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Arguments:

graph: The input graph.

k: The size of the neighborhood, non-negative integer. The k=0 case is special, see
igraph_local_scan_0().

res: An initialized vector, the results are stored here.

weights: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN means in-
coming and IGRAPH_ALL means all edges.

Returns:

Error code.

"Them" statistics

igraph_local_scan_0_them — Local THEM scan-statistics, k=0

igraph_error_t igraph_local_scan_0_them(const igraph_t *us, const igraph_t *them,
 igraph_vector_t *res,
 const igraph_vector_t *weights_them,

385

Structural properties of graphs

 igraph_neimode_t mode);

K=0 scan-statistics is arbitrarily defined as the vertex degree for unweighted, and the vertex strength
for weighted graphs. See igraph_degree() and igraph_strength().

Arguments:

us: The input graph, to use to extract the neighborhoods.

them: The input graph to use for the actually counting.

res: An initialized vector, the results are stored here.

weights_them: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN
means incoming and IGRAPH_ALL means all edges.

Returns:

Error code.

igraph_local_scan_1_ecount_them — Local THEM scan-sta-
tistics, k=1, edge count and sum of weights

igraph_error_t igraph_local_scan_1_ecount_them(const igraph_t *us, const igraph_t *them,
 igraph_vector_t *res,
 const igraph_vector_t *weights_them,
 igraph_neimode_t mode);

Count the number of edges or the sum the edge weights in the 1-neighborhood of vertices.

Arguments:

us: The input graph to extract the neighborhoods.

them: The input graph to perform the counting.

weights_them: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN
means incoming and IGRAPH_ALL means all edges.

Returns:

Error code.

See also:

igraph_local_scan_1_ecount() for the US statistics.

igraph_local_scan_k_ecount_them — Local THEM scan-sta-
tistics, edge count or sum of weights.

386

Structural properties of graphs

igraph_error_t igraph_local_scan_k_ecount_them(const igraph_t *us, const igraph_t *them,
 igraph_integer_t k, igraph_vector_t *res,
 const igraph_vector_t *weights_them,
 igraph_neimode_t mode);

Count the number of edges or the sum the edge weights in the k-neighborhood of vertices.

Arguments:

us: The input graph to extract the neighborhoods.

them: The input graph to perform the counting.

k: The size of the neighborhood, non-negative integer. The k=0 case is special, see
igraph_local_scan_0_them().

weights_them: Weight vector for weighted graphs, null pointer for unweighted graphs.

mode: Type of the neighborhood, IGRAPH_OUT means outgoing, IGRAPH_IN
means incoming and IGRAPH_ALL means all edges.

Returns:

Error code.

See also:

igraph_local_scan_1_ecount() for the US statistics.

Pre-calculated subsets

igraph_local_scan_neighborhood_ecount — Local scan-sta-
tistics with pre-calculated neighborhoods

igraph_error_t igraph_local_scan_neighborhood_ecount(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vector_t *weights,
 const igraph_vector_int_list_t *neighborhoods);

Count the number of edges, or sum the edge weights in neighborhoods given as a parameter.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_local_scan_subset_ecount() instead.

Arguments:

graph: The graph to perform the counting/summing in.

res: Initialized vector, the result is stored here.

weights: Weight vector for weighted graphs, null pointer for unweighted graphs.

387

Structural properties of graphs

neighborhoods: List of igraph_vector_int_t objects, the neighborhoods, one for each vertex in
the graph.

Returns:

Error code.

igraph_local_scan_subset_ecount — Local scan-statistics of
subgraphs induced by subsets of vertices.

igraph_error_t igraph_local_scan_subset_ecount(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vector_t *weights,
 const igraph_vector_int_list_t *subsets);

Count the number of edges, or sum the edge weights in induced subgraphs from vertices given as a
parameter.

Arguments:

graph: The graph to perform the counting/summing in.

res: Initialized vector, the result is stored here.

weights: Weight vector for weighted graphs, null pointer for unweighted graphs.

subsets: List of igraph_vector_int_t objects, the vertex subsets.

Returns:

Error code.

Graph components

igraph_subcomponent — The vertices in the same
component as a given vertex.

igraph_error_t igraph_subcomponent(
 const igraph_t *graph, igraph_vector_int_t *res, igraph_integer_t vertex,
 igraph_neimode_t mode
);

Arguments:

graph: The graph object.

res: The result, vector with the IDs of the vertices in the same component.

vertex: The id of the vertex of which the component is searched.

mode: Type of the component for directed graphs, possible values:

388

Structural properties of graphs

IGRAPH_OUT the set of vertices reachable from the vertex,

IGRAPH_IN the set of vertices from which the vertex is reachable.

IGRAPH_ALL the graph is considered as an undirected graph. Note that this is not the
same as the union of the previous two.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID vertex is an invalid vertex ID

IGRAPH_EINVMODE invalid mode argument passed.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

igraph_induced_subgraph() if you want a graph object consisting only a given set of ver-
tices and the edges between them.

igraph_connected_components — Calculates the
(weakly or strongly) connected components in a
graph.

igraph_error_t igraph_connected_components(
 const igraph_t *graph, igraph_vector_int_t *membership,
 igraph_vector_int_t *csize, igraph_integer_t *no, igraph_connectedness_t mode
);

Arguments:

graph: The graph object to analyze.

membership: First half of the result will be stored here. For every vertex the id of its component
is given. The vector has to be preinitialized and will be resized. Alternatively this
argument can be NULL, in which case it is ignored.

csize: The second half of the result. For every component it gives its size, the order is de-
fined by the component ids. The vector has to be preinitialized and will be resized.
Alternatively this argument can be NULL, in which case it is ignored.

no: Pointer to an integer, if not NULL then the number of components will be stored
here.

mode: For directed graph this specifies whether to calculate weakly or strongly connected
components. Possible values: IGRAPH_WEAK, IGRAPH_STRONG. This argument
is ignored for undirected graphs.

Returns:

389

Structural properties of graphs

Error code: IGRAPH_EINVAL: invalid mode argument.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the graph.

igraph_clusters — Calculates the (weakly or
strongly) connected components in a graph (deprecat-
ed alias).

igraph_error_t igraph_clusters(const igraph_t *graph, igraph_vector_int_t *membership,
 igraph_vector_int_t *csize, igraph_integer_t *no,
 igraph_connectedness_t mode);

Warning

Deprecated since version 0.10. Please do not use this function in new code; use
igraph_connected_components() instead.

igraph_is_connected — Decides whether the graph
is (weakly or strongly) connected.

igraph_error_t igraph_is_connected(const igraph_t *graph, igraph_bool_t *res,
 igraph_connectedness_t mode);

A graph is considered connected when any of its vertices is reachable from any other. A directed
graph with this property is called strongly connected. A directed graph that would be connected when
ignoring the directions of its edges is called weakly connected.

A graph with zero vertices (i.e. the null graph) is not connected by definition. This behaviour changed
in igraph 0.9; earlier versions assumed that the null graph is connected. See the following issue
on Github for the argument that led us to change the definition: https://github.com/igraph/igraph/is-
sues/1539

The return value of this function is cached in the graph itself, separately for weak and strong connec-
tivity. Calling the function multiple times with no modifications to the graph in between will return
a cached value in O(1) time.

Arguments:

graph: The graph object to analyze.

res: Pointer to a logical variable, the result will be stored here.

mode: For a directed graph this specifies whether to calculate weak or strong connectedness. Pos-
sible values: IGRAPH_WEAK, IGRAPH_STRONG. This argument is ignored for undirect-
ed graphs.

Returns:

Error code: IGRAPH_EINVAL: invalid mode argument.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

390

https://github.com/igraph/igraph/issues/1539
https://github.com/igraph/igraph/issues/1539

Structural properties of graphs

igraph_decompose — Decomposes a graph into con-
nected components.

igraph_error_t igraph_decompose(const igraph_t *graph, igraph_graph_list_t *components,
 igraph_connectedness_t mode,
 igraph_integer_t maxcompno, igraph_integer_t minelements);

Creates a separate graph for each component of a graph. Note that the vertex IDs in the new graphs
will be different than in the original graph, except when there is only a single component in the original
graph.

Arguments:

graph: The original graph.

components: This list of graphs will contain the individual components. It should be initialized
before calling this function and will be resized to hold the graphs.

mode: Either IGRAPH_WEAK or IGRAPH_STRONG for weakly and strongly connected
components respectively.

maxcompno: The maximum number of components to return. The first maxcompno compo-
nents will be returned (which hold at least minelements vertices, see the next
parameter), the others will be ignored. Supply -1 here if you don't want to limit
the number of components.

minelements: The minimum number of vertices a component should contain in order to place
it in the components vector. Eg. supply 2 here to ignore isolated vertices.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory to perform the operation.

Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.15. File examples/simple/igraph_decompose.c

igraph_decompose_destroy — Frees the contents of
a pointer vector holding graphs.

void igraph_decompose_destroy(igraph_vector_ptr_t *complist);

This function destroys and frees all igraph_t objects held in complist. However, it does not destroy
complist itself. Use igraph_vector_ptr_destroy() to destroy complist.

Arguments:

complist: The list of graphs to destroy.

Time complexity: O(n), n is the number of items.

391

Structural properties of graphs

Warning

Deprecated since version 0.10.0. Please do not use this function in new code.

igraph_biconnected_components — Calculates bi-
connected components.

igraph_error_t igraph_biconnected_components(const igraph_t *graph,
 igraph_integer_t *no,
 igraph_vector_int_list_t *tree_edges,
 igraph_vector_int_list_t *component_edges,
 igraph_vector_int_list_t *components,
 igraph_vector_int_t *articulation_points);

A graph is biconnected if the removal of any single vertex (and its incident edges) does not disconnect
it.

A biconnected component of a graph is a maximal biconnected subgraph of it. The biconnected com-
ponents of a graph can be given by a partition of its edges: every edge is a member of exactly one
biconnected component. Note that this is not true for vertices: the same vertex can be part of many
biconnected components, while isolated vertices are part of none at all.

Note that some authors do not consider the graph consisting of two connected vertices as biconnected,
however, igraph does.

igraph does not consider components containing a single vertex only as being biconnected. Isolated
vertices will not be part of any of the biconnected components. This means that checking whether
there is a single biconnected component is not sufficient for determining if a graph is biconnected.
Use igraph_is_biconnected() for this purpose.

Arguments:

graph: The input graph. It will be treated as undirected.

no: If not a NULL pointer, the number of biconnected components will
be stored here.

tree_edges: If not a NULL pointer, then the found components are stored here,
in a list of vectors. Every vector in the list is a biconnected compo-
nent, represented by its edges. More precisely, a spanning tree of the
biconnected component is returned.

component_edges: If not a NULL pointer, then the edges of the biconnected components
are stored here, in the same form as for tree_edges.

components: If not a NULL pointer, then the vertices of the biconnected compo-
nents are stored here, in the same format as for the previous two ar-
guments.

articulation_points: If not a NULL pointer, then the articulation points of the graph are
stored in this vector. A vertex is an articulation point if its removal
increases the number of (weakly) connected components in the graph.

Returns:

Error code.

392

Structural properties of graphs

Time complexity: O(|V|+|E|), linear in the number of vertices and edges, but only if you do not calculate
components and component_edges. If you calculate components, then it is quadratic in the
number of vertices. If you calculate component_edges as well, then it is cubic in the number of
vertices.

See also:

igraph_articulation_points(), igraph_is_biconnected(), igraph_con-
nected_components().

Example 13.16. File examples/simple/
igraph_biconnected_components.c

igraph_articulation_points — Finds the articula-
tion points in a graph.

igraph_error_t igraph_articulation_points(const igraph_t *graph, igraph_vector_int_t *res);

A vertex is an articulation point if its removal increases the number of (weakly) connected components
in the graph.

Note that a graph without any articulation points is not necessarily biconnected. Counterexamples
are the two-vertex complete graph as well as empty graphs. Use igraph_is_biconnected() to
check whether a graph is biconnected.

Arguments:

graph: The input graph. It will be treated as undirected.

res: Pointer to an initialized vector, the articulation points will be stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_biconnected_components(), igraph_is_bipartite(), igraph_con-
nected_components(), igraph_bridges()

igraph_bridges — Finds all bridges in a graph.

igraph_error_t igraph_bridges(const igraph_t *graph, igraph_vector_int_t *bridges);

An edge is a bridge if its removal increases the number of (weakly) connected components in the graph.

Arguments:

graph: The input graph. It will be treated as undirected.

res: Pointer to an initialized vector, the bridges will be stored here as edge indices.

393

Structural properties of graphs

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_articulation_points(), igraph_biconnected_components(),
igraph_connected_components()

igraph_is_biconnected — Checks whether a graph
is biconnected.

igraph_error_t igraph_is_biconnected(const igraph_t *graph, igraph_bool_t *res);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

A graph is biconnected if the removal of any single vertex (and its incident edges) does not disconnect
it.

igraph does not consider single-vertex graphs biconnected.

Note that some authors do not consider the graph consisting of two connected vertices as biconnected,
however, igraph does.

Arguments:

graph: The input graph. It will be treated as undirected.

result: If not a NULL pointer, the result will be returned here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_articulation_points(), igraph_biconnected_components().

Example 13.17. File examples/simple/igraph_is_biconnected.c

Degree sequences

igraph_is_graphical — Is there a graph with the
given degree sequence?

394

Structural properties of graphs

igraph_error_t igraph_is_graphical(const igraph_vector_int_t *out_degrees,
 const igraph_vector_int_t *in_degrees,
 const igraph_edge_type_sw_t allowed_edge_types,
 igraph_bool_t *res);

Determines whether a sequence of integers can be the degree sequence of some graph. The classical
concept of graphicality assumes simple graphs. This function can perform the check also when either
self-loops, multi-edge, or both are allowed in the graph.

For simple undirected graphs, the Erd#s-Gallai conditions are checked using the linear-time algorithm
of Cloteaux. If both self-loops and multi-edges are allowed, it is sufficient to chek that that sum of
degrees is even. If only multi-edges are allowed, but not self-loops, there is an additional condition
that the sum of degrees be no smaller than twice the maximum degree. If at most one self-loop is
allowed per vertex, but no multi-edges, a modified version of the Erd#s-Gallai conditions are used
(see Cairns & Mendan).

For simple directed graphs, the Fulkerson-Chen-Anstee theorem is used with the relaxation by Berger.
If both self-loops and multi-edges are allowed, then it is sufficient to check that the sum of in- and
out-degrees is the same. If only multi-edges are allowed, but not self loops, there is an additional con-
dition that the sum of out-degrees (or equivalently, in-degrees) is no smaller than the maximum total
degree. If single self-loops are allowed, but not multi-edges, the problem is equivalent to realizability
as a simple bipartite graph, thus the Gale-Ryser theorem can be used; see igraph_is_bigraph-
ical() for more information.

References:

P. Erd#s and T. Gallai, Gráfok el#írt fokú pontokkal, Matematikai Lapok 11, pp. 264–274 (1960).
https://users.renyi.hu/~p_erdos/1961-05.pdf

Z Király, Recognizing graphic degree sequences and generating all realizations. TR-2011-11,
Egerváry Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012). http://bolyai.c-
s.elte.hu/egres/tr/egres-11-11.pdf

B. Cloteaux, Is This for Real? Fast Graphicality Testing, Comput. Sci. Eng. 17, 91 (2015). https://
dx.doi.org/10.1109/MCSE.2015.125

A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

G. Cairns and S. Mendan, Degree Sequence for Graphs with Loops (2013). https://arxiv.org/ab-
s/1303.2145v1

Arguments:

out_degrees: A vector of integers specifying the degree sequence for undirected
graphs or the out-degree sequence for directed graphs.

in_degrees: A vector of integers specifying the in-degree sequence for directed
graphs. For undirected graphs, it must be NULL.

allowed_edge_types: The types of edges to allow in the graph:

IGRAPH_SIMPLE_SW simple graphs (i.e. no self-loops
or multi-edges allowed).

IGRAPH_LOOPS_SW single self-loops are allowed,
but not multi-edges.

IGRAPH_MULTI_SW multi-edges are allowed, but
not self-loops.

395

https://users.renyi.hu/~p_erdos/1961-05.pdf
http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf
http://bolyai.cs.elte.hu/egres/tr/egres-11-11.pdf
https://dx.doi.org/10.1109/MCSE.2015.125
https://dx.doi.org/10.1109/MCSE.2015.125
https://dx.doi.org/10.1016/j.disc.2013.09.010
https://arxiv.org/abs/1303.2145v1
https://arxiv.org/abs/1303.2145v1

Structural properties of graphs

IGRAPH_LOOPS_SW |
IGRAPH_MULTI_SW

both self-loops and multi-edges
are allowed.

res: Pointer to a Boolean. The result will be stored here.

Returns:

Error code.

See also:

igraph_is_bigraphical() to check if a bi-degree-sequence can be realized as a bipartite
graph; igraph_realize_degree_sequence() to construct a graph with a given degree
sequence.

Time complexity: O(n log n) for directed graphs with at most one self-loop per vertex, and O(n) for
all other cases, where n is the length of the degree sequence(s).

igraph_is_bigraphical — Is there a bipartite graph
with the given bi-degree-sequence?

igraph_error_t igraph_is_bigraphical(const igraph_vector_int_t *degrees1,
 const igraph_vector_int_t *degrees2,
 const igraph_edge_type_sw_t allowed_edge_types,
 igraph_bool_t *res);

Determines whether two sequences of integers can be the degree sequences of a bipartite graph. Such
a pair of degree sequence is called bigraphical.

When multi-edges are allowed, it is sufficient to check that the sum of degrees is the same in the two
partitions. For simple graphs, the Gale-Ryser theorem is used with Berger's relaxation.

References:

H. J. Ryser, Combinatorial Properties of Matrices of Zeros and Ones, Can. J. Math. 9, 371 (1957).
https://dx.doi.org/10.4153/cjm-1957-044-3

D. Gale, A theorem on flows in networks, Pacific J. Math. 7, 1073 (1957). https://dx.doi.org/10.2140/
pjm.1957.7.1073

A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014).
https://dx.doi.org/10.1016/j.disc.2013.09.010

Arguments:

degrees1: A vector of integers specifying the degrees in the first partition

degrees2: A vector of integers specifying the degrees in the second partition

allowed_edge_types: The types of edges to allow in the graph:

IGRAPH_SIMPLE_SW simple graphs (i.e. no multi-edges allowed).

IGRAPH_MULTI_SW multi-edges are allowed.

res: Pointer to a Boolean. The result will be stored here.

396

https://dx.doi.org/10.4153/cjm-1957-044-3
https://dx.doi.org/10.2140/pjm.1957.7.1073
https://dx.doi.org/10.2140/pjm.1957.7.1073
https://dx.doi.org/10.1016/j.disc.2013.09.010

Structural properties of graphs

Returns:

Error code.

See also:

igraph_is_graphical()

Time complexity: O(n log n) for simple graphs, O(n) for multigraphs, where n is the length of the
larger degree sequence.

Centrality measures

igraph_closeness — Closeness centrality calcula-
tions for some vertices.

igraph_error_t igraph_closeness(const igraph_t *graph, igraph_vector_t *res,
 igraph_vector_int_t *reachable_count, igraph_bool_t *all_reachable,
 const igraph_vs_t vids, igraph_neimode_t mode,
 const igraph_vector_t *weights,
 igraph_bool_t normalized);

The closeness centrality of a vertex measures how easily other vertices can be reached from it (or the
other way: how easily it can be reached from the other vertices). It is defined as the inverse of the
mean distance to (or from) all other vertices.

Closeness centrality is meaningful only for connected graphs. If the graph is not connected, igraph
computes the inverse of the mean distance to (or from) all reachable vertices. In undirected graphs,
this is equivalent to computing the closeness separately in each connected component. The optional
all_reachable output parameter is provided to help detect when the graph is disconnected.

While there is no universally adopted definition of closeness centrality for disconnected graphs, there
have been some attempts for generalizing the concept to the disconnected case. One type of approach
considers the mean distance only to reachable vertices, then re-scales the obtained certrality score by a
factor that depends on the number of reachable vertices (i.e. the size of the component in the undirected
case). To facilitate computing these generalizations of closeness centrality, the number of reachable
vertices (not including the starting vertex) is returned in reachable_count.

In disconnected graphs, consider using the harmonic centrality, computable using igraph_har-
monic_centrality().

For isolated vertices, i.e. those having no associated paths, NaN is returned.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the closeness centrality
scores for the given vertices.

reachable_count: If not NULL, this vector will contain the number of vertices reachable from
each vertex for which the closeness is calculated (not including that vertex).

all_reachable: Pointer to a Boolean. If not NULL, it indicates if all vertices of the graph
were reachable from each vertex in vids. If false, the graph is non-con-

397

Structural properties of graphs

nected. If true, and the graph is undirected, or if the graph is directed and
vids contains all vertices, then the graph is connected.

vids: The vertices for which the closeness centrality will be computed.

mode: The type of shortest paths to be used for the calculation in directed graphs.
Possible values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for
the computation.

weights: An optional vector containing edge weights for weighted closeness. No
edge weight may be NaN. Supply a null pointer here for traditional, un-
weighted closeness.

normalized: If true, the inverse of the mean distance to reachable vetices is returned. If
false, the inverse of the sum of distances is returned.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n|E|) for the unweighted case and O(n|E|log|V|+|V|) for the weighted case, where
n is the number of vertices for which the calculation is done, |V| is the number of vertices and |E| is
the number of edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_betweenness(), igraph_harmon-
ic_centrality(). See igraph_closeness_cutoff() for the range-limited closeness
centrality.

igraph_harmonic_centrality — Harmonic centrali-
ty for some vertices.

igraph_error_t igraph_harmonic_centrality(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 const igraph_vector_t *weights,
 igraph_bool_t normalized);

The harmonic centrality of a vertex is the mean inverse distance to all other vertices. The inverse
distance to an unreachable vertex is considered to be zero.

References:

M. Marchiori and V. Latora, Harmony in the small-world, Physica A 285, pp. 539-546 (2000). https://
doi.org/10.1016/S0378-4371%2800%2900311-3

398

https://doi.org/10.1016/S0378-4371%2800%2900311-3
https://doi.org/10.1016/S0378-4371%2800%2900311-3

Structural properties of graphs

Y. Rochat, Closeness Centrality Extended to Unconnected Graphs: the Harmonic Centrality Index,
ASNA 2009. https://infoscience.epfl.ch/record/200525

S. Vigna and P. Boldi, Axioms for Centrality, Internet Mathematics 10, (2014). https://
doi.org/10.1080/15427951.2013.865686

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the harmonic centrality scores
for the given vertices.

vids: The vertices for which the harmonic centrality will be computed.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

weights: An optional vector containing edge weights for weighted harmonic centrality. No
edge weight may be NaN. If NULL, all weights are considered to be one.

normalized: Boolean, whether to normalize the result. If true, the result is the mean inverse path
length to other vertices, i.e. it is normalized by the number of vertices minus one.
If false, the result is the sum of inverse path lengths to other vertices.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n|E|) for the unweighted case and O(n*|E|log|V|+|V|) for the weighted case, where
n is the number of vertices for which the calculation is done, |V| is the number of vertices and |E| is
the number of edges in the graph.

See also:

Other centrality types: igraph_closeness(), igraph_degree(), igraph_between-
ness().

igraph_betweenness — Betweenness centrality of
some vertices.

igraph_error_t igraph_betweenness(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,
 const igraph_vector_t* weights);

399

https://infoscience.epfl.ch/record/200525
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1080/15427951.2013.865686

Structural properties of graphs

The betweenness centrality of a vertex is the number of geodesics going through it. If there are more
than one geodesic between two vertices, the value of these geodesics are weighted by one over the
number of geodesics.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the betweenness scores for the spec-
ified vertices.

vids: The vertices of which the betweenness centrality scores will be calculated.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional vector containing edge weights for calculating weighted betweenness. No
edge weight may be NaN. Supply a null pointer here for unweighted betweenness.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID passed in vids.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph. Note that
the time complexity is independent of the number of vertices for which the score is calculated.

See also:

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_edge_betweenness() for calculating the betweenness score of the edges in a graph.
See igraph_betweenness_cutoff() to calculate the range-limited betweenness of the ver-
tices in a graph.

igraph_edge_betweenness — Betweenness centrali-
ty of the edges.

igraph_error_t igraph_edge_betweenness(const igraph_t *graph, igraph_vector_t *result,
 igraph_bool_t directed,
 const igraph_vector_t *weights);

The betweenness centrality of an edge is the number of geodesics going through it. If there are more
than one geodesics between two vertices, the value of these geodesics are weighted by one over the
number of geodesics.

Arguments:

graph: The graph object.

result: The result of the computation, vector containing the betweenness scores for the edges.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional weight vector for weighted edge betweenness. No edge weight may be
NaN. Supply a null pointer here for the unweighted version.

400

Structural properties of graphs

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_edge_betweenness() for calculating the betweenness score of the edges in a graph.
See igraph_edge_betweenness_cutoff() to compute the range-limited betweenness
score of the edges in a graph.

igraph_pagerank_algo_t — PageRank algorithm
implementation.

typedef enum {
 IGRAPH_PAGERANK_ALGO_ARPACK = 1,
 IGRAPH_PAGERANK_ALGO_PRPACK = 2
} igraph_pagerank_algo_t;

Algorithms to calculate PageRank.

Values:

IGRAPH_PAGERANK_AL-
GO_ARPACK:

Use the ARPACK library, this was the PageRank implementa-
tion in igraph from version 0.5, until version 0.7.

IGRAPH_PAGERANK_AL-
GO_PRPACK:

Use the PRPACK library. Currently this implementation is rec-
ommended.

igraph_pagerank — Calculates the Google PageR-
ank for the specified vertices.

igraph_error_t igraph_pagerank(const igraph_t *graph, igraph_pagerank_algo_t algo,
 igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 const igraph_vector_t *weights, igraph_arpack_options_t *options);

The PageRank centrality of a vertex is the fraction of time a random walker traversing the graph would
spend on that vertex. The walker follows the out-edges with probabilities proportional to their weights.
Additionally, in each step, it restarts the walk from a random vertex with probability 1 - damping.
If the random walker gets stuck in a sink vertex, it will also restart from a random vertex.

The PageRank centrality is mainly useful for directed graphs. In undirected graphs it converges to
trivial values proportional to degrees as the damping factor approaches 1.

Starting from version 0.9, igraph has two PageRank implementations, and the user can choose be-
tween them. The first implementation is IGRAPH_PAGERANK_ALGO_ARPACK, which phrases the
PageRank calculation as an eigenvalue problem, which is then solved using the ARPACK library.
This was the default before igraph version 0.7. The second and recommended implementation is

401

Structural properties of graphs

IGRAPH_PAGERANK_ALGO_PRPACK. This is using the PRPACK package, see https://github.com/
dgleich/prpack. PRPACK uses an algebraic method, i.e. solves a linear system to obtain the PageRank
scores.

Note that the PageRank of a given vertex depends on the PageRank of all other vertices, so even if
you want to calculate the PageRank for only some of the vertices, all of them must be calculated.
Requesting the PageRank for only some of the vertices does not result in any performance increase
at all.

References:

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proceedings of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998. https://
doi.org/10.1016/S0169-7552(98)00110-X

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible values: IGRAPH_PAGERANK_AL-
GO_ARPACK, IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable. When using IGRAPH_PAGERANK_ALGO_ARPACK, the
eigenvalue corresponding to the PageRank vector is stored here. It is expected to be
exactly one. Checking this value can be used to diagnose cases when ARPACK failed
to converge to the leading eigenvector. When using IGRAPH_PAGERANK_AL-
GO_PRPACK, this is always set to 1.0.

vids: The vertex IDs for which the PageRank is returned. This parameter is only for con-
venience. Computing PageRank for fewer than all vertices will not speed up the cal-
culation.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for undi-
rected graphs.

damping: The damping factor ("d" in the original paper). Must be a probability in the range [0,
1]. A commonly used value is 0.85.

weights: Optional edge weights. May be a NULL pointer, meaning unweighted edges, or a vec-
tor of non-negative values of the same length as the number of edges.

options: Options for the ARPACK method. See igraph_arpack_options_t for details.
Supply NULL here to use the defaults. Note that the function overwrites the n (number
of vertices), nev (1), ncv (3) and which (LM) parameters and it always starts the
calculation from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID in vids.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_personalized_pagerank() and igraph_personalized_pager-
ank_vs() for the personalized PageRank measure. See igraph_arpack_rssolve() and
igraph_arpack_rnsolve() for the underlying machinery used by IGRAPH_PAGER-
ANK_ALGO_ARPACK.

402

https://github.com/dgleich/prpack
https://github.com/dgleich/prpack
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X

Structural properties of graphs

Example 13.18. File examples/simple/igraph_pagerank.c

igraph_personalized_pagerank — Calculates the
personalized Google PageRank for the specified ver-
tices.

igraph_error_t igraph_personalized_pagerank(const igraph_t *graph,
 igraph_pagerank_algo_t algo, igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 const igraph_vector_t *reset,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

The personalized PageRank is similar to the original PageRank measure, but when the random walk
is restarted, a new starting vertex is chosen non-uniformly, according to the distribution specified in
reset (instead of the uniform distribution in the original PageRank measure). The reset distribu-
tion is used both when restarting randomly with probability 1 - damping, and when the walker is
forced to restart due to being stuck in a sink vertex (a vertex with no outgoing edges).

Note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so even if you want to calculate the personalized PageRank for only some of the vertices,
all of them must be calculated. Requesting the personalized PageRank for only some of the vertices
does not result in any performance increase at all.

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible values: IGRAPH_PAGERANK_AL-
GO_ARPACK, IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable. When using IGRAPH_PAGERANK_ALGO_ARPACK, the
eigenvalue corresponding to the PageRank vector is stored here. It is expected to be
exactly one. Checking this value can be used to diagnose cases when ARPACK failed
to converge to the leading eigenvector. When using IGRAPH_PAGERANK_AL-
GO_PRPACK, this is always set to 1.0.

vids: The vertex IDs for which the PageRank is returned. This parameter is only for con-
venience. Computing PageRank for fewer than all vertices will not speed up the cal-
culation.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for undi-
rected graphs.

damping: The damping factor ("d" in the original paper). Must be a probability in the range [0,
1]. A commonly used value is 0.85.

reset: The probability distribution over the vertices used when resetting the random walk. It
is either a NULL pointer (denoting a uniform choice that results in the original PageR-
ank measure) or a vector of the same length as the number of vertices.

weights: Optional edge weights. May be a NULL pointer, meaning unweighted edges, or a vec-
tor of non-negative values of the same length as the number of edges.

403

Structural properties of graphs

options: Options for the ARPACK method. See igraph_arpack_options_t for details.
Supply NULL here to use the defaults. Note that the function overwrites the n (number
of vertices), nev (1), ncv (3) and which (LM) parameters and it always starts the
calculation from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID in vids or an invalid reset vector in reset.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_pagerank() for the non-personalized implementation, igraph_personal-
ized_pagerank_vs() for a personalized implementation with resetting to specific vertices.

igraph_personalized_pagerank_vs — Calculates
the personalized Google PageRank for the specified
vertices.

igraph_error_t igraph_personalized_pagerank_vs(const igraph_t *graph,
 igraph_pagerank_algo_t algo, igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 igraph_vs_t reset_vids,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

The personalized PageRank is similar to the original PageRank measure, but when the random walk
is restarted, a new starting vertex is chosen according to a specified distribution. This distribution is
used both when restarting randomly with probability 1 - damping, and when the walker is forced
to restart due to being stuck in a sink vertex (a vertex with no outgoing edges).

This simplified interface takes a vertex sequence and resets the random walk to one of the vertices
in the specified vertex sequence, chosen uniformly. A typical application of personalized PageRank
is when the random walk is reset to the same vertex every time - this can easily be achieved using
igraph_vss_1() which generates a vertex sequence containing only a single vertex.

Note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so even if you want to calculate the personalized PageRank for only some of the vertices,
all of them must be calculated. Requesting the personalized PageRank for only some of the vertices
does not result in any performance increase at all.

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible values: IGRAPH_PAGER-
ANK_ALGO_ARPACK, IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable. When using IGRAPH_PAGERANK_ALGO_ARPACK, the
eigenvalue corresponding to the PageRank vector is stored here. It is expected to

404

Structural properties of graphs

be exactly one. Checking this value can be used to diagnose cases when ARPACK
failed to converge to the leading eigenvector. When using IGRAPH_PAGER-
ANK_ALGO_PRPACK, this is always set to 1.0.

vids: The vertex IDs for which the PageRank is returned. This parameter is only for
convenience. Computing PageRank for fewer than all vertices will not speed up
the calculation.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for
undirected graphs.

damping: The damping factor ("d" in the original paper). Must be a probability in the range
[0, 1]. A commonly used value is 0.85.

reset_vids: IDs of the vertices used when resetting the random walk.

weights: Optional edge weights, it is either a null pointer, then the edges are not weighted,
or a vector of the same length as the number of edges.

options: Options for the ARPACK method. See igraph_arpack_options_t for de-
tails. Supply NULL here to use the defaults. Note that the function overwrites the n
(number of vertices), nev (1), ncv (3) and which (LM) parameters and it always
starts the calculation from a non-random vector calculated based on the degree of
the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID in vids or an empty reset vertex sequence in vids_reset.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_pagerank() for the non-personalized implementation.

igraph_constraint — Burt's constraint scores.

igraph_error_t igraph_constraint(const igraph_t *graph, igraph_vector_t *res,
 igraph_vs_t vids, const igraph_vector_t *weights);

This function calculates Burt's constraint scores for the given vertices, also known as structural holes.

Burt's constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts.
Burt's measure of constraint, C[i], of vertex i's ego network V[i], is defined for directed and valued
graphs,

C[i] = sum(sum((p[i,q] p[q,j])^2, q in V[i], q != i,j), j in V[], j != i)

for a graph of order (i.e. number of vertices) N, where proportional tie strengths are defined as

p[i,j]=(a[i,j]+a[j,i]) / sum(a[i,k]+a[k,i], k in V[i], k != i),

a[i,j] are elements of A and the latter being the graph adjacency matrix. For isolated vertices, constraint
is undefined.

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.

405

Structural properties of graphs

The first R version of this function was contributed by Jeroen Bruggeman.

Arguments:

graph: A graph object.

res: Pointer to an initialized vector, the result will be stored here. The vector will be resized
to have the appropriate size for holding the result.

vids: Vertex selector containing the vertices for which the constraint should be calculated.

weights: Vector giving the weights of the edges. If it is NULL then each edge is supposed to have
the same weight.

Returns:

Error code.

Time complexity: O(|V|+E|+n*d^2), n is the number of vertices for which the constraint is calculated
and d is the average degree, |V| is the number of vertices, |E| the number of edges in the graph. If the
weights argument is NULL then the time complexity is O(|V|+n*d^2).

igraph_maxdegree — The maximum degree in a
graph (or set of vertices).

igraph_error_t igraph_maxdegree(const igraph_t *graph, igraph_integer_t *res,
 igraph_vs_t vids, igraph_neimode_t mode,
 igraph_bool_t loops);

The largest in-, out- or total degree of the specified vertices is calculated. If the graph has no vertices,
or vids is empty, 0 is returned, as this is the smallest possible value for degrees.

Arguments:

graph: The input graph.

res: Pointer to an integer (igraph_integer_t), the result will be stored here.

vids: Vector giving the vertex IDs for which the maximum degree will be calculated.

mode: Defines the type of the degree. IGRAPH_OUT, out-degree, IGRAPH_IN, in-degree,
IGRAPH_ALL, total degree (sum of the in- and out-degree). This parameter is ignored for
undirected graphs.

loops: Boolean, gives whether the self-loops should be counted.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID. IGRAPH_EINVMODE: invalid mode argu-
ment.

Time complexity: O(v) if loops is true, and O(v*d) otherwise. v is the number of vertices for which
the degree will be calculated, and d is their (average) degree.

See also:

igraph_degree() to retrieve the degrees for several vertices.

406

Structural properties of graphs

igraph_strength — Strength of the vertices, also
called weighted vertex degree.

igraph_error_t igraph_strength(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 igraph_bool_t loops, const igraph_vector_t *weights);

In a weighted network the strength of a vertex is the sum of the weights of all incident edges. In a non-
weighted network this is exactly the vertex degree.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

mode: Gives whether to count only outgoing (IGRAPH_OUT), incoming (IGRAPH_IN) edges
or both (IGRAPH_ALL).

loops: A logical scalar, whether to count loop edges as well.

weights: A vector giving the edge weights. If this is a NULL pointer, then igraph_degree()
is called to perform the calculation.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number vertices and edges.

See also:

igraph_degree() for the traditional, non-weighted version.

igraph_eigenvector_centrality — Eigenvector
centrality of the vertices.

igraph_error_t igraph_eigenvector_centrality(const igraph_t *graph,
 igraph_vector_t *vector,
 igraph_real_t *value,
 igraph_bool_t directed, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

Eigenvector centrality is a measure of the importance of a node in a network. It assigns relative scores
to all nodes in the network based on the principle that connections from high-scoring nodes contribute
more to the score of the node in question than equal connections from low-scoring nodes. Specifically,
the eigenvector centrality of each vertex is proportional to the sum of eigenvector centralities of its
neighbors. In practice, the centralities are determined by calculating the eigenvector corresponding to

407

Structural properties of graphs

the largest positive eigenvalue of the adjacency matrix. In the undirected case, this function considers
the diagonal entries of the adjacency matrix to be twice the number of self-loops on the corresponding
vertex.

In the weighted case, the eigenvector centrality of a vertex is proportional to the weighted sum of
centralities of its neighbours, i.e. c_j = sum_i w_ij c_i, where w_ij is the weight of the edge
connecting vertex i to j. The weights of parallel edges are added up.

The centrality scores returned by igraph can be normalized (using the scale parameter) such that the
largest eigenvector centrality score is 1 (with one exception, see below).

In the directed case, the left eigenvector of the adjacency matrix is calculated. In other words, the
centrality of a vertex is proportional to the sum of centralities of vertices pointing to it.

Eigenvector centrality is meaningful only for (strongly) connected graphs. Undirected graphs that
are not connected should be decomposed into connected components, and the eigenvector centrality
calculated for each separately. This function does not verify that the graph is connected. If it is not, in
the undirected case the scores of all but one component will be zeros.

Also note that the adjacency matrix of a directed acyclic graph or the adjacency matrix of an empty
graph does not possess positive eigenvalues, therefore the eigenvector centrality is not defined for
these graphs. igraph will return an eigenvalue of zero in such cases. The eigenvector centralities will
all be equal for an empty graph and will all be zeros for a directed acyclic graph. Such pathological
cases can be detected by asking igraph to calculate the eigenvalue as well (using the value parameter,
see below) and checking whether the eigenvalue is very close to zero.

When working with directed graphs, consider using hub and authority scores instead, see
igraph_hub_and_authority_scores().

Arguments:

graph: The input graph. It may be directed.

vector: Pointer to an initialized vector, it will be resized as needed. The result of the compu-
tation is stored here. It can be a null pointer, then it is ignored.

value: If not a null pointer, then the eigenvalue corresponding to the found eigenvector is
stored here.

directed: Boolean scalar, whether to consider edge directions in a directed graph. It is ignored
for undirected graphs.

scale: If not zero then the result will be scaled such that the absolute value of the maximum
centrality is one.

weights: A null pointer (indicating no edge weights), or a vector giving the weights of the edges.
Weights should be positive to guarantee a meaningful result. The algorithm might
produce complex numbers when some weights are negative and the graph is directed.
In this case only the real part is reported.

options: Options to ARPACK. See igraph_arpack_options_t for details. Supply
NULL here to use the defaults. Note that the function overwrites the n (number of
vertices) parameter and it always starts the calculation from a non-random vector cal-
culated based on the degree of the vertices.

Returns:

Error code.

Time complexity: depends on the input graph, usually it is O(|V|+|E|).

408

Structural properties of graphs

See also:

igraph_pagerank and igraph_personalized_pagerank for modifications of eigen-
vector centrality. igraph_hub_and_authority_scores() for a similar pair of measures
intended for directed graphs.

Example 13.19. File examples/simple/eigenvector_centrality.c

igraph_hub_and_authority_scores — Kleinberg's
hub and authority scores (HITS).

igraph_error_t igraph_hub_and_authority_scores(const igraph_t *graph,
 igraph_vector_t *hub_vector, igraph_vector_t *authority_vector,
 igraph_real_t *value, igraph_bool_t scale,
 const igraph_vector_t *weights, igraph_arpack_options_t *options);

Hub and authority scores are a generalization of the ideas behind eigenvector centrality to directed
graphs. The authority score of a vertex is proportional to the sum of the hub scores of vertices that point
to it. Conversely, the hub score of a vertex is proportional to the sum of authority scores of vertices that
it points to. These concepts are also known under the name Hyperlink-Induced Topic Search (HITS).

The hub and authority scores of the vertices are defined as the principal eigenvectors of A A^T and
A^T A, respectively, where A is the adjacency matrix of the graph and A^T is its transposed.

If vector h and a contain hub and authority scores, then the two scores are related by h = Aa and
a = Ah. When the principal eigenvalue of A A^T is dengenerate, there is no unique solution to the
hub- and authority-score problem. igraph guarantees that the scores that are returned are matching,
i.e. are related by these formulas, even in this situation.

The concept of hub and authority scores were developed for directed graphs. In undirected graphs,
both the hub and authority scores are equal to the eigenvector centrality, which can be computed using
igraph_eigenvector_centrality().

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a
hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended
version in Journal of the ACM 46(1999). https://doi.org/10.1145/324133.324140 Also appears as
IBM Research Report RJ 10076, May 1997.

Arguments:

graph: The input graph. Can be directed and undirected.

hub_vector: Pointer to an initialized vector, the hub scores are stored here. If a null
pointer then it is ignored.

authority_vector: Pointer to an initialized vector, the authority scores are stored here. If a
null pointer then it is ignored.

value: If not a null pointer then the eigenvalue corresponding to the calculated
eigenvectors is stored here.

scale: If not zero then the result will be scaled such that the absolute value of
the maximum centrality is one.

weights: A null pointer (meaning no edge weights), or a vector giving the weights
of the edges.

409

https://doi.org/10.1145/324133.324140

Structural properties of graphs

options: Options to ARPACK. See igraph_arpack_options_t for details.
Supply NULL here to use the defaults. Note that the function overwrites
the n (number of vertices) parameter and it always starts the calculation
from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

igraph_hub_score(), igraph_authority_score() for the separate calculations,
igraph_pagerank(), igraph_personalized_pagerank(), igraph_eigenvec-
tor_centrality() for a similar measure intended for undirected graphs.

igraph_convergence_degree — Calculates the con-
vergence degree of each edge in a graph.

igraph_error_t igraph_convergence_degree(const igraph_t *graph, igraph_vector_t *result,
 igraph_vector_t *ins, igraph_vector_t *outs);

Let us define the input set of an edge (i, j) as the set of vertices where the shortest paths passing through
(i, j) originate, and similarly, let us defined the output set of an edge (i, j) as the set of vertices where
the shortest paths passing through (i, j) terminate. The convergence degree of an edge is defined as
the normalized value of the difference between the size of the input set and the output set, i.e. the
difference of them divided by the sum of them. Convergence degrees are in the range (-1, 1); a positive
value indicates that the edge is convergent since the shortest paths passing through it originate from
a larger set and terminate in a smaller set, while a negative value indicates that the edge is divergent
since the paths originate from a small set and terminate in a larger set.

Note that the convergence degree as defined above does not make sense in undirected graphs as there
is no distinction between the input and output set. Therefore, for undirected graphs, the input and
output sets of an edge are determined by orienting the edge arbitrarily while keeping the remaining
edges undirected, and then taking the absolute value of the convergence degree.

Arguments:

graph: The input graph, it can be either directed or undirected.

result: Pointer to an initialized vector; the convergence degrees of each edge will be stored here.
May be NULL if we are not interested in the exact convergence degrees.

ins: Pointer to an initialized vector; the size of the input set of each edge will be stored here.
May be NULL if we are not interested in the sizes of the input sets.

outs: Pointer to an initialized vector; the size of the output set of each edge will be stored here.
May be NULL if we are not interested in the sizes of the output sets.

Returns:

Error code.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

410

Structural properties of graphs

Range-limited centrality measures

igraph_closeness_cutoff — Range limited close-
ness centrality.

igraph_error_t igraph_closeness_cutoff(const igraph_t *graph, igraph_vector_t *res,
 igraph_vector_int_t *reachable_count, igraph_bool_t *all_reachable,
 const igraph_vs_t vids, igraph_neimode_t mode,
 const igraph_vector_t *weights,
 igraph_bool_t normalized,
 igraph_real_t cutoff);

This function computes a range-limited version of closeness centrality by considering only those short-
est paths whose length is no greater then the given cutoff value.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the range-limited close-
ness centrality scores for the given vertices.

reachable_count: If not NULL, this vector will contain the number of vertices reachable within
the cutoff distance from each vertex for which the range-limited closeness
is calculated (not including that vertex).

all_reachable: Pointer to a Boolean. If not NULL, it indicates if all vertices of the graph
were reachable from each vertex in vids within the given cutoff distance.

vids: The vertices for which the range limited closeness centrality will be com-
puted.

mode: The type of shortest paths to be used for the calculation in directed graphs.
Possible values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for
the computation.

weights: An optional vector containing edge weights for weighted closeness. No
edge weight may be NaN. Supply a null pointer here for traditional, un-
weighted closeness.

normalized: If true, the inverse of the mean distance to vertices reachable within the
cutoff is returned. If false, the inverse of the sum of distances is returned.

cutoff: The maximal length of paths that will be considered. If negative, the exact
closeness will be calculated (no upper limit on path lengths).

Returns:

Error code:

411

Structural properties of graphs

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: At most O(n|E|) for the unweighted case and O(n|E|log|V|+|V|) for the weighted
case, where n is the number of vertices for which the calculation is done, |V| is the number of vertices
and |E| is the number of edges in the graph. The timing decreases with smaller cutoffs in a way that
depends on the graph structure.

See also:

igraph_closeness() to calculate the exact closeness centrality.

igraph_harmonic_centrality_cutoff — Range
limited harmonic centrality.

igraph_error_t igraph_harmonic_centrality_cutoff(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 const igraph_vector_t *weights,
 igraph_bool_t normalized,
 igraph_real_t cutoff);

This function computes the range limited version of harmonic centrality: only those shortest paths are
considered whose length is not above the given cutoff. The inverse distance to vertices not reachable
within the cutoff is considered to be zero.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the range limited harmonic cen-
trality scores for the given vertices.

vids: The vertices for which the harmonic centrality will be computed.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

weights: An optional vector containing edge weights for weighted harmonic centrality. No
edge weight may be NaN. If NULL, all weights are considered to be one.

normalized: Boolean, whether to normalize the result. If true, the result is the mean inverse path
length to other vertices. i.e. it is normalized by the number of vertices minus one.
If false, the result is the sum of inverse path lengths to other vertices.

cutoff: The maximal length of paths that will be considered. The inverse distance to ver-
tices that are not reachable within the cutoff path length is considered to be zero.

412

Structural properties of graphs

Supply a negative value to compute the exact harmonic centrality, without any up-
per limit on the length of paths.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: At most O(n|E|) for the unweighted case and O(n|E|log|V|+|V|) for the weighted
case, where n is the number of vertices for which the calculation is done, |V| is the number of vertices
and |E| is the number of edges in the graph. The timing decreases with smaller cutoffs in a way that
depends on the graph structure.

See also:

Other centrality types: igraph_closeness(), igraph_betweenness().

igraph_betweenness_cutoff — Range-limited be-
tweenness centrality.

igraph_error_t igraph_betweenness_cutoff(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,
 const igraph_vector_t *weights, igraph_real_t cutoff);

This function computes a range-limited version of betweenness centrality by considering only those
shortest paths whose length is no greater then the given cutoff value.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the range-limited betweenness
scores for the specified vertices.

vids: The vertices for which the range-limited betweenness centrality scores will be com-
puted.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional vector containing edge weights for calculating weighted betweenness. No
edge weight may be NaN. Supply a null pointer here for unweighted betweenness.

cutoff: The maximal length of paths that will be considered. If negative, the exact between-
ness will be calculated, and there will be no upper limit on path lengths.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID passed in vids.

413

Structural properties of graphs

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph. Note that
the time complexity is independent of the number of vertices for which the score is calculated.

See also:

igraph_betweenness() to calculate the exact betweenness and igraph_edge_be-
tweenness_cutoff() to calculate the range-limited edge betweenness.

igraph_edge_betweenness_cutoff — Range-limit-
ed betweenness centrality of the edges.

igraph_error_t igraph_edge_betweenness_cutoff(const igraph_t *graph, igraph_vector_t *result,
 igraph_bool_t directed,
 const igraph_vector_t *weights, igraph_real_t cutoff);

This function computes a range-limited version of edge betweenness centrality by considering only
those shortest paths whose length is no greater then the given cutoff value.

Arguments:

graph: The graph object.

result: The result of the computation, vector containing the betweenness scores for the edges.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional weight vector for weighted betweenness. No edge weight may be NaN.
Supply a null pointer here for unweighted betweenness.

cutoff: The maximal length of paths that will be considered. If negative, the exact between-
ness will be calculated (no upper limit on path lengths).

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

igraph_edge_betweenness() to compute the exact edge betweenness and igraph_be-
tweenness_cutoff() to compute the range-limited vertex betweenness.

Subset-limited centrality measures

igraph_betweenness_subset — Betweenness cen-
trality for a subset of source and target vertices.

igraph_error_t igraph_betweenness_subset(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,

414

Structural properties of graphs

 const igraph_vs_t sources, const igraph_vs_t targets,
 const igraph_vector_t *weights);

This function computes the subset-limited version of betweenness centrality by considering only those
shortest paths that lie between vertices in a given source and target subset.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the betweenness score for the subset
of vertices.

vids: The vertices for which the subset-limited betweenness centrality scores will be com-
puted.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional vector containing edge weights for calculating weighted betweenness. No
edge weight may be NaN. Supply a null pointer here for unweighted betweenness.

sources: A vertex selector for the sources of the shortest paths taken into considuration in the
betweenness calculation.

targets: A vertex selector for the targets of the shortest paths taken into considuration in the
betweenness calculation.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID passed in vids, sources or targets

Time complexity: O(|S||E|), where |S| is the number of vertices in the subset and |E| is the number of
edges in the graph.

See also:

igraph_betweenness() to calculate the exact vertex betweenness and igraph_between-
ness_cutoff() to calculate the range-limited vertex betweenness.

igraph_edge_betweenness_subset — Edge be-
tweenness centrality for a subset of source and target
vertices.

igraph_error_t igraph_edge_betweenness_subset(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t eids, igraph_bool_t directed,
 const igraph_vs_t sources, const igraph_vs_t targets,
 const igraph_vector_t *weights);

This function computes the subset-limited version of edge betweenness centrality by considering only
those shortest paths that lie between vertices in a given source and target subset.

Arguments:

graph: The graph object.

415

Structural properties of graphs

res: The result of the computation, vector containing the betweenness scores for the edges.

eids: The edges for which the subset-limited betweenness centrality scores will be comput-
ed.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional weight vector for weighted betweenness. No edge weight may be NaN.
Supply a null pointer here for unweighted betweenness.

sources: A vertex selector for the sources of the shortest paths taken into considuration in the
betweenness calculation.

targets: A vertex selector for the targets of the shortest paths taken into considuration in the
betweenness calculation.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID passed in sources or targets

Time complexity: O(|S||E|), where |S| is the number of vertices in the subset and |E| is the number of
edges in the graph.

See also:

igraph_edge_betweenness() to compute the exact edge betweenness and
igraph_edge_betweenness_cutoff() to compute the range-limited edge betweenness.

Centralization

igraph_centralization — Calculate the centraliza-
tion score from the node level scores.

igraph_real_t igraph_centralization(const igraph_vector_t *scores,
 igraph_real_t theoretical_max,
 igraph_bool_t normalized);

For a centrality score defined on the vertices of a graph, it is possible to define a graph level centraliza-
tion index, by calculating the sum of the deviation from the maximum centrality score. Consequently,
the higher the centralization index of the graph, the more centralized the structure is.

In order to make graphs of different sizes comparable, the centralization index is usually normalized
to a number between zero and one, by dividing the (unnormalized) centralization score of the most
centralized structure with the same number of vertices.

For most centrality indices the most centralized structure is the star graph, a single center connected
to all other nodes in the network. There are some variation depending on whether the graph is directed
or not, whether loop edges are allowed, etc.

This function simply calculates the graph level index, if the node level scores and the theoretical
maximum are given. It is called by all the measure-specific centralization functions.

Arguments:

416

Structural properties of graphs

scores: A vector containing the node-level centrality scores.

theoretical_max: The graph level centrality score of the most centralized graph with the same
number of vertices. Only used if normalized set to true.

normalized: Boolean, whether to normalize the centralization by dividing the supplied
theoretical maximum.

Returns:

The graph level index.

See also:

igraph_centralization_degree(), igraph_centralization_between-
ness(), igraph_centralization_closeness(), and igraph_centraliza-
tion_eigenvector_centrality() for specific centralization functions.

Time complexity: O(n), the length of the score vector.

Example 13.20. File examples/simple/centralization.c

igraph_centralization_degree — Calculate vertex
degree and graph centralization.

igraph_error_t igraph_centralization_degree(const igraph_t *graph, igraph_vector_t *res,
 igraph_neimode_t mode, igraph_bool_t loops,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the degree of the vertices by passing its arguments to igraph_degree();
and it calculates the graph level centralization index based on the results by calling igraph_cen-
tralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level degree scores, or a null pointer other-
wise.

mode: Constant the specifies the type of degree for directed graphs. Possible val-
ues: IGRAPH_IN, IGRAPH_OUT and IGRAPH_ALL. This argument is
ignored for undirected graphs.

loops: Boolean, whether to consider loop edges when calculating the degree (and
the centralization).

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
vertices is stored here.

417

Structural properties of graphs

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_degree().

Time complexity: the complexity of igraph_degree() plus O(n), the number of vertices queried,
for calculating the centralization score.

igraph_centralization_betweenness — Calculate
vertex betweenness and graph centralization.

igraph_error_t igraph_centralization_betweenness(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_bool_t directed,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the betweenness centrality of the vertices by passing its arguments to
igraph_betweenness(); and it calculates the graph level centralization index based on the re-
sults by calling igraph_centralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level betweenness scores, or a null pointer
otherwise.

directed: Boolean, whether to consider directed paths when calculating betweenness.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
vertices is stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_betweenness().

Time complexity: the complexity of igraph_betweenness() plus O(n), the number of vertices
queried, for calculating the centralization score.

418

Structural properties of graphs

igraph_centralization_closeness — Calculate
vertex closeness and graph centralization.

igraph_error_t igraph_centralization_closeness(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_neimode_t mode,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the closeness centrality of the vertices by passing its arguments to
igraph_closeness(); and it calculates the graph level centralization index based on the results
by calling igraph_centralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level closeness scores, or a null pointer oth-
erwise.

mode: Constant the specifies the type of closeness for directed graphs. Possible
values: IGRAPH_IN, IGRAPH_OUT and IGRAPH_ALL. This argument
is ignored for undirected graphs. See igraph_closeness() argument
with the same name for more.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
vertices is stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_closeness().

Time complexity: the complexity of igraph_closeness() plus O(n), the number of vertices
queried, for calculating the centralization score.

igraph_centralization_eigenvector_central-
ity — Calculate eigenvector centrality scores and
graph centralization.

igraph_error_t igraph_centralization_eigenvector_centrality(
 const igraph_t *graph,

419

Structural properties of graphs

 igraph_vector_t *vector,
 igraph_real_t *value,
 igraph_bool_t directed,
 igraph_bool_t scale,
 igraph_arpack_options_t *options,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the eigenvector centrality of the vertices by passing its arguments to
igraph_eigenvector_centrality); and it calculates the graph level centralization index
based on the results by calling igraph_centralization().

Arguments:

graph: The input graph.

vector: A vector if you need the node-level eigenvector centrality scores, or a null
pointer otherwise.

value: If not a null pointer, then the leading eigenvalue is stored here.

scale: If not zero then the result will be scaled, such that the absolute value of the
maximum centrality is one.

options: Options to ARPACK. See igraph_arpack_options_t for details.
Note that the function overwrites the n (number of vertices) parameter and
it always starts the calculation from a non-random vector calculated based
on the degree of the vertices.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theo-
retical maximum graph centrality score for a graph with the same number
vertices is stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_eigenvector_centrality().

Time complexity: the complexity of igraph_eigenvector_centrality() plus O(|V|), the
number of vertices for the calculating the centralization.

igraph_centralization_degree_tmax — Theoret-
ical maximum for graph centralization based on de-
gree.

igraph_error_t igraph_centralization_degree_tmax(const igraph_t *graph,

420

Structural properties of graphs

 igraph_integer_t nodes,
 igraph_neimode_t mode,
 igraph_bool_t loops,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex degree.

There are two ways to call this function, the first is to supply a graph as the graph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The mode argument is also ignored if the supplied graph
is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and mode
arguments are considered.

The most centralized structure is the star. More specifically, for undirected graphs it is the star, for
directed graphs it is the in-star or the out-star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

mode: Constant, whether the calculation is based on in-degree (IGRAPH_IN), out-degree
(IGRAPH_OUT) or total degree (IGRAPH_ALL). This is ignored if the graph argument
is not a null pointer and the given graph is undirected.

loops: Boolean scalar, whether to consider loop edges in the calculation.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_degree() and igraph_centralization().

igraph_centralization_betweenness_tmax —
Theoretical maximum for graph centralization based
on betweenness.

igraph_error_t igraph_centralization_betweenness_tmax(const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_bool_t directed,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex betweenness.

There are two ways to call this function, the first is to supply a graph as the graph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The

421

Structural properties of graphs

nodes argument is ignored in this case. The directed argument is also ignored if the supplied
graph is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and di-
rected arguments are considered.

The most centralized structure is the star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

directed: Boolean scalar, whether to use directed paths in the betweenness calculation. This
argument is ignored if graph is not a null pointer and it is undirected.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_betweenness() and igraph_centralization().

igraph_centralization_closeness_tmax — The-
oretical maximum for graph centralization based on
closeness.

igraph_error_t igraph_centralization_closeness_tmax(const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_neimode_t mode,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex closeness.

There are two ways to call this function, the first is to supply a graph as the graph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The mode argument is also ignored if the supplied graph
is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and mode
arguments are considered.

The most centralized structure is the star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

422

Structural properties of graphs

mode: Constant, specifies what kinf of distances to consider to calculate closeness. See the mode
argument of igraph_closeness() for details. This argument is ignored if graph is
not a null pointer and it is undirected.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_closeness() and igraph_centralization().

igraph_centralization_eigenvector_central-
ity_tmax — Theoretical maximum centralization for
eigenvector centrality.

igraph_error_t igraph_centralization_eigenvector_centrality_tmax(
 const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_bool_t directed,
 igraph_bool_t scale,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex eigenvector centrality.

There are two ways to call this function, the first is to supply a graph as the graph argument, and
then the number of vertices is taken from this object, and its directedness is considered as well. The
nodes argument is ignored in this case. The directed argument is also ignored if the supplied
graph is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and di-
rected arguments are considered.

The most centralized directed structure is the in-star. The most centralized undirected structure is the
graph with a single edge.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

directed: Boolean scalar, whether to consider edge directions. This argument is ignored if
graph is not a null pointer and it is undirected.

scale: Whether to rescale the node-level centrality scores to have a maximum of one.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

423

Structural properties of graphs

Time complexity: O(1).

See also:

igraph_centralization_closeness() and igraph_centralization().

Similarity measures

igraph_bibcoupling — Bibliographic coupling.

igraph_error_t igraph_bibcoupling(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids);

The bibliographic coupling of two vertices is the number of other vertices they both cite,
igraph_bibcoupling() calculates this. The bibliographic coupling score for each given vertex
and all other vertices in the graph will be calculated.

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex IDs in vids, the number of columns is the number
of vertices in the graph.

vids: The vertex IDs of the vertices for which the calculation will be done.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

See also:

igraph_cocitation()

Example 13.21. File examples/simple/igraph_cocitation.c

igraph_cocitation — Cocitation coupling.

igraph_error_t igraph_cocitation(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids);

Two vertices are cocited if there is another vertex citing both of them. igraph_cocitation()
simply counts how many times two vertices are cocited. The cocitation score for each given vertex
and all other vertices in the graph will be calculated.

Arguments:

graph: The graph object to analyze.

424

Structural properties of graphs

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex IDs in vids, the number of columns is the number
of vertices in the graph.

vids: The vertex IDs of the vertices for which the calculation will be done.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

See also:

igraph_bibcoupling()

Example 13.22. File examples/simple/igraph_cocitation.c

igraph_similarity_jaccard — Jaccard similarity
coefficient for the given vertices.

igraph_error_t igraph_similarity_jaccard(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for some (or all) of the vertices.

Arguments:

graph: The graph object to analyze

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
and columns is the same as the number of vertex IDs in vids.

vids: The vertex IDs of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves in the neighbor sets.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

425

Structural properties of graphs

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|^2 d), |V| is the number of vertices in the vertex iterator given, d is the (max-
imum) degree of the vertices in the graph.

See also:

igraph_similarity_dice(), a measure very similar to the Jaccard coefficient

Example 13.23. File examples/simple/igraph_similarity.c

igraph_similarity_jaccard_pairs — Jaccard
similarity coefficient for given vertex pairs.

igraph_error_t igraph_similarity_jaccard_pairs(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_int_t *pairs, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for a list of vertex pairs.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of pairs in pairs.

pairs: A vector that contains the pairs for which the similarity will be calculated. Each pair is
defined by two consecutive elements, i.e. the first and second element of the vector spec-
ifies the first pair, the third and fourth element specifies the second pair and so on.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves in the neighbor sets.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of
the vertices in the graph.

See also:

426

Structural properties of graphs

igraph_similarity_jaccard() to calculate the Jaccard similarity between all
pairs of a vertex set, or igraph_similarity_dice() and igraph_similari-
ty_dice_pairs() for a measure very similar to the Jaccard coefficient

Example 13.24. File examples/simple/igraph_similarity.c

igraph_similarity_jaccard_es — Jaccard similar-
ity coefficient for a given edge selector.

igraph_error_t igraph_similarity_jaccard_es(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for the endpoints of edges in a given edge selector.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of edges in es.

es: An edge selector that specifies the edges to be included in the result.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves in the neighbor sets.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of edges in the edge selector, d is the (maximum) degree
of the vertices in the graph.

See also:

igraph_similarity_jaccard() and igraph_similarity_jaccard_pairs() to
calculate the Jaccard similarity between all pairs of a vertex set or some selected vertex
pairs, or igraph_similarity_dice(), igraph_similarity_dice_pairs() and
igraph_similarity_dice_es() for a measure very similar to the Jaccard coefficient

Example 13.25. File examples/simple/igraph_similarity.c

427

Structural properties of graphs

igraph_similarity_dice — Dice similarity coeffi-
cient.

igraph_error_t igraph_similarity_dice(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids,
 igraph_neimode_t mode, igraph_bool_t loops);

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for some
(or all) of the vertices.

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
and columns is the same as the number of vertex IDs in vids.

vids: The vertex IDs of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|^2 d), where |V| is the number of vertices in the vertex iterator given, and d
is the (maximum) degree of the vertices in the graph.

See also:

igraph_similarity_jaccard(), a measure very similar to the Dice coefficient

Example 13.26. File examples/simple/igraph_similarity.c

igraph_similarity_dice_pairs — Dice similarity
coefficient for given vertex pairs.

igraph_error_t igraph_similarity_dice_pairs(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_int_t *pairs, igraph_neimode_t mode, igraph_bool_t loops);

428

Structural properties of graphs

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for a
list of vertex pairs.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of pairs in pairs.

pairs: A vector that contains the pairs for which the similarity will be calculated. Each pair is
defined by two consecutive elements, i.e. the first and second element of the vector spec-
ifies the first pair, the third and fourth element specifies the second pair and so on.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of
the vertices in the graph.

See also:

igraph_similarity_dice() to calculate the Dice similarity between all pairs of a vertex
set, or igraph_similarity_jaccard(), igraph_similarity_jaccard_pairs()
and igraph_similarity_jaccard_es() for a measure very similar to the Dice coefficient

Example 13.27. File examples/simple/igraph_similarity.c

igraph_similarity_dice_es — Dice similarity coef-
ficient for a given edge selector.

igraph_error_t igraph_similarity_dice_es(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops);

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by
the sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for the
endpoints of edges in a given edge selector.

Arguments:

429

Structural properties of graphs

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of edges in es.

es: An edge selector that specifies the edges to be included in the result.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex ID passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of
the vertices in the graph.

See also:

igraph_similarity_dice() and igraph_similarity_dice_pairs() to calculate
the Dice similarity between all pairs of a vertex set or some selected vertex pairs, or igraph_sim-
ilarity_jaccard(), igraph_similarity_jaccard_pairs() and igraph_sim-
ilarity_jaccard_es() for a measure very similar to the Dice coefficient

Example 13.28. File examples/simple/igraph_similarity.c

igraph_similarity_inverse_log_weighted —
Vertex similarity based on the inverse logarithm of
vertex degrees.

igraph_error_t igraph_similarity_inverse_log_weighted(const igraph_t *graph,
 igraph_matrix_t *res, const igraph_vs_t vids, igraph_neimode_t mode);

The inverse log-weighted similarity of two vertices is the number of their common neighbors, weighted
by the inverse logarithm of their degrees. It is based on the assumption that two vertices should be
considered more similar if they share a low-degree common neighbor, since high-degree common
neighbors are more likely to appear even by pure chance.

Isolated vertices will have zero similarity to any other vertex. Self-similarities are not calculated.

Note that the presence of loop edges may yield counter-intuitive results. A node with a loop edge is
considered to be a neighbor of itself twice (because there are two edge stems incident on the node).

430

Structural properties of graphs

Adding a loop edge to a node may decrease its similarity to other nodes, but it may also increase it.
For instance, if nodes A and B are connected but share no common neighbors, their similarity is zero.
However, if a loop edge is added to B, then B itself becomes a common neighbor of A and B and thus
the similarity of A and B will be increased. Consider removing loop edges explicitly before invoking
this function using igraph_simplify().

See the following paper for more details: Lada A. Adamic and Eytan Adar: Friends and neighbors on
the Web. Social Networks, 25(3):211-230, 2003. https://doi.org/10.1016/S0378-8733(03)00009-1

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex IDs in vids, the number of columns is the number
of vertices in the graph.

vids: The vertex IDs of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node. Nodes will be
weighted according to their in-degree.

IGRAPH_IN the incoming edges will be considered for each node. Nodes will be
weighted according to their out-degree.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.
Every node is weighted according to its undirected degree.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex ID.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree
of the vertices in the graph.

Example 13.29. File examples/simple/igraph_similarity.c

Trees and forests

igraph_minimum_spanning_tree — Calculates one
minimum spanning tree of a graph.

igraph_error_t igraph_minimum_spanning_tree(
 const igraph_t *graph, igraph_vector_int_t *res, const igraph_vector_t *weights
);

Finds a spanning tree of the graph. If the graph is not connected then its minimum spanning forest is
returned. This is the set of the minimum spanning trees of each component.

Directed graphs are considered as undirected for this computation.

This function is deterministic, i.e. it always returns the same spanning tree. See igraph_ran-
dom_spanning_tree() for the uniform random sampling of spanning trees of a graph.

431

https://doi.org/10.1016/S0378-8733(03)00009-1

Structural properties of graphs

Arguments:

graph: The graph object.

res: An initialized vector, the IDs of the edges that constitute a spanning tree will be returned
here. Use igraph_subgraph_from_edges() to extract the spanning tree as a
separate graph object.

weights: A vector containing the weights of the edges in the same order as the simple edge iterator
visits them (i.e. in increasing order of edge IDs).

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V|+|E|) for the unweighted case, O(|E| log |V|) for the weighted case. |V| is the
number of vertices, |E| the number of edges in the graph.

See also:

igraph_minimum_spanning_tree_unweighted() and igraph_minimum_span-
ning_tree_prim() if you only need the tree as a separate graph object.

Example 13.30. File examples/simple/
igraph_minimum_spanning_tree.c

igraph_minimum_spanning_tree_unweighted
— Calculates one minimum spanning tree of an un-
weighted graph.

igraph_error_t igraph_minimum_spanning_tree_unweighted(const igraph_t *graph,
 igraph_t *mst);

If the graph has more minimum spanning trees (this is always the case, except if it is a forest) this
implementation returns only the same one.

Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the
minimum spanning trees of each component.

Arguments:

graph: The graph object. Edge directions will be ignored.

mst: The minimum spanning tree, another graph object. Do not initialize this object before pass-
ing it to this function, but be sure to call igraph_destroy() on it if you don't need
it any more.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

432

Structural properties of graphs

See also:

igraph_minimum_spanning_tree_prim() for weighted graphs, igraph_mini-
mum_spanning_tree() if you need the IDs of the edges that constitute the spanning tree.

igraph_minimum_spanning_tree_prim — Calcu-
lates one minimum spanning tree of a weighted graph.

igraph_error_t igraph_minimum_spanning_tree_prim(const igraph_t *graph, igraph_t *mst,
 const igraph_vector_t *weights);

Finds a spanning tree or spanning forest for which the sum of edge weights is the smallest. This
function uses Prim's method for carrying out the computation.

Directed graphs are considered as undirected for this computation.

Reference:

Prim, R.C.: Shortest connection networks and some generalizations, Bell System Technical Journal,
Vol. 36, 1957, 1389--1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

Arguments:

graph: The graph object. Edge directions will be ignored.

mst: The result of the computation, a graph object containing the minimum spanning tree of
the graph. Do not initialize this object before passing it to this function, but be sure to
call igraph_destroy() on it if you don't need it any more.

weights: A vector containing the weights of the edges in the same order as the simple edge iterator
visits them (i.e. in increasing order of edge IDs).

Returns:

Error code: IGRAPH_ENOMEM, not enough memory. IGRAPH_EINVAL, length of weight vector
does not match number of edges.

Time complexity: O(|E| log |V|), |V| is the number of vertices, |E| the number of edges in the graph.

See also:

igraph_minimum_spanning_tree_unweighted() for unweighted graphs,
igraph_minimum_spanning_tree() if you need the IDs of the edges that constitute the
spanning tree.

Example 13.31. File examples/simple/
igraph_minimum_spanning_tree.c

igraph_random_spanning_tree — Uniformly sam-
ples the spanning trees of a graph.

igraph_error_t igraph_random_spanning_tree(const igraph_t *graph, igraph_vector_int_t *res, igraph_integer_t vid);

433

https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

Structural properties of graphs

Performs a loop-erased random walk on the graph to uniformly sample its spanning trees. Edge direc-
tions are ignored.

Multi-graphs are supported, and edge multiplicities will affect the sampling frequency. For example,
consider the 3-cycle graph 1=2-3-1, with two edges between vertices 1 and 2. Due to these parallel
edges, the trees 1-2-3 and 3-1-2 will be sampled with multiplicity 2, while the tree 2-3-1 will
be sampled with multiplicity 1.

Arguments:

graph: The input graph. Edge directions are ignored.

res: An initialized vector, the IDs of the edges that constitute a spanning tree will be returned
here. Use igraph_subgraph_from_edges() to extract the spanning tree as a sep-
arate graph object.

vid: This parameter is relevant if the graph is not connected. If negative, a random spanning
forest of all components will be generated. Otherwise, it should be the ID of a vertex. A
random spanning tree of the component containing the vertex will be generated.

Returns:

Error code.

See also:

igraph_minimum_spanning_tree(), igraph_random_walk()

igraph_is_tree — Decides whether the graph is a
tree.

igraph_error_t igraph_is_tree(const igraph_t *graph, igraph_bool_t *res, igraph_integer_t *root, igraph_neimode_t mode);

An undirected graph is a tree if it is connected and has no cycles.

In the directed case, an additional requirement is that all edges are oriented away from a root (out-tree
or arborescence) or all edges are oriented towards a root (in-tree or anti-arborescence). This test can
be controlled using the mode parameter.

By convention, the null graph (i.e. the graph with no vertices) is considered not to be connected, and
therefore not a tree.

Arguments:

graph: The graph object to analyze.

res: Pointer to a logical variable, the result will be stored here.

root: If not NULL, the root node will be stored here. When mode is IGRAPH_ALL or the graph
is undirected, any vertex can be the root and root is set to 0 (the first vertex). When
mode is IGRAPH_OUT or IGRAPH_IN, the root is set to the vertex with zero in- or out-
degree, respectively.

mode: For a directed graph this specifies whether to test for an out-tree, an in-tree or ig-
nore edge directions. The respective possible values are: IGRAPH_OUT, IGRAPH_IN,
IGRAPH_ALL. This argument is ignored for undirected graphs.

434

Structural properties of graphs

Returns:

Error code: IGRAPH_EINVAL: invalid mode argument.

Time complexity: At most O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_is_connected()

Example 13.32. File examples/simple/igraph_kary_tree.c

igraph_is_forest — Decides whether the graph is a
forest.

igraph_error_t igraph_is_forest(const igraph_t *graph, igraph_bool_t *res,
 igraph_vector_int_t *roots, igraph_neimode_t mode);

An undirected graph is a forest if it has no cycles. Equivalently, a graph is a forest if all connected
components are trees.

In the directed case, an additional requirement is that edges in each tree are oriented away from the root
(out-trees or arborescences) or all edges are oriented towards the root (in-trees or anti-arborescences).
This test can be controlled using the mode parameter.

By convention, the null graph (i.e. the graph with no vertices) is considered to be a forest.

The res return value of this function is cached in the graph itself if mode is set to IGRAPH_ALL or
if the graph is undirected. Calling the function multiple times with no modifications to the graph in
between will return a cached value in O(1) time if the roots are not requested.

Arguments:

graph: The graph object to analyze.

res: Pointer to a logical variable. If not NULL, then the result will be stored here.

roots: If not NULL, the root nodes will be stored here. When mode is IGRAPH_ALL or the
graph is undirected, any one vertex from each component can be the root. When mode is
IGRAPH_OUT or IGRAPH_IN, all the vertices with zero in- or out-degree, respectively
are considered as root nodes.

mode: For a directed graph this specifies whether to test for an out-forest, an in-forest or ig-
nore edge directions. The respective possible values are: IGRAPH_OUT, IGRAPH_IN,
IGRAPH_ALL. This argument is ignored for undirected graphs.

Returns:

Error code: IGRAPH_EINVMODE: invalid mode argument.

Time complexity: At most O(|V|+|E|), the number of vertices plus the number of edges in the graph.

igraph_to_prufer — Converts a tree to its Prüfer se-
quence.

435

Structural properties of graphs

igraph_error_t igraph_to_prufer(const igraph_t *graph, igraph_vector_int_t* prufer);

A Prüfer sequence is a unique sequence of integers associated with a labelled tree. A tree on n >= 2
vertices can be represented by a sequence of n-2 integers, each between 0 and n-1 (inclusive).

Arguments:

graph: Pointer to an initialized graph object which must be a tree on n >= 2 vertices.

prufer: A pointer to the integer vector that should hold the Prüfer sequence; the vector must be
initialized and will be resized to n - 2.

Returns:

Error code:

IGRAPH_ENOMEM there is not enough memory to perform the operation.

IGRAPH_EINVAL the graph is not a tree or it is has less than vertices

See also:

igraph_from_prufer()

Transitivity or clustering coefficient

igraph_transitivity_undirected — Calculates
the transitivity (clustering coefficient) of a graph.

igraph_error_t igraph_transitivity_undirected(const igraph_t *graph,
 igraph_real_t *res,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. More precisely,
this is the ratio of the triangles and connected triples in the graph, the result is a single real number.
Directed graphs are considered as undirected ones and multi-edges are ignored.

Note that this measure is different from the local transitivity measure (see igraph_transitivi-
ty_local_undirected()) as it calculates a single value for the whole graph.

Clustering coefficient is an alternative name for transitivity.

References:

S. Wasserman and K. Faust: Social Network Analysis: Methods and Applications. Cambridge: Cam-
bridge University Press, 1994.

Arguments:

graph: The graph object. Edge directions and multiplicites are ignored.

res: Pointer to a real variable, the result will be stored here.

436

Structural properties of graphs

mode: Defines how to treat graphs with no connected triples. IGRAPH_TRANSITIVITY_NAN
returns NaN in this case, IGRAPH_TRANSITIVITY_ZERO returns zero.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory for temporary data.

See also:

igraph_transitivity_local_undirected(), igraph_transitivity_avglo-
cal_undirected().

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph, d is the average node degree.

Example 13.33. File examples/simple/igraph_transitivity.c

igraph_transitivity_local_undirected — The
local transitivity (clustering coefficient) of some ver-
tices.

igraph_error_t igraph_transitivity_local_undirected(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vs_t vids,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the
local transitivity, this probability is calculated separately for each vertex.

Note that this measure is different from the global transitivity measure (see igraph_transitiv-
ity_undirected()) as it calculates a transitivity value for each vertex individually.

Clustering coefficient is an alternative name for transitivity.

References:

D. J. Watts and S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Arguments:

graph: The input graph. Edge directions and multiplicities are ignored.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: Vertex set, the vertices for which the local transitivity will be calculated.

mode: Defines how to treat vertices with degree less than two. IGRAPH_TRANSITIVITY_NAN
returns NaN for these vertices, IGRAPH_TRANSITIVITY_ZERO returns zero.

Returns:

Error code.

See also:

437

Structural properties of graphs

igraph_transitivity_undirected(), igraph_transitivity_avglo-
cal_undirected().

Time complexity: O(n*d^2), n is the number of vertices for which the transitivity is calculated, d is
the average vertex degree.

igraph_transitivity_avglocal_undirected —
Average local transitivity (clustering coefficient).

igraph_error_t igraph_transitivity_avglocal_undirected(const igraph_t *graph,
 igraph_real_t *res,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the
average local transitivity, this probability is calculated for each vertex and then the average is taken.
Vertices with less than two neighbors require special treatment, they will either be left out from the
calculation or they will be considered as having zero transitivity, depending on the mode argument.
Edge directions and edge multiplicities are ignored.

Note that this measure is different from the global transitivity measure (see igraph_transitiv-
ity_undirected()) as it simply takes the average local transitivity across the whole network.

Clustering coefficient is an alternative name for transitivity.

References:

D. J. Watts and S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Arguments:

graph: The input graph. Edge directions and multiplicites are ignored.

res: Pointer to a real variable, the result will be stored here.

mode: Defines how to treat vertices with degree less than two. IGRAPH_TRANSITIVITY_NAN
leaves them out from averaging, IGRAPH_TRANSITIVITY_ZERO includes them with
zero transitivity. The result will be NaN if the mode is IGRAPH_TRANSITIVITY_NAN
and there are no vertices with more than one neighbor.

Returns:

Error code.

See also:

igraph_transitivity_undirected(), igraph_transitivity_local_undi-
rected().

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph and d is the average degree.

igraph_transitivity_barrat — Weighted local
transitivity of some vertices, as defined by A. Barrat.

438

Structural properties of graphs

igraph_error_t igraph_transitivity_barrat(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vs_t vids,
 const igraph_vector_t *weights,
 igraph_transitivity_mode_t mode);

This is a local transitivity, i.e. a vertex-level index. For a given vertex i, from all triangles in which
it participates we consider the weight of the edges incident on i. The transitivity is the sum of these
weights divided by twice the strength of the vertex (see igraph_strength()) and the degree of
the vertex minus one. See equation (5) in Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras,
Alessandro Vespignani: The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA
101, 3747 (2004) at https://doi.org/10.1073/pnas.0400087101 for the exact formula.

Arguments:

graph: The input graph. Edge directions are ignored for directed graphs. Note that the function
does not work for non-simple graphs.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

weights: Edge weights. If this is a null pointer, then a warning is given and igraph_transi-
tivity_local_undirected() is called.

mode: Defines how to treat vertices with zero strength. IGRAPH_TRANSITIVITY_NAN says
that the transitivity of these vertices is NaN, IGRAPH_TRANSITIVITY_ZERO says
it is zero.

Returns:

Error code.

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph, d is the average node degree.

See also:

igraph_transitivity_undirected(), igraph_transitivity_local_undi-
rected() and igraph_transitivity_avglocal_undirected() for other kinds of
(non-weighted) transitivity.

igraph_ecc — Edge clustering coefficient of some
edges.

igraph_error_t igraph_ecc(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t eids, igraph_integer_t k,
 igraph_bool_t offset, igraph_bool_t normalize);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

439

https://doi.org/10.1073/pnas.0400087101

Structural properties of graphs

The edge clustering coefficient C^(k)_ij of an edge (i, j) is defined based on the number of k-cycles
the edge participates in, z^(k)_ij, and the largest number of such cycles it could participate in given
the degrees of its endpoints, s^(k)_ij. The original definition given in the reference below is:

C^(k)_ij = (z^(k)_ij + 1) / s^(k)_ij

For k=3, s^(k)_ij = min(d_i - 1, d_j - 1), where d_i and d_j are the edge endpoint
degrees. For k=4, s^(k)_ij = (d_i - 1) (d_j - 1).

The normalize and offset parameters allow for skipping normalization by s^(k) and offsetting
the cycle count z^(k) by one in the numerator of C^(k). Set both to true to compute the original
definition of this metric.

This function ignores edge multiplicities when listing k-cycles (i.e. z^(k)), but not when computing
the maximum number of cycles an edge can participate in (s^(k)).

Reference:

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, PNAS 101, 2658 (2004). https://
doi.org/10.1073/pnas.0400054101

Arguments:

graph: The input graph.

res: Initialized vector, the result will be stored here.

eids: The edges for which the edge clustering coefficient will be computed.

k: Size of cycles to use in calculation. Must be at least 3. Currently only values of 3
and 4 are supported.

offset: Boolean, whether to add one to cycle counts. When false, z^(k) is used instead
of z^(k) + 1. In this case the maximum value of the normalized metric is 1. For
k=3 this is achieved for all edges in a complete graph.

normalize: Boolean, whether to normalize cycle counts by the maximum possible count s^(k)
given the degrees.

Returns:

Error code.

Time complexity: When k is 3, O(|V| d log d + |E| d). When k is 4, O(|V| d log d + |E| d^2). d denotes
the degree of vertices.

Directedness conversion

igraph_to_directed — Convert an undirected graph
to a directed one.

igraph_error_t igraph_to_directed(igraph_t *graph,
 igraph_to_directed_t mode);

If the supplied graph is directed, this function does nothing.

Arguments:

440

https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101

Structural properties of graphs

graph: The graph object to convert.

mode: Constant, specifies the details of how exactly the conversion is done. Possible values:

IGRAPH_TO_DIRECTED_ARBI-
TRARY

The number of edges in the graph stays the same,
an arbitrarily directed edge is created for each undi-
rected edge.

IGRAPH_TO_DIRECTED_MUTU-
AL

Two directed edges are created for each undirected
edge, one in each direction.

IGRAPH_TO_DIRECTED_RAN-
DOM

Each undirected edge is converted to a randomly
oriented directed one.

IGRAPH_TO_DIRECTED_ACY-
CLIC

Each undirected edge is converted to a directed
edge oriented from a lower index vertex to a higher
index one. If no self-loops were present, then the
result is a directed acyclic graph.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_to_undirected — Convert a directed graph
to an undirected one.

igraph_error_t igraph_to_undirected(igraph_t *graph,
 igraph_to_undirected_t mode,
 const igraph_attribute_combination_t *edge_comb);

If the supplied graph is undirected, this function does nothing.

Arguments:

graph: The graph object to convert.

mode: Constant, specifies the details of how exactly the conversion is done. Possible val-
ues: IGRAPH_TO_UNDIRECTED_EACH: the number of edges remains constant, an
undirected edge is created for each directed one, this version might create graphs with
multiple edges; IGRAPH_TO_UNDIRECTED_COLLAPSE: one undirected edge
will be created for each pair of vertices that are connected with at least one direct-
ed edge, no multiple edges will be created. IGRAPH_TO_UNDIRECTED_MUTUAL
creates an undirected edge for each pair of mutual edges in the directed graph. Non-
mutual edges are lost; loop edges are kept unconditionally. This mode might create
multiple edges.

edge_comb: What to do with the edge attributes. See the igraph manual section about attribut-
es for details. NULL means that the edge attributes are lost during the conversion,
except when mode is IGRAPH_TO_UNDIRECTED_EACH, in which case the edge
attributes are kept intact.

Returns:

Error code.

441

Structural properties of graphs

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.34. File examples/simple/igraph_to_undirected.c

Spectral properties

igraph_get_laplacian — Returns the Laplacian ma-
trix of a graph.

igraph_error_t igraph_get_laplacian(
 const igraph_t *graph, igraph_matrix_t *res, igraph_neimode_t mode,
 igraph_laplacian_normalization_t normalization,
 const igraph_vector_t *weights
);

The Laplacian matrix L of a graph is defined as L_ij = - A_ij when i != j and L_ii =
d_i - A_ii. Here A denotes the (possibly weighted) adjacency matrix and d_i is the degree (or
strength, if weighted) of vertex i. In directed graphs, the mode parameter controls whether to use out-
or in-degrees. Correspondingly, the rows or columns will sum to zero. In undirected graphs, A_ii is
taken to be twice the number (or total weight) of self-loops, ensuring that d_i = \sum_j A_ij.
Thus, the Laplacian of an undirected graph is the same as the Laplacian of a directed one obtained by
replacing each undirected edge with two reciprocal directed ones.

More compactly, L = D - A where the D is a diagonal matrix containing the degrees. The
Laplacian matrix can also be normalized, with several conventional normalization methods. See
igraph_laplacian_normalization_t for the methods available in igraph.

The first version of this function was written by Vincent Matossian.

Arguments:

graph: Pointer to the graph to convert.

res: Pointer to an initialized matrix object, the result is stored here. It will be resized
if needed.

mode: Controls whether to use out- or in-degrees in directed graphs. If set to
IGRAPH_ALL, edge directions will be ignored.

normalization: The normalization method to use when calculating the Laplacian matrix. See
igraph_laplacian_normalization_t for possible values.

weights: An optional vector containing non-negative edge weights, to calculate the
weighted Laplacian matrix. Set it to a null pointer to calculate the unweighted
Laplacian.

Returns:

Error code.

Time complexity: O(|V|^2), |V| is the number of vertices in the graph.

Example 13.35. File examples/simple/igraph_get_laplacian.c

442

Structural properties of graphs

igraph_get_laplacian_sparse — Returns the
Laplacian of a graph in a sparse matrix format.

igraph_error_t igraph_get_laplacian_sparse(
 const igraph_t *graph, igraph_sparsemat_t *sparseres, igraph_neimode_t mode,
 igraph_laplacian_normalization_t normalization,
 const igraph_vector_t *weights
);

See igraph_get_laplacian() for the definition of the Laplacian matrix.

The first version of this function was written by Vincent Matossian.

Arguments:

graph: Pointer to the graph to convert.

sparseres: Pointer to an initialized sparse matrix object, the result is stored here.

mode: Controls whether to use out- or in-degrees in directed graphs. If set to
IGRAPH_ALL, edge directions will be ignored.

normalization: The normalization method to use when calculating the Laplacian matrix. See
igraph_laplacian_normalization_t for possible values.

weights: An optional vector containing non-negative edge weights, to calculate the
weighted Laplacian matrix. Set it to a null pointer to calculate the unweighted
Laplacian.

Returns:

Error code.

Time complexity: O(|E|), |E| is the number of edges in the graph.

Example 13.36. File examples/simple/
igraph_get_laplacian_sparse.c

igraph_laplacian_normalization_t — Normaliza-
tion methods for a Laplacian matrix.

typedef enum {
 IGRAPH_LAPLACIAN_UNNORMALIZED = 0,
 IGRAPH_LAPLACIAN_SYMMETRIC = 1,
 IGRAPH_LAPLACIAN_LEFT = 2,
 IGRAPH_LAPLACIAN_RIGHT = 3
} igraph_laplacian_normalization_t;

Normalization methods for igraph_get_laplacian() and igraph_get_laplacian_s-
parse(). In the following, A refers to the (possibly weighted) adjacency matrix and D is a diagonal
matrix containing degrees (unweighted case) or strengths (weighted case). Out-, in- or total degrees
are used according to the mode parameter.

443

Structural properties of graphs

Values:

IGRAPH_LAPLACIAN_UNNOR-
MALIZED:

Unnormalized Laplacian, L = D - A.

IGRAPH_LAPLACIAN_SYM-
METRIC:

Symmetric normalized Laplacian, L = I - D^(-1/2) A
D^(-1/2).

IGRAPH_LAPLACIAN_LEFT: Left-stochastic normalized Laplacian, L = I - D^-1 A.

IGRAPH_LAPLACIAN_RIGHT: Right-stochastic normalized Laplacian, L = I - A D^-1.

Non-simple graphs: Multiple and loop edges

igraph_is_simple — Decides whether the input
graph is a simple graph.

igraph_error_t igraph_is_simple(const igraph_t *graph, igraph_bool_t *res);

A graph is a simple graph if it does not contain loop edges and multiple edges.

Arguments:

graph: The input graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

See also:

igraph_is_loop() and igraph_is_multiple() to find the loops and multiple edges,
igraph_simplify() to get rid of them, or igraph_has_multiple() to decide whether
there is at least one multiple edge.

Time complexity: O(|V|+|E|).

igraph_is_loop — Find the loop edges in a graph.

igraph_error_t igraph_is_loop(const igraph_t *graph, igraph_vector_bool_t *res,
 igraph_es_t es);

A loop edge is an edge from a vertex to itself.

Arguments:

graph: The input graph.

res: Pointer to an initialized boolean vector for storing the result, it will be resized as needed.

444

Structural properties of graphs

es: The edges to check, for all edges supply igraph_ess_all() here.

Returns:

Error code.

See also:

igraph_simplify() to get rid of loop edges.

Time complexity: O(e), the number of edges to check.

Example 13.37. File examples/simple/igraph_is_loop.c

igraph_is_multiple — Find the multiple edges in a
graph.

igraph_error_t igraph_is_multiple(const igraph_t *graph, igraph_vector_bool_t *res,
 igraph_es_t es);

An edge is a multiple edge if there is another edge with the same head and tail vertices in the graph.

Note that this function returns true only for the second or more appearances of the multiple edges.

Arguments:

graph: The input graph.

res: Pointer to a boolean vector, the result will be stored here. It will be resized as needed.

es: The edges to check. Supply igraph_ess_all() if you want to check all edges.

Returns:

Error code.

See also:

igraph_count_multiple(), igraph_has_multiple() and igraph_simplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

Example 13.38. File examples/simple/igraph_is_multiple.c

igraph_has_multiple — Check whether the graph
has at least one multiple edge.

igraph_error_t igraph_has_multiple(const igraph_t *graph, igraph_bool_t *res);

445

Structural properties of graphs

An edge is a multiple edge if there is another edge with the same head and tail vertices in the graph.

The return value of this function is cached in the graph itself; calling the function multiple times with
no modifications to the graph in between will return a cached value in O(1) time.

Arguments:

graph: The input graph.

res: Pointer to a boolean variable, the result will be stored here.

Returns:

Error code.

See also:

igraph_count_multiple(), igraph_is_multiple() and igraph_simplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

Example 13.39. File examples/simple/igraph_has_multiple.c

igraph_count_multiple — The multiplicity of some
edges in a graph.

igraph_error_t igraph_count_multiple(const igraph_t *graph, igraph_vector_int_t *res, igraph_es_t es);

An edge is called a multiple edge when there is one or more other edge between the same two vertices.
The multiplicity of an edge is the number of edges between its endpoints.

Arguments:

graph: The input graph.

res: Pointer to a vector, the result will be stored here. It will be resized as needed.

es: The edges to check. Supply igraph_ess_all() if you want to check all edges.

Returns:

Error code.

See also:

igraph_count_multiple_1() if you only need the multiplicity of a single edge;
igraph_is_multiple() if you are only interested in whether the graph has at least one edge
with multiplicity greater than one; igraph_simplify() to ensure that the graph has no multi-
ple edges.

Time complexity: O(E d), E is the number of edges to check and d is the average degree (out-degree
in directed graphs) of the vertices at the tail of the edges.

446

Structural properties of graphs

igraph_count_multiple_1 — The multiplicity of a
single edge in a graph.

igraph_error_t igraph_count_multiple_1(const igraph_t *graph, igraph_integer_t *res, igraph_integer_t eid);

Arguments:

graph: The input graph.

res: Pointer to an iteger, the result will be stored here.

eid: The ID of the edge to check.

Returns:

Error code.

See also:

igraph_count_multiple() if you need the multiplicity of multiple edges;
igraph_is_multiple() if you are only interested in whether the graph has at least one edge
with multiplicity greater than one; igraph_simplify() to ensure that the graph has no multi-
ple edges.

Time complexity: O(d), where d is the out-degree of the tail of the edge.

Mixing patterns

igraph_assortativity_nominal — Assortativity of
a graph based on vertex categories.

igraph_error_t igraph_assortativity_nominal(const igraph_t *graph,
 const igraph_vector_int_t *types,
 igraph_real_t *res,
 igraph_bool_t directed,
 igraph_bool_t normalized);

Assuming the vertices of the input graph belong to different categories, this function calculates the
assortativity coefficient of the graph. The assortativity coefficient is between minus one and one and it
is one if all connections stay within categories, it is minus one, if the network is perfectly disassortative.
For a randomly connected network it is (asymptotically) zero.

The unnormalized version, computed when normalized is set to false, is identical to the modularity,
and is defined as follows for directed networks:

1/m sum_ij (A_ij - k^out_i k^in_j / m) d(i,j),

where m denotes the number of edges, A_ij is the adjacency matrix, k^out and k^in are the out-
and in-degrees, and d(i,j) is one if vertices i and j are in the same category and zero otherwise.

The normalized assortativity coefficient is obtained by dividing the previous expression by

447

Structural properties of graphs

1/m sum_ij (m - k^out_i k^in_j d(i,j) / m).

It can take any value within the interval [-1, 1].

Undirected graphs are effectively treated as directed ones with all-reciprocal edges. Thus, self-loops
are taken into account twice in undirected graphs.

References:

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://
doi.org/10.1103/PhysRevE.67.026126. See section II and equation (2) for the definition of the concept.

For an educational overview of assortativity, see M. E. J. Newman, Networks: An Introduction, Oxford
University Press (2010). https://doi.org/10.1093/acprof%3Aoso/9780199206650.001.0001.

Arguments:

graph: The input graph, it can be directed or undirected.

types: Integer vector giving the vertex categories. The types are represented by integers
starting at zero.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, it gives whether to consider edge directions in a directed graph. It is ig-
nored for undirected graphs.

normalized: Boolean, whether to compute the usual normalized assortativity. The unnormalized
version is identical to modularity. Supply true here to compute the standard assor-
tativity.

Returns:

Error code.

Time complexity: O(|E|+t), |E| is the number of edges, t is the number of vertex types.

See also:

igraph_assortativity() for computing the assortativity based on continuous vertex val-
ues instead of discrete categories. igraph_modularity() to compute generalized modularity.
igraph_joint_type_distribution() to obtain the mixing matrix.

Example 13.40. File examples/simple/
igraph_assortativity_nominal.c

igraph_assortativity — Assortativity based on nu-
meric properties of vertices.

igraph_error_t igraph_assortativity(const igraph_t *graph,
 const igraph_vector_t *values,
 const igraph_vector_t *values_in,
 igraph_real_t *res,
 igraph_bool_t directed,
 igraph_bool_t normalized);

448

https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1093/acprof%3Aoso/9780199206650.001.0001

Structural properties of graphs

This function calculates the assortativity coefficient of a graph based on given values x_i for each
vertex i. This type of assortativity coefficient equals the Pearson correlation of the values at the two
ends of the edges.

The unnormalized covariance of values, computed when normalized is set to false, is defined as
follows in a directed graph:

cov(x_out, x_in) = 1/m sum_ij (A_ij - k^out_i k^in_j / m) x_i x_j,

where m denotes the number of edges, A_ij is the adjacency matrix, and k^out and k^in are the
out- and in-degrees. x_out and x_in refer to the sets of vertex values at the start and end of the
directed edges.

The normalized covariance, i.e. Pearson correlation, is obtained by dividing the previous expression
by sqrt(var(x_out)) sqrt(var(x_in)), where

var(x_out) = 1/m sum_i k^out_i x_i^2 - (1/m sum_i k^out_i x_i^2)^2

var(x_in) = 1/m sum_j k^in_j x_j^2 - (1/m sum_j k^in_j x_j^2)^2

Undirected graphs are effectively treated as directed graphs where all edges are reciprocal. Therefore,
self-loops are effectively considered twice in undirected graphs.

References:

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://
doi.org/10.1103/PhysRevE.67.026126. See section III and equation (21) for the definition, and equa-
tion (26) for performing the calculation in directed graphs with the degrees as values.

M. E. J. Newman: Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) http://
doi.org/10.1103/PhysRevLett.89.208701. See equation (4) for performing the calculation in undirect-
ed graphs with the degrees as values.

For an educational overview of the concept of assortativity, see M. E. J. Newman,
Networks: An Introduction, Oxford University Press (2010). https://doi.org/10.1093/acprof
%3Aoso/9780199206650.001.0001.

Arguments:

graph: The input graph, it can be directed or undirected.

values: The vertex values, these can be arbitrary numeric values.

values_in: A second value vector to be used for the incoming edges when calculating assor-
tativity for a directed graph. Supply NULL here if you want to use the same values
for outgoing and incoming edges. This argument is ignored (with a warning) if it
is not a null pointer and the undirected assortativity coefficient is being calculated.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, whether to consider edge directions for directed graphs. It is ignored for
undirected graphs.

normalized: Boolean, whether to compute the normalized covariance, i.e. Pearson correlation.
Supply true here to compute the standard assortativity.

Returns:

Error code.

Time complexity: O(|E|), linear in the number of edges of the graph.

449

https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
http://doi.org/10.1103/PhysRevLett.89.208701
http://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1093/acprof%3Aoso/9780199206650.001.0001
https://doi.org/10.1093/acprof%3Aoso/9780199206650.001.0001

Structural properties of graphs

See also:

igraph_assortativity_nominal() if you have discrete vertex categories instead of nu-
meric labels, and igraph_assortativity_degree() for the special case of assortativity
based on vertex degrees.

igraph_assortativity_degree — Assortativity of a
graph based on vertex degree.

igraph_error_t igraph_assortativity_degree(const igraph_t *graph,
 igraph_real_t *res,
 igraph_bool_t directed);

Assortativity based on vertex degree, please see the discussion at the documentation of igraph_as-
sortativity() for details. This function simply calls igraph_assortativity() with the
degrees as the vertex values and normalization enabled. In the directed case, it uses out-degrees as
out-values and in-degrees as in-values.

For regular graphs, i.e. graphs in which all vertices have the same degree, computing degree correla-
tions is not meaningful, and this function returns NaN.

Arguments:

graph: The input graph, it can be directed or undirected.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, whether to consider edge directions for directed graphs. This argument is
ignored for undirected graphs. Supply true here to do the natural thing, i.e. use directed
version of the measure for directed graphs and the undirected version for undirected
graphs.

Returns:

Error code.

Time complexity: O(|E|+|V|), |E| is the number of edges, |V| is the number of vertices.

See also:

igraph_assortativity() for the general function calculating assortativity for any kind of
numeric vertex values, and igraph_joint_degree_distribution() to get the complete
joint degree distribution.

Example 13.41. File examples/simple/
igraph_assortativity_degree.c

igraph_joint_type_distribution — Mixing matrix
for vertex categories.

igraph_error_t igraph_joint_type_distribution(

450

Structural properties of graphs

 const igraph_t *graph, const igraph_vector_t *weights,
 igraph_matrix_t *p,
 const igraph_vector_int_t *from_types, const igraph_vector_int_t *to_types,
 igraph_bool_t directed, igraph_bool_t normalized);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Computes the mixing matrix M_ij, i.e. the joint distribution of vertex types at the endpoints directed
of edges. Categories are represented by non-negative integer indices, passed in from_types and
to_types. The row and column counts of m will be one larger than the largest source and target
type, respectively. Re-index type vectors using igraph_reindex_membership() if they are
not contiguous integers, to avoid producing a very large matrix.

M_ij is proportional to the probability that a randomly chosen ordered pair of vertices have types i
and j.

When there is a single categorization of vertices, i.e. from_types and to_types are the
same, M_ij is related to the modularity (igraph_modularity()) and nominal assortativity
(igraph_assortativity_nominal()). Let a_i = sum_j M_ij and b_j = sum_i
M_ij. If M_ij is normalized, i.e. sum_ij M_ij = 1, and the types represent membership in vertex
partitions, then the modularity of the partitioning can be computed as

Q = sum_ii M_ii - sum_i a_i b_i

The normalized nominal assortativity is

Q / (1 - sum_i a_i b_i)

igraph_joint_degree_distribution() is a special case of this function, with categories
consisting vertices of the same degree.

References:

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://
doi.org/10.1103/PhysRevE.67.026126.

Arguments:

graph: The input graph.

p: The mixing matrix M_ij will be stored here.

weights: A vector containing the weights of the edges. If passing a NULL pointer, edges will
be assumed to have unit weights.

from_types: Vertex types for source vertices. These must be non-negative integers.

to_types: Vertex types for target vertices. These must be non-negative integers. If NULL, it
is assumed to be the same as from_types.

directed: Whether to treat edges are directed. Ignored for undirected graphs.

normalized: Whether to normalize the matrix so that entries sum to 1.0. If false, matrix entries
will be connection counts. Normalization is not meaningful if some edge weights
are negative.

451

https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126

Structural properties of graphs

Returns:

Error code.

See also:

igraph_joint_degree_distribution() to compute the joint distribution of ver-
tex degrees; igraph_modularity() to compute the modularity of a vertex partitioning;
igraph_assortativity_nominal() to compute assortativity based on vertex categories.

Time complexity: O(E), where E is the number of edges in the input graph.

igraph_joint_degree_distribution — The joint
degree distribution of a graph.

igraph_error_t igraph_joint_degree_distribution(
 const igraph_t *graph, const igraph_vector_t *weights,
 igraph_matrix_t *p,
 igraph_neimode_t from_mode, igraph_neimode_t to_mode,
 igraph_bool_t directed_neighbors,
 igraph_bool_t normalized,
 igraph_integer_t max_from_degree, igraph_integer_t max_to_degree);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Computes the joint degree distribution P_ij of a graph, used in the study of degree correlations. P_ij
is the probability that a randomly chosen ordered pair of connected vertices have degrees i and j.

In directed graphs, directionally connected u -> v pairs are considered. The joint degree distribution
of an undirected graph is the same as that of the corresponding directed graph in which all connection
are bidirectional, assuming that from_mode is IGRAPH_OUT, to_mode is IGRAPH_IN and di-
rected_neighbors is true.

When normalized is false, sum_ij P_ij gives the total number of connections in a directed
graph, or twice that value in an undirected graph. The sum is taken over ordered (i,j) degree pairs.

The joint degree distribution relates to other concepts used in the study of degree correlations. If P_ij
is normalized then the degree correlation function k_nn(k) is obtained as

k_nn(k) = (sum_j j P_kj) / (sum_j P_kj).

The non-normalized degree assortativity is obtained as

a = sum_ij i j (P_ij - q_i r_j),

where q_i = sum_k P_ik and r_j = sum_k P_kj.

Note that the joint degree distribution P_ij is similar, but not identical to the joint degree matrix J_ij
computed by igraph_joint_degree_matrix(). If the graph is undirected, then the diagonal
entries of an unnormalized P_ij are double that of J_ij, as any undirected connection between
same-degree vertices is counted in both directions. In contrast to igraph_joint_degree_ma-

452

Structural properties of graphs

trix(), this function returns matrices which include the row and column corresponding to zero de-
grees. In directed graphs, this row and column is not necessarily zero when from_mode is different
from IGRAPH_OUT or to_mode is different from IGRAPH_IN.

References:

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://
doi.org/10.1103/PhysRevE.67.026126.

Arguments:

graph: A pointer to an initialized graph object.

weights: A vector containing the weights of the edges. If passing a NULL point-
er, edges will be assumed to have unit weights.

p: A pointer to an initialized matrix that will be resized. The P_ij value
will be written into p[i,j].

from_mode: How to compute the degree of sources? Can be IGRAPH_OUT for out-
degree, IGRAPH_IN for in-degree, or IGRAPH_ALL for total degree.
Ignored in undirected graphs.

to_mode: How to compute the degree of sources? Can be IGRAPH_OUT for out-
degree, IGRAPH_IN for in-degree, or IGRAPH_ALL for total degree.
Ignored in undirected graphs.

directed_neighbors: Whether to consider u -> v connections to be directed. Undirected
connections are treated as reciprocal directed ones, i.e. both u -> v
and v -> u will be considered. Ignored in undirected graphs.

normalized: Whether to normalize the matrix so that entries sum to 1.0. If false,
matrix entries will be connection counts. Normalization is not mean-
ingful if some edge weights are negative.

max_from_degree: The largest source vertex degree to consider. If negative, the largest
source degree will be used. The row count of the result matrix is one
larger than this value.

max_to_degree: The largest target vertex degree to consider. If negative, the largest
target degree will be used. The column count of the result matrix is one
larger than this value.

Returns:

Error code.

See also:

igraph_joint_degree_matrix() for computing the joint degree matrix; igraph_as-
sortativity_degree() and igraph_assortativity() for degree correlations coeffi-
cients, and igraph_degree_correlation_vector() for the degree correlation function.

Time complexity: O(E), where E is the number of edges in the input graph.

igraph_joint_degree_matrix — The joint degree
matrix of a graph.

453

https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126

Structural properties of graphs

igraph_error_t igraph_joint_degree_matrix(
 const igraph_t *graph, const igraph_vector_t *weights,
 igraph_matrix_t *jdm,
 igraph_integer_t max_out_degree, igraph_integer_t max_in_degree);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

In graph theory, the joint degree matrix J_ij of a graph gives the number of edges, or sum of edge
weights, between vertices of degree i and degree j. This function stores J_ij into jdm[i-1,
j-1]. Each edge, including self-loops, is counted precisely once, both in undirected and directed
graphs.

sum_(i,j) J_ij is the total number of edges (or total edge weight) m in the graph, where (i,j)
refers to ordered or unordered pairs in directed and undirected graphs, respectively. Thus J_ij / m
is the probability that an edge chosen at random (with probability proportional to its weight) connects
vertices with degrees i and j.

Note that J_ij is similar, but not identical to the joint degree distribution, computed by
igraph_joint_degree_distribution(), which is defined for ordered (i, j) degree
pairs even in the undirected case. When considering undirected graphs, the diagonal of the joint degree
distribution is twice that of the joint degree matrix.

References:

Isabelle Stanton and Ali Pinar: Constructing and sampling graphs with a prescribed joint degree dis-
tribution. ACM J. Exp. Algorithmics 17, Article 3.5 (2012). https://doi.org/10.1145/2133803.2330086

Arguments:

graph: A pointer to an initialized graph object.

weights: A vector containing the weights of the edges. If passing a NULL pointer,
edges will be assumed to have unit weights, i.e. the matrix entries will be
connection counts.

jdm: A pointer to an initialized matrix that will be resized. The values will be
written here.

max_out_degree: Number of rows in the result, i.e. the largest (out-)degree to consider. If neg-
ative, the largest (out-)degree of the graph will be used.

max_in_degree: Number of columns in the result, i.e. the largest (in-)degree to consider. If
negative, the largest (in-)degree of the graph will be used.

Returns:

Error code.

See also:

igraph_joint_degree_distribution() to count ordered vertex pairs instead of edges,
or to obtain a normalized matrix.

454

https://doi.org/10.1145/2133803.2330086

Structural properties of graphs

Time complexity: O(E), where E is the number of edges in input graph.

K-cores and k-trusses

igraph_coreness — The coreness of the vertices in a
graph.

igraph_error_t igraph_coreness(const igraph_t *graph,
 igraph_vector_int_t *cores, igraph_neimode_t mode);

The k-core of a graph is a maximal subgraph in which each vertex has at least degree k. (Degree here
means the degree in the subgraph of course.). The coreness of a vertex is the highest order of a k-
core containing the vertex.

This function implements the algorithm presented in Vladimir Batagelj, Matjaz Zaversnik: An O(m)
Algorithm for Cores Decomposition of Networks. https://arxiv.org/abs/cs/0310049

Arguments:

graph: The input graph.

cores: Pointer to an initialized vector, the result of the computation will be stored here. It will
be resized as needed. For each vertex it contains the highest order of a core containing
the vertex.

mode: For directed graph it specifies whether to calculate in-cores, out-cores or the undirected
version. It is ignored for undirected graphs. Possible values: IGRAPH_ALL undirected
version, IGRAPH_IN in-cores, IGRAPH_OUT out-cores.

Returns:

Error code.

Time complexity: O(|E|), the number of edges.

igraph_trussness — Finding the "trussness" of the
edges in a network.

igraph_error_t igraph_trussness(const igraph_t* graph, igraph_vector_int_t* trussness);

A k-truss is a subgraph in which every edge occurs in at least k-2 triangles in the subgraph. The
trussness of an edge indicates the highest k-truss that the edge occurs in.

This function returns the highest k for each edge. If you are interested in a particular k-truss subgraph,
you can subset the graph to those edges which are >= k because each k-truss is a subgraph of a (k–1)-
truss Thus, to get all 4-trusses, take k >= 4 because the 5-trusses, 6-trusses, etc. need to be included.

The current implementation of this function iteratively decrements support of each edge using O(|E|)
space and O(|E|^1.5) time. The implementation does not support multigraphs; use igraph_sim-
plify() to collapse edges before calling this function.

Reference:

455

https://arxiv.org/abs/cs/0310049

Structural properties of graphs

See Algorithm 2 in: Wang, Jia, and James Cheng. "Truss decomposition in massive networks." Pro-
ceedings of the VLDB Endowment 5.9 (2012): 812-823. https://doi.org/10.14778/2311906.2311909

Arguments:

graph: The input graph. Loop edges are allowed; multigraphs are not.

truss: Pointer to initialized vector of truss values that will indicate the highest k-truss each edge
occurs in. It will be resized as needed.

Returns:

Error code.

Time complexity: It should be O(|E|^1.5) according to the reference.

Topological sorting, directed acyclic graphs

igraph_is_dag — Checks whether a graph is a di-
rected acyclic graph (DAG).

igraph_error_t igraph_is_dag(const igraph_t* graph, igraph_bool_t *res);

A directed acyclic graph (DAG) is a directed graph with no cycles.

This function returns false for undirected graphs.

The return value of this function is cached in the graph itself; calling the function multiple times with
no modifications to the graph in between will return a cached value in O(1) time.

Arguments:

graph: The input graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), where |V| and |E| are the number of vertices and edges in the original
input graph.

See also:

igraph_topological_sorting() to get a possible topological sorting of a DAG.

igraph_topological_sorting — Calculate a possi-
ble topological sorting of the graph.

igraph_error_t igraph_topological_sorting(

456

https://doi.org/10.14778/2311906.2311909

Structural properties of graphs

 const igraph_t* graph, igraph_vector_int_t *res, igraph_neimode_t mode);

A topological sorting of a directed acyclic graph (DAG) is a linear ordering of its vertices where each
vertex comes before all nodes to which it has edges. Every DAG has at least one topological sort, and
may have many. This function returns one possible topological sort among them. If the graph contains
any cycles that are not self-loops, an error is raised.

Arguments:

graph: The input graph.

res: Pointer to a vector, the result will be stored here. It will be resized if needed.

mode: Specifies how to use the direction of the edges. For IGRAPH_OUT, the sorting order en-
sures that each vertex comes before all vertices to which it has edges, so vertices with
no incoming edges go first. For IGRAPH_IN, it is quite the opposite: each vertex comes
before all vertices from which it receives edges. Vertices with no outgoing edges go first.

Returns:

Error code.

Time complexity: O(|V|+|E|), where |V| and |E| are the number of vertices and edges in the original
input graph.

See also:

igraph_is_dag() if you are only interested in whether a given graph is a DAG or not, or
igraph_feedback_arc_set() to find a set of edges whose removal makes the graph acyclic.

Example 13.42. File examples/simple/
igraph_topological_sorting.c

igraph_feedback_arc_set — Feedback arc set of a
graph using exact or heuristic methods.

igraph_error_t igraph_feedback_arc_set(const igraph_t *graph, igraph_vector_int_t *result,
 const igraph_vector_t *weights, igraph_fas_algorithm_t algo);

A feedback arc set is a set of edges whose removal makes the graph acyclic. We are usually interested
in minimum feedback arc sets, i.e. sets of edges whose total weight is minimal among all the feedback
arc sets.

For undirected graphs, the problem is simple: one has to find a maximum weight spanning tree and
then remove all the edges not in the spanning tree. For directed graphs, this is an NP-hard problem,
and various heuristics are usually used to find an approximate solution to the problem. This function
implements a few of these heuristics.

Arguments:

graph: The graph object.

result: An initialized vector, the result will be returned here.

weights: Weight vector or NULL if no weights are specified.

457

Structural properties of graphs

algo: The algorithm to use to solve the problem if the graph is directed. Possible values:

IGRAPH_FAS_EXACT_IP Finds a minimum feedback arc set using integer
programming (IP). The complexity of this algo-
rithm is exponential of course.

IGRAPH_FAS_APPROX_EADES Finds a feedback arc set using the heuristic of
Eades, Lin and Smyth (1993). This is guaranteed
to be smaller than |E|/2 - |V|/6, and it is linear in
the number of edges (i.e. O(|E|)). For more details,
see Eades P, Lin X and Smyth WF: A fast and ef-
fective heuristic for the feedback arc set problem.
In: Proc Inf Process Lett 319-323, 1993.

Returns:

Error code: IGRAPH_EINVAL if an unknown method was specified or the weight vector is invalid.

Example 13.43. File examples/simple/igraph_feedback_arc_set.c

Example 13.44. File examples/simple/
igraph_feedback_arc_set_ip.c

Time complexity: depends on algo, see the time complexities there.

Maximum cardinality search and chordal
graphs

igraph_maximum_cardinality_search — Maximum
cardinality search.

igraph_error_t igraph_maximum_cardinality_search(const igraph_t *graph,
 igraph_vector_int_t *alpha,
 igraph_vector_int_t *alpham1);

This function implements the maximum cardinality search algorithm. It computes a rank alpha for
each vertex, such that visiting vertices in decreasing rank order corresponds to always choosing the
vertex with the most already visited neighbors as the next one to visit.

Maximum cardinality search is useful in deciding the chordality of a graph. A graph is chordal if and
only if any two neighbors of a vertex which are higher in rank than it are connected to each other.

References:

Robert E Tarjan and Mihalis Yannakakis: Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Compu-
tation 13, 566--579, 1984. https://doi.org/10.1137/0213035

Arguments:

graph: The input graph. Edge directions will be ignored.

458

https://doi.org/10.1137/0213035

Structural properties of graphs

alpha: Pointer to an initialized vector, the result is stored here. It will be resized, as needed.
Upon return it contains the rank of the each vertex in the range 0 to n - 1, where n
is the number of vertices.

alpham1: Pointer to an initialized vector or a NULL pointer. If not NULL, then the inverse of
alpha is stored here. In other words, the elements of alpham1 are vertex IDs in
reverse maximum cardinality search order.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in terms of the number of vertices and edges.

See also:

igraph_is_chordal().

igraph_is_chordal — Decides whether a graph is
chordal.

igraph_error_t igraph_is_chordal(const igraph_t *graph,
 const igraph_vector_int_t *alpha,
 const igraph_vector_int_t *alpham1,
 igraph_bool_t *chordal,
 igraph_vector_int_t *fill_in,
 igraph_t *newgraph);

A graph is chordal if each of its cycles of four or more nodes has a chord, i.e. an edge joining two
nodes that are not adjacent in the cycle. An equivalent definition is that any chordless cycles have at
most three nodes. If either alpha or alpham1 is given, then the other is calculated by taking simply
the inverse. If neither are given, then igraph_maximum_cardinality_search() is called to
calculate them.

Arguments:

graph: The input graph. Edge directions will be ignored.

alpha: Either an alpha vector coming from igraph_maximum_cardinali-
ty_search() (on the same graph), or a NULL pointer.

alpham1: Either an inverse alpha vector coming from igraph_maximum_cardinali-
ty_search() (on the same graph) or a NULL pointer.

chordal: Pointer to a boolean. If not NULL the result is stored here.

fill_in: Pointer to an initialized vector, or a NULL pointer. If not a NULL pointer, then the
fill-in, also called the chordal completion of the graph is stored here. The chordal
completion is a set of edges that are needed to make the graph chordal. The vector
is resized as needed. Note that the chordal completion returned by this function may
not be minimal, i.e. some of the returned fill-in edges may not be needed to make the
graph chordal.

newgraph: Pointer to an uninitialized graph, or a NULL pointer. If not a null pointer, then a new
triangulated graph is created here. This essentially means adding the fill-in edges to
the original graph.

459

Structural properties of graphs

Returns:

Error code.

Time complexity: O(n).

See also:

igraph_maximum_cardinality_search().

Matchings

igraph_is_matching — Checks whether the given
matching is valid for the given graph.

igraph_error_t igraph_is_matching(const igraph_t *graph,
 const igraph_vector_bool_t *types, const igraph_vector_int_t *matching,
 igraph_bool_t *result);

This function checks a matching vector and verifies whether its length matches the number of vertices
in the given graph, its values are between -1 (inclusive) and the number of vertices (exclusive), and
whether there exists a corresponding edge in the graph for every matched vertex pair. For bipartite
graphs, it also verifies whether the matched vertices are in different parts of the graph.

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: If the graph is bipartite and you are interested in bipartite matchings only, pass the
vertex types here. If the graph is non-bipartite, simply pass NULL.

matching: The matching itself. It must be a vector where element i contains the ID of the vertex
that vertex i is matched to, or -1 if vertex i is unmatched.

result: Pointer to a boolean variable, the result will be returned here.

See also:

igraph_is_maximal_matching() if you are also interested in whether the matching is max-
imal (i.e. non-extendable).

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges.

Example 13.45. File examples/simple/
igraph_maximum_bipartite_matching.c

igraph_is_maximal_matching — Checks whether a
matching in a graph is maximal.

460

Structural properties of graphs

igraph_error_t igraph_is_maximal_matching(const igraph_t *graph,
 const igraph_vector_bool_t *types, const igraph_vector_int_t *matching,
 igraph_bool_t *result);

A matching is maximal if and only if there exists no unmatched vertex in a graph such that one of
its neighbors is also unmatched.

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: If the graph is bipartite and you are interested in bipartite matchings only, pass the
vertex types here. If the graph is non-bipartite, simply pass NULL.

matching: The matching itself. It must be a vector where element i contains the ID of the vertex
that vertex i is matched to, or -1 if vertex i is unmatched.

result: Pointer to a boolean variable, the result will be returned here.

See also:

igraph_is_matching() if you are only interested in whether a matching vector is valid for
a given graph.

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges.

Example 13.46. File examples/simple/
igraph_maximum_bipartite_matching.c

igraph_maximum_bipartite_matching — Calcu-
lates a maximum matching in a bipartite graph.

igraph_error_t igraph_maximum_bipartite_matching(const igraph_t *graph,
 const igraph_vector_bool_t *types, igraph_integer_t *matching_size,
 igraph_real_t *matching_weight, igraph_vector_int_t *matching,
 const igraph_vector_t *weights, igraph_real_t eps);

A matching in a bipartite graph is a partial assignment of vertices of the first kind to vertices of the
second kind such that each vertex of the first kind is matched to at most one vertex of the second
kind and vice versa, and matched vertices must be connected by an edge in the graph. The size (or
cardinality) of a matching is the number of edges. A matching is a maximum matching if there exists
no other matching with larger cardinality. For weighted graphs, a maximum matching is a matching
whose edges have the largest possible total weight among all possible matchings.

Maximum matchings in bipartite graphs are found by the push-relabel algorithm with greedy initial-
ization and a global relabeling after every n/2 steps where n is the number of vertices in the graph.

References: Cherkassky BV, Goldberg AV, Martin P, Setubal JC and Stolfi J: Augment or push: A
computational study of bipartite matching and unit-capacity flow algorithms. ACM Journal of Exper-
imental Algorithmics 3, 1998.

Kaya K, Langguth J, Manne F and Ucar B: Experiments on push-relabel-based maximum cardinality
matching algorithms for bipartite graphs. Technical Report TR/PA/11/33 of the Centre Europeen de
Recherche et de Formation Avancee en Calcul Scientifique, 2011.

461

Structural properties of graphs

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: Boolean vector giving the vertex types of the graph.

matching_size: The size of the matching (i.e. the number of matched vertex pairs will be
returned here). It may be NULL if you don't need this.

matching_weight: The weight of the matching if the edges are weighted, or the size of the
matching again if the edges are unweighted. It may be NULL if you don't
need this.

matching: The matching itself. It must be a vector where element i contains the ID of
the vertex that vertex i is matched to, or -1 if vertex i is unmatched.

weights: A null pointer (=no edge weights), or a vector giving the weights of the
edges. Note that the algorithm is stable only for integer weights.

eps: A small real number used in equality tests in the weighted bipartite match-
ing algorithm. Two real numbers are considered equal in the algorithm if
their difference is smaller than eps. This is required to avoid the accumu-
lation of numerical errors. It is advised to pass a value derived from the
DBL_EPSILON constant in float.h here. If you are running the algorithm
with no weights vector, this argument is ignored.

Returns:

Error code.

Time complexity: O(sqrt(|V|) |E|) for unweighted graphs (according to the technical report referenced
above), O(|V||E|) for weighted graphs.

Example 13.47. File examples/simple/
igraph_maximum_bipartite_matching.c

Unfolding a graph into a tree

igraph_unfold_tree — Unfolding a graph into a
tree, by possibly multiplicating its vertices.

igraph_error_t igraph_unfold_tree(const igraph_t *graph, igraph_t *tree,
 igraph_neimode_t mode, const igraph_vector_int_t *roots,
 igraph_vector_int_t *vertex_index);

A graph is converted into a tree (or forest, if it is unconnected), by performing a breadth-first search
on it, and replicating vertices that were found a second, third, etc. time.

Arguments:

graph: The input graph, it can be either directed or undirected.

tree: Pointer to an uninitialized graph object, the result is stored here.

462

Structural properties of graphs

mode: For directed graphs; whether to follow paths along edge directions
(IGRAPH_OUT), or the opposite (IGRAPH_IN), or ignore edge directions com-
pletely (IGRAPH_ALL). It is ignored for undirected graphs.

roots: A numeric vector giving the root vertex, or vertices (if the graph is not connect-
ed), to start from.

vertex_index: Pointer to an initialized vector, or a null pointer. If not a null pointer, then a
mapping from the vertices in the new graph to the ones in the original is created
here.

Returns:

Error code.

Time complexity: O(n+m), linear in the number vertices and edges.

Other operations

igraph_density — Calculate the density of a graph.

igraph_error_t igraph_density(const igraph_t *graph, igraph_real_t *res,
 igraph_bool_t loops);

The density of a graph is simply the ratio of the actual number of its edges and the largest possible
number of edges it could have. The maximum number of edges depends on interpretation: are vertices
allowed to have a connection to themselves? This is controlled by the loops parameter.

Note that density is ill-defined for graphs which have multiple edges between some pairs of vertices.
Consider calling igraph_simplify() on such graphs. This function does not check whether the
graph has parallel edges. The result it returns for such graphs is not meaningful.

Arguments:

graph: The input graph object.

res: Pointer to a real number, the result will be stored here. It must not have parallel edges.

loops: Logical constant, whether to include self-loops in the calculation. If this constant is true
then loop edges are thought to be possible in the graph (this does not necessarily mean that
the graph really contains any loops). If this is false then the result is only correct if the
graph does not contain loops.

Returns:

Error code.

Time complexity: O(1).

igraph_reciprocity — Calculates the reciprocity of
a directed graph.

463

Structural properties of graphs

igraph_error_t igraph_reciprocity(const igraph_t *graph, igraph_real_t *res,
 igraph_bool_t ignore_loops,
 igraph_reciprocity_t mode);

The measure of reciprocity defines the proportion of mutual connections, in a directed graph. It is most
commonly defined as the probability that the opposite counterpart of a randomly chosen directed edge
is also included in the graph. In adjacency matrix notation: 1 - (sum_ij |A_ij - A_ji|) /
(2 sum_ij A_ij). In multigraphs, each parallel edges between two vertices must have its own
separate reciprocal edge, in accordance with the above formula. This measure is calculated if the mode
argument is IGRAPH_RECIPROCITY_DEFAULT.

For directed graphs with no edges, NaN is returned. For undirected graphs, 1 is returned uncondition-
ally.

Prior to igraph version 0.6, another measure was implemented, defined as the probability of mutual
connection between a vertex pair if we know that there is a (possibly non-mutual) connection between
them. In other words, (unordered) vertex pairs are classified into three groups: (1) disconnected, (2)
non-reciprocally connected, (3) reciprocally connected. The result is the size of group (3), divided
by the sum of group sizes (2)+(3). This measure is calculated if mode is IGRAPH_RECIPROCI-
TY_RATIO.

Arguments:

graph: The graph object.

res: Pointer to an igraph_real_t which will contain the result.

ignore_loops: Whether to ignore self-loops when counting edges.

mode: Type of reciprocity to calculate, possible values are IGRAPH_RECIPROCI-
TY_DEFAULT and IGRAPH_RECIPROCITY_RATIO, please see their de-
scription above.

Returns:

Error code: IGRAPH_EINVAL: graph has no edges IGRAPH_ENOMEM: not enough memory for
temporary data.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| is the number of edges.

Example 13.48. File examples/simple/igraph_reciprocity.c

igraph_diversity — Structural diversity index of
the vertices.

igraph_error_t igraph_diversity(const igraph_t *graph, const igraph_vector_t *weights,
 igraph_vector_t *res, const igraph_vs_t vids);

This measure was defined in Nathan Eagle, Michael Macy and Rob Claxton: Network Diversity and
Economic Development, Science 328, 1029--1031, 2010.

It is simply the (normalized) Shannon entropy of the incident edges' weights. D(i)=H(i)/log(k[i]),
and H(i) = -sum(p[i,j] log(p[i,j]), j=1..k[i]), where p[i,j]=w[i,j]/sum(w[i,l], l=1..k[i]), k[i] is the (total)
degree of vertex i, and w[i,j] is the weight of the edge(s) between vertex i and j. The diversity of isolated
vertices will be NaN (not-a-number), while that of vertices with a single connection will be zero.

464

Structural properties of graphs

The measure works only if the graph is undirected and has no multiple edges. If the graph has multi-
ple edges, simplify it first using igraph_simplify(). If the graph is directed, convert it into an
undirected graph with igraph_to_undirected() .

Arguments:

graph: The undirected input graph.

weights: The edge weights, in the order of the edge IDs, must have appropriate length. Weights
must be non-negative.

res: An initialized vector, the results are stored here.

vids: Vertex selector that specifies the vertices which to calculate the measure.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear.

igraph_is_mutual — Check whether some edges of
a directed graph are mutual.

igraph_error_t igraph_is_mutual(const igraph_t *graph, igraph_vector_bool_t *res, igraph_es_t es, igraph_bool_t loops);

An (A,B) non-loop directed edge is mutual if the graph contains the (B,A) edge too. Whether directed
self-loops are considered mutual is controlled by the loops parameter.

An undirected graph only has mutual edges, by definition.

Edge multiplicity is not considered here, e.g. if there are two (A,B) edges and one (B,A) edge, then
all three are considered to be mutual.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here.

es: The sequence of edges to check. Supply igraph_ess_all() to check all edges.

loops: Boolean, whether to consider directed self-loops to be mutual.

Returns:

Error code.

Time complexity: O(n log(d)), n is the number of edges supplied, d is the maximum in-degree of the
vertices that are targets of the supplied edges. An upper limit of the time complexity is O(n log(|E|)),
|E| is the number of edges in the graph.

igraph_avg_nearest_neighbor_degree — Average
neighbor degree.

465

Structural properties of graphs

igraph_error_t igraph_avg_nearest_neighbor_degree(const igraph_t *graph,
 igraph_vs_t vids,
 igraph_neimode_t mode,
 igraph_neimode_t neighbor_degree_mode,
 igraph_vector_t *knn,
 igraph_vector_t *knnk,
 const igraph_vector_t *weights);

Calculates the average degree of the neighbors for each vertex (knn), and optionally, the same quantity
as a function of the vertex degree (knnk).

For isolated vertices knn is set to NaN. The same is done in knnk for vertex degrees that don't appear
in the graph.

The weighted version computes a weighted average of the neighbor degrees as

k_nn_u = 1/s_u sum_v w_uv k_v,

where s_u = sum_v w_uv is the sum of the incident edge weights of vertex u, i.e. its strength.
The sum runs over the neighbors v of vertex u as indicated by mode. w_uv denotes the weighted
adjacency matrix and k_v is the neighbors' degree, specified by neighbor_degree_mode. This
is equation (6) in the reference below.

When only the k_nn(k) degree correlation function is needed, igraph_degree_correla-
tion_vector() can be used as well. This function provides more flexible control over how degree
at each end of directed edges are computed.

Reference:

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex
weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004). https://dx.doi.org/10.1073/
pnas.0400087101

Arguments:

graph: The input graph. It may be directed.

vids: The vertices for which the calculation is performed.

mode: The type of neighbors to consider in directed graphs.
IGRAPH_OUT considers out-neighbors, IGRAPH_IN in-neighbors
and IGRAPH_ALL ignores edge directions.

neighbor_degree_mode: The type of degree to average in directed graphs. IGRAPH_OUT
averages out-degrees, IGRAPH_IN averages in-degrees and
IGRAPH_ALL ignores edge directions for the degree calculation.

vids: The vertices for which the calculation is performed.

knn: Pointer to an initialized vector, the result will be stored here. It will
be resized as needed. Supply a NULL pointer here if you only want
to calculate knnk.

knnk: Pointer to an initialized vector, the average neighbor degree as a
function of the vertex degree is stored here. This is sometimes re-
ferred to as the k_nn(k) degree correlation function. The first (ze-
roth) element is for degree one vertices, etc. The calculation is done
based only on the vertices vids. Supply a NULL pointer here if you
don't want to calculate this.

466

https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1073/pnas.0400087101

Structural properties of graphs

weights: Optional edge weights. Supply a null pointer here for the non-
weighted version.

Returns:

Error code.

See also:

igraph_degree_correlation_vector() for computing only the degree correlation func-
tion, with more flexible control over degree computations.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 13.49. File examples/simple/
igraph_avg_nearest_neighbor_degree.c

igraph_degree_correlation_vector — Degree
correlation function.

igraph_error_t igraph_degree_correlation_vector(
 const igraph_t *graph, const igraph_vector_t *weights,
 igraph_vector_t *knnk,
 igraph_neimode_t from_mode, igraph_neimode_t to_mode,
 igraph_bool_t directed_neighbors);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Computes the degree correlation function k_nn(k), defined as the mean degree of the targets
of directed edges whose source has degree k. The averaging is done over all directed edges. The
from_mode and to_mode parameters control how the source and target vertex degrees are com-
puted. This way the out-in, out-out, in-in and in-out degree correlation functions can all be computed.

In undirected graphs, edges are treated as if they were a pair of reciprocal directed ones.

If P_ij is the joint degree distribution of the graph, computable with igraph_joint_de-
gree_distribution(), then k_nn(k) = (sum_j j P_kj) / (sum_j P_kj).

The function igraph_avg_nearest_neighbor_degree(), whose main purpose is to calcu-
late the average neighbor degree for each vertex separately, can also compute k_nn(k). It differs
from this function in that it can take a subset of vertices to base the calculation on, but it does not
allow the same fine-grained control over how degrees are computed.

References:

R. Pastor-Satorras, A. Vazquez, A. Vespignani: Dynamical and Correlation Properties of the Internet,
Phys. Rev. Lett., vol. 87, pp. 258701 (2001). https://doi.org/10.1103/PhysRevLett.87.258701

A. Vazquez, R. Pastor-Satorras, A. Vespignani: Large-scale topological and dynamical properties of
the Internet, Phys. Rev. E, vol. 65, pp. 066130 (2002). https://doi.org/10.1103/PhysRevE.65.066130

467

https://doi.org/10.1103/PhysRevLett.87.258701
https://doi.org/10.1103/PhysRevE.65.066130

Structural properties of graphs

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex
weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004). https://dx.doi.org/10.1073/
pnas.0400087101

Arguments:

graph: The input graph.

weights: An optional weight vector. If not NULL, weighted averages will be
computed.

knnk: An initialized vector, the result will be written here. knnk[d] will
contain the mean degree of vertices connected to by vertices of de-
gree d. Note that in contrast to igraph_avg_nearest_neigh-
bor_degree(), d=0 is also included.

from_mode: How to compute the degree of sources? Can be IGRAPH_OUT for out-
degree, IGRAPH_IN for in-degree, or IGRAPH_ALL for total degree.
Ignored in undirected graphs.

to_mode: How to compute the degree of sources? Can be IGRAPH_OUT for out-
degree, IGRAPH_IN for in-degree, or IGRAPH_ALL for total degree.
Ignored in undirected graphs.

directed_neighbors: Whether to consider u -> v connections to be directed. Undirected
connections are treated as reciprocal directed ones, i.e. both u -> v
and v -> u will be considered. Ignored in undirected graphs.

Returns:

Error code.

See also:

igraph_avg_nearest_neighbor_degree() for computing the average neighbour degree
of a set of vertices, igraph_joint_degree_distribution() to get the complete joint
degree distribution, and igraph_assortativity_degree() to compute the degree assor-
tativity.

Time complexity: O(|E| + |V|)

igraph_get_adjacency — The adjacency matrix of a
graph.

igraph_error_t igraph_get_adjacency(
 const igraph_t *graph, igraph_matrix_t *res, igraph_get_adjacency_t type,
 const igraph_vector_t *weights, igraph_loops_t loops
);

The result is an adjacency matrix. Entry i, j of the matrix contains the number of edges connecting
vertex i to vertex j in the unweighted case, or the total weight of edges connecting vertex i to vertex
j in the weighted case.

Arguments:

468

https://dx.doi.org/10.1073/pnas.0400087101
https://dx.doi.org/10.1073/pnas.0400087101

Structural properties of graphs

graph: Pointer to the graph to convert

res: Pointer to an initialized matrix object, it will be resized if needed.

type: Constant specifying the type of the adjacency matrix to create for undirected graphs. It
is ignored for directed graphs. Possible values:

IGRAPH_GET_ADJACENCY_UP-
PER

the upper right triangle of the matrix is used.

IGRAPH_GET_ADJACEN-
CY_LOWER

the lower left triangle of the matrix is used.

IGRAPH_GET_ADJACEN-
CY_BOTH

the whole matrix is used, a symmetric matrix is
returned if the graph is undirected.

weights: An optional vector containing the weight of each edge in the graph. Supply a null pointer
here to make all edges have the same weight of 1.

loops: Constant specifying how loop edges should be handled. Possible values:

IGRAPH_NO_LOOPS loop edges are ignored and the diagonal of the matrix will
contain zeros only

IGRAPH_LOOPS_ONCE loop edges are counted once, i.e. a vertex with a single
unweighted loop edge will have 1 in the corresponding
diagonal entry

IGRAPH_LOOPS_TWICE loop edges are counted twice in undirected graphs, i.e. a
vertex with a single unweighted loop edge in an undirect-
ed graph will have 2 in the corresponding diagonal entry.
Loop edges in directed graphs are still counted as 1. Es-
sentially, this means that the function is counting the in-
cident edge stems , which makes more sense when using
the adjacency matrix in linear algebra.

Returns:

Error code: IGRAPH_EINVAL invalid type argument.

See also:

igraph_get_adjacency_sparse() if you want a sparse matrix representation

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

igraph_get_adjacency_sparse — Returns the adja-
cency matrix of a graph in a sparse matrix format.

igraph_error_t igraph_get_adjacency_sparse(
 const igraph_t *graph, igraph_sparsemat_t *res, igraph_get_adjacency_t type,
 const igraph_vector_t *weights, igraph_loops_t loops
);

Arguments:

469

Structural properties of graphs

graph: The input graph.

res: Pointer to an initialized sparse matrix. The result will be stored here. The matrix will be
resized as needed.

type: Constant specifying the type of the adjacency matrix to create for undirected graphs. It is
ignored for directed graphs. Possible values:

IGRAPH_GET_ADJACENCY_UP-
PER

the upper right triangle of the matrix is used.

IGRAPH_GET_ADJACEN-
CY_LOWER

the lower left triangle of the matrix is used.

IGRAPH_GET_ADJACEN-
CY_BOTH

the whole matrix is used, a symmetric matrix is re-
turned if the graph is undirected.

Returns:

Error code: IGRAPH_EINVAL invalid type argument.

See also:

igraph_get_adjacency(), the dense version of this function.

Time complexity: TODO.

igraph_get_stochastic — Stochastic adjacency
matrix of a graph.

igraph_error_t igraph_get_stochastic(
 const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t column_wise,
 const igraph_vector_t *weights
);

Stochastic matrix of a graph. The stochastic matrix of a graph is its adjacency matrix, normalized row-
wise or column-wise, such that the sum of each row (or column) is one.

Arguments:

graph: The input graph.

res: Pointer to an initialized matrix, the result is stored here. It will be resized as need-
ed.

column_wise: Whether to normalize column-wise.

Returns:

Error code.

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

See also:

igraph_get_stochastic_sparse(), the sparse version of this function.

470

Structural properties of graphs

igraph_get_stochastic_sparse — The stochastic
adjacency matrix of a graph.

igraph_error_t igraph_get_stochastic_sparse(
 const igraph_t *graph, igraph_sparsemat_t *res, igraph_bool_t column_wise,
 const igraph_vector_t *weights
);

Stochastic matrix of a graph. The stochastic matrix of a graph is its adjacency matrix, normalized row-
wise or column-wise, such that the sum of each row (or column) is one.

Arguments:

graph: The input graph.

res: Pointer to an initialized sparse matrix, the result is stored here. The matrix will
be resized as needed.

column_wise: Whether to normalize column-wise.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_get_stochastic(), the dense version of this function.

igraph_get_edgelist — The list of edges in a
graph.

igraph_error_t igraph_get_edgelist(const igraph_t *graph, igraph_vector_int_t *res, igraph_bool_t bycol);

The order of the edges is given by the edge IDs.

Arguments:

graph: Pointer to the graph object

res: Pointer to an initialized vector object, it will be resized.

bycol: Logical, if true, the edges will be returned columnwise, e.g. the first edge is res[0]-
>res[|E|], the second is res[1]->res[|E|+1], etc.

Returns:

Error code.

See also:

471

Structural properties of graphs

igraph_edges() to return the result only for some edge IDs.

Time complexity: O(|E|), the number of edges in the graph.

igraph_is_acyclic — Checks whether a graph is
acyclic or not.

igraph_error_t igraph_is_acyclic(const igraph_t *graph, igraph_bool_t *res);

This function checks whether a graph is acyclic or not.

Arguments:

graph: The input graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), where |V| and |E| are the number of vertices and edges in the original
input graph.

Deprecated functions

igraph_are_connected — Decides whether two ver-
tices are adjacent (deprecated alias).

igraph_error_t igraph_are_connected(const igraph_t *graph,
 igraph_integer_t v1, igraph_integer_t v2,
 igraph_bool_t *res);

Warning

Deprecated since version 0.10.10. Please do not use this function in new code; use
igraph_are_adjacent() instead.

Decides whether there are any edges that have v1 and v2 as endpoints. This function is of course
symmetric for undirected graphs.

Arguments:

graph: The graph object.

v1: The first vertex.

v2: The second vertex.

res: Boolean, true if there is an edge from v1 to v2, false otherwise.

Returns:

472

Structural properties of graphs

The error code IGRAPH_EINVVID is returned if an invalid vertex ID is given.

Time complexity: O(min(log(d1), log(d2))), d1 is the (out-)degree of v1 and d2 is the (in-)degree
of v2.

igraph_shortest_paths — Length of the shortest
paths between vertices.

igraph_error_t igraph_shortest_paths(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 igraph_neimode_t mode);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_distances() instead.

igraph_shortest_paths_dijkstra — Weighted
shortest path lengths between vertices (deprecated).

igraph_error_t igraph_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_distances_dijkstra() instead.

igraph_shortest_paths_bellman_ford — Weight-
ed shortest path lengths between vertices, allowing
negative weights (deprecated).

igraph_error_t igraph_shortest_paths_bellman_ford(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

473

Structural properties of graphs

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_distances_bellman_ford() instead.

igraph_shortest_paths_johnson — Weighted
shortest path lengths between vertices, using John-
son's algorithm (deprecated).

igraph_error_t igraph_shortest_paths_johnson(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_distances_johnson() instead.

igraph_get_stochastic_sparsemat — Stochastic
adjacency matrix of a graph (deprecated).

igraph_error_t igraph_get_stochastic_sparsemat(const igraph_t *graph,
 igraph_sparsemat_t *res,
 igraph_bool_t column_wise);

This function is deprecated in favour of igraph_get_stochastic_sparse(), but does not
work in an identical way. This function takes an uninitialized igraph_sparsemat_t while
igraph_get_stochastic_sparse() takes an already initialized one.

Arguments:

graph: The input graph.

res: Pointer to an uninitialized sparse matrix, the result is stored here. The matrix will
be resized as needed.

column_wise: Whether to normalize column-wise. For undirected graphs this argument does not
have any effect.

Returns:

Error code.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_get_stochastic_sparse() instead.

474

Structural properties of graphs

igraph_get_sparsemat — Converts an igraph graph
to a sparse matrix (deprecated).

igraph_error_t igraph_get_sparsemat(const igraph_t *graph, igraph_sparsemat_t *res);

If the graph is undirected, then a symmetric matrix is created.

This function is deprecated in favour of igraph_get_adjacency_sparse(), but does not
work in an identical way. This function takes an uninitialized igraph_sparsemat_t while
igraph_get_adjacency_sparse() takes an already initialized one.

Arguments:

graph: The input graph.

res: Pointer to an uninitialized sparse matrix. The result will be stored here.

Returns:

Error code.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_get_adjacency_sparse() instead.

igraph_laplacian — Returns the Laplacian matrix of
a graph (deprecated).

igraph_error_t igraph_laplacian(
 const igraph_t *graph, igraph_matrix_t *res, igraph_sparsemat_t *sparseres,
 igraph_bool_t normalized, const igraph_vector_t *weights
);

This function produces the Laplacian matrix of a graph in either dense or sparse format. When nor-
malized is set to true, the type of normalization used depends on the directnedness of the graph:
symmetric normalization is used for undirected graphs and left stochastic normalization for directed
graphs.

Arguments:

graph: Pointer to the graph to convert.

res: Pointer to an initialized matrix object or NULL. The dense matrix result will be
stored here.

sparseres: Pointer to an initialized sparse matrix object or NULL. The sparse matrix result will
be stored here.

mode: Controls whether to use out- or in-degrees in directed graphs. If set to
IGRAPH_ALL, edge directions will be ignored.

475

Structural properties of graphs

normalized: Boolean, whether to normalize the result.

weights: An optional vector containing non-negative edge weights, to calculate the weighted
Laplacian matrix. Set it to a null pointer to calculate the unweighted Laplacian.

Returns:

Error code.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_get_laplacian() instead.

igraph_hub_score — Kleinberg's hub scores.

igraph_error_t igraph_hub_score(const igraph_t *graph, igraph_vector_t *vector,
 igraph_real_t *value, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_hub_and_authority_scores() instead.

The hub scores of the vertices are defined as the principal eigenvector of A A^T, where A is the
adjacency matrix of the graph, A^T is its transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a
hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended
version in Journal of the ACM 46(1999). Also appears as IBM Research Report RJ 10076, May 1997.

Arguments:

graph: The input graph. Can be directed and undirected.

vector: Pointer to an initialized vector, the result is stored here. If a null pointer then it is ignored.

value: If not a null pointer then the eigenvalue corresponding to the calculated eigenvector is
stored here.

scale: If not zero then the result will be scaled such that the absolute value of the maximum
centrality is one.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges.

options: Options to ARPACK. See igraph_arpack_options_t for details. Note that the
function overwrites the n (number of vertices) parameter and it always starts the calcu-
lation from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

476

Structural properties of graphs

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

igraph_hub_and_authority_scores() to compute hub and authrotity scores effi-
ciently at the same time, igraph_authority_score() for the companion measure,
igraph_pagerank(), igraph_personalized_pagerank(), igraph_eigenvec-
tor_centrality() for similar measures.

igraph_authority_score — Kleinberg's authority
scores.

igraph_error_t igraph_authority_score(const igraph_t *graph, igraph_vector_t *vector,
 igraph_real_t *value, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_hub_and_authority_scores() instead.

The authority scores of the vertices are defined as the principal eigenvector of A^T A, where A is the
adjacency matrix of the graph, A^T is its transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a
hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended
version in Journal of the ACM 46(1999). Also appears as IBM Research Report RJ 10076, May 1997.

Arguments:

graph: The input graph. Can be directed and undirected.

vector: Pointer to an initialized vector, the result is stored here. If a null pointer then it is ignored.

value: If not a null pointer then the eigenvalue corresponding to the calculated eigenvector is
stored here.

scale: If not zero then the result will be scaled such that the absolute value of the maximum
centrality is one.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges.

options: Options to ARPACK. See igraph_arpack_options_t for details. Note that the
function overwrites the n (number of vertices) parameter and it always starts the calcu-
lation from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

477

Structural properties of graphs

igraph_hub_and_authority_scores() to compute hub and authrotity scores efficient-
ly at the same time, igraph_hub_score() for the companion measure, igraph_pager-
ank(), igraph_personalized_pagerank(), igraph_eigenvector_centrali-
ty() for similar measures.

478

Chapter 14. Graph cycles
Eulerian cycles and paths

These functions calculate whether an Eulerian path or cycle exists and if so, can find them.

igraph_is_eulerian — Checks whether an Eulerian
path or cycle exists.

igraph_error_t igraph_is_eulerian(const igraph_t *graph, igraph_bool_t *has_path, igraph_bool_t *has_cycle);

An Eulerian path traverses each edge of the graph precisely once. A closed Eulerian path is referred
to as an Eulerian cycle.

Arguments:

graph: The graph object.

has_path: Pointer to a Boolean, will be set to true if an Eulerian path exists. Must not be NULL.

has_cycle: Pointer to a Boolean, will be set to true if an Eulerian cycle exists. Must not be NULL.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_eulerian_cycle — Finds an Eulerian cycle.

igraph_error_t igraph_eulerian_cycle(
 const igraph_t *graph, igraph_vector_int_t *edge_res, igraph_vector_int_t *vertex_res);

Finds an Eulerian cycle, if it exists. An Eulerian cycle is a closed path that traverses each edge precisely
once.

If the graph has no edges, a zero-length cycle is returned.

This function uses Hierholzer's algorithm.

Arguments:

graph: The graph object.

edge_res: Pointer to an initialised vector. The indices of edges belonging to the cycle will be
stored here. May be NULL if it is not needed by the caller.

vertex_res: Pointer to an initialised vector. The indices of vertices belonging to the cycle will
be stored here. May be NULL if it is not needed by the caller.

Returns:

Error code:

479

Graph cycles

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_ENOSOL graph does not have an Eulerian cycle.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_eulerian_path — Finds an Eulerian path.

igraph_error_t igraph_eulerian_path(
 const igraph_t *graph, igraph_vector_int_t *edge_res, igraph_vector_int_t *vertex_res);

Finds an Eulerian path, if it exists. An Eulerian path traverses each edge precisely once.

If the graph has no edges, a zero-length path is returned.

This function uses Hierholzer's algorithm.

Arguments:

graph: The graph object.

edge_res: Pointer to an initialised vector. The indices of edges belonging to the path will be
stored here. May be NULL if it is not needed by the caller.

vertex_res: Pointer to an initialised vector. The indices of vertices belonging to the path will
be stored here. May be NULL if it is not needed by the caller.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_ENOSOL graph does not have an Eulerian path.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Cycle bases

igraph_fundamental_cycles — Finds a fundamen-
tal cycle basis.

igraph_error_t igraph_fundamental_cycles(const igraph_t *graph,
 igraph_vector_int_list_t *result,
 igraph_integer_t start_vid,
 igraph_integer_t bfs_cutoff,
 const igraph_vector_t *weights);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

480

Graph cycles

This function computes a fundamental cycle basis associated with a breadth-first search tree of the
graph.

Edge directions are ignored. Multi-edges and self-loops are supported.

Arguments:

graph: The graph object.

result: An initialized integer vector list. The result will be stored here, each vector con-
taining the edge IDs of a basis element.

start_vid: If negative, a complete fundamental cycle basis is returned. If a vertex ID, the fun-
damental cycles associated with the BFS tree rooted in that vertex will be returned,
only for the weakly connected component containing that vertex.

bfs_cutoff: If negative, a complete cycle basis is returned. Otherwise, only cycles of length
2*bfs_cutoff + 1 or shorter are included. bfs_cutoff is used to limit the
depth of the BFS tree when searching for cycle edges.

weights: Currently unused.

Returns:

Error code.

Time complexity: O(|V| + |E|).

igraph_minimum_cycle_basis — Computes a mini-
mum weight cycle basis.

igraph_error_t igraph_minimum_cycle_basis(const igraph_t *graph,
 igraph_vector_int_list_t *result,
 igraph_integer_t bfs_cutoff,
 igraph_bool_t complete,
 igraph_bool_t use_cycle_order,
 const igraph_vector_t *weights);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This function computes a minimum weight cycle basis of a graph. Currently, a modified version of
Horton's algorithm is used that allows for cutoffs.

Edge directions are ignored. Multi-edges and self-loops are supported.

References:

Horton, J. D. (1987) A polynomial-time algorithm to find the shortest cycle basis of a graph, SIAM
Journal on Computing, 16 (2): 358–366. https://doi.org/10.1137%2F0216026

Arguments:

481

https://doi.org/10.1137%2F0216026

Graph cycles

graph: The graph object.

result: An initialized integer vector list, the elements of the cycle basis will be
stored here as vectors of edge IDs.

bfs_cutoff: If negative, an exact minimum cycle basis is returned. Otherwise only those
cycles in the result will be part of some minimum cycle basis which are of
size 2*bfs_cutoff + 1 or smaller. Cycles longer than this limit may
not be of the smallest possible size. bfs_cutoff is used to limit the depth
of the BFS tree when computing candidate cycles. Specifying a bfs_cutoff
can speed up the computation substantially.

complete: Boolean value. Used only when bfs_cutoff was given. If true, a com-
plete basis is returned. If false, only cycles not greater than 2*bfs_cut-
off + 1 are returned. This may save computation time, however, the
result will not span the entire cycle space.

use_cycle_order: If true, each cycle is returned in natural order: the edge IDs will appear
ordered along the cycle. This comes at a small performance cost. If false,
no guarantees are given about the ordering of edge IDs within cycles. This
parameter exists solely to control performance tradeoffs.

weights: Currently unused.

Returns:

Error code.

Time complexity: TODO.

482

Chapter 15. Graph visitors
Breadth-first search

igraph_bfs — Breadth-first search.

igraph_error_t igraph_bfs(const igraph_t *graph,
 igraph_integer_t root, const igraph_vector_int_t *roots,
 igraph_neimode_t mode, igraph_bool_t unreachable,
 const igraph_vector_int_t *restricted,
 igraph_vector_int_t *order, igraph_vector_int_t *rank,
 igraph_vector_int_t *parents,
 igraph_vector_int_t *pred, igraph_vector_int_t *succ,
 igraph_vector_int_t *dist, igraph_bfshandler_t *callback,
 void *extra);

A simple breadth-first search, with a lot of different results and the possibility to call a callback when-
ever a vertex is visited. It is allowed to supply null pointers as the output arguments the user is not
interested in, in this case they will be ignored.

If not all vertices can be reached from the supplied root vertex, then additional root vertices will be
used, in the order of their vertex IDs.

Consider using igraph_bfs_simple instead if you set most of the output arguments provided by
this function to a null pointer.

Arguments:

graph: The input graph.

root: The id of the root vertex. It is ignored if the roots argument is not a null pointer.

roots: Pointer to an initialized vector, or a null pointer. If not a null pointer, then it is a
vector containing root vertices to start the BFS from. The vertices are considered
in the order they appear. If a root vertex was already found while searching from
another one, then no search is conducted from it.

mode: For directed graphs, it defines which edges to follow. IGRAPH_OUT means
following the direction of the edges, IGRAPH_IN means the opposite, and
IGRAPH_ALL ignores the direction of the edges. This parameter is ignored for
undirected graphs.

unreachable: Logical scalar, whether the search should visit the vertices that are unreachable
from the given root node(s). If true, then additional searches are performed until
all vertices are visited.

restricted: If not a null pointer, then it must be a pointer to a vector containing vertex IDs.
The BFS is carried out only on these vertices.

order: If not null pointer, then the vertex IDs of the graph are stored here, in the same
order as they were visited.

rank: If not a null pointer, then the rank of each vertex is stored here.

parents: If not a null pointer, then the id of the parent of each vertex is stored here. When a
vertex was not visited during the traversal, -2 will be stored as the ID of its parent.

483

Graph visitors

When a vertex was visited during the traversal and it was one of the roots of the
search trees, -1 will be stored as the ID of its parent.

pred: If not a null pointer, then the id of vertex that was visited before the current one
is stored here. If there is no such vertex (the current vertex is the root of a search
tree), then -1 is stored as the predecessor of the vertex. If the vertex was not visited
at all, then -2 is stored for the predecessor of the vertex.

succ: If not a null pointer, then the id of the vertex that was visited after the current one
is stored here. If there is no such vertex (the current one is the last in a search
tree), then -1 is stored as the successor of the vertex. If the vertex was not visited
at all, then -2 is stored for the successor of the vertex.

dist: If not a null pointer, then the distance from the root of the current search tree is
stored here for each vertex. If a vertex was not reached during the traversal, its
distance will be -1 in this vector.

callback: If not null, then it should be a pointer to a function of type igraph_bfshan-
dler_t. This function will be called, whenever a new vertex is visited.

extra: Extra argument to pass to the callback function.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 15.1. File examples/simple/igraph_bfs.c

Example 15.2. File examples/simple/igraph_bfs_callback.c

igraph_bfs_simple — Breadth-first search, sin-
gle-source version

igraph_error_t igraph_bfs_simple(
 const igraph_t *graph, igraph_integer_t root, igraph_neimode_t mode,
 igraph_vector_int_t *order, igraph_vector_int_t *layers,
 igraph_vector_int_t *parents
);

An alternative breadth-first search implementation to cater for the simpler use-cases when only a single
breadth-first search has to be conducted from a source node and most of the output arguments from
igraph_bfs are not needed. It is allowed to supply null pointers as the output arguments the user
is not interested in, in this case they will be ignored.

Arguments:

graph: The input graph.

root: The id of the root vertex.

mode: For directed graphs, it defines which edges to follow. IGRAPH_OUT means following
the direction of the edges, IGRAPH_IN means the opposite, and IGRAPH_ALL ignores
the direction of the edges. This parameter is ignored for undirected graphs.

484

Graph visitors

order: If not a null pointer, then an initialized vector must be passed here. The IDs of the
vertices visited during the traversal will be stored here, in the same order as they were
visited.

layers: If not a null pointer, then an initialized vector must be passed here. The i-th element
of the vector will contain the index into order where the vertices that are at distance
i from the root are stored. In other words, if you are interested in the vertices that are
at distance i from the root, you need to look in the order vector from layers[i] to
layers[i+1].

parents: If not a null pointer, then an initialized vector must be passed here. The vector will be
resized so its length is equal to the number of nodes, and it will contain the index of the
parent node for each visited node. The values in the vector are set to -2 for vertices that
were not visited, and -1 for the root vertex.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 15.3. File examples/simple/igraph_bfs_simple.c

igraph_bfshandler_t — Callback type for BFS func-
tion.

typedef igraph_error_t igraph_bfshandler_t(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_integer_t pred,
 igraph_integer_t succ,
 igraph_integer_t rank,
 igraph_integer_t dist,
 void *extra);

igraph_bfs() is able to call a callback function, whenever a new vertex is found, while doing the
breadth-first search. This callback function must be of type igraph_bfshandler_t. It has the
following arguments:

Arguments:

graph: The graph that the algorithm is working on. Of course this must not be modified.

vid: The id of the vertex just found by the breadth-first search.

pred: The id of the previous vertex visited. It is -1 if there is no previous vertex, because the
current vertex is the root is a search tree.

succ: The id of the next vertex that will be visited. It is -1 if there is no next vertex, because the
current vertex is the last one in a search tree.

rank: The rank of the current vertex, it starts with zero.

dist: The distance (number of hops) of the current vertex from the root of the current search tree.

extra: The extra argument that was passed to igraph_bfs().

485

Graph visitors

Returns:

IGRAPH_SUCCESS if the BFS should continue, IGRAPH_STOP if the BFS should stop and return
to the caller normally. Any other value is treated as an igraph error code, terminating the search
and returning to the caller with the same error code. If a BFS is is terminated prematurely, then all
elements of the result vectors that were not yet calculated at the point of the termination contain
negative values.

See also:

igraph_bfs()

Depth-first search

igraph_dfs — Depth-first search.

igraph_error_t igraph_dfs(const igraph_t *graph, igraph_integer_t root,
 igraph_neimode_t mode, igraph_bool_t unreachable,
 igraph_vector_int_t *order,
 igraph_vector_int_t *order_out, igraph_vector_int_t *parents,
 igraph_vector_int_t *dist, igraph_dfshandler_t *in_callback,
 igraph_dfshandler_t *out_callback,
 void *extra);

A simple depth-first search, with the possibility to call a callback whenever a vertex is discovered and/
or whenever a subtree is finished. It is allowed to supply null pointers as the output arguments the user
is not interested in, in this case they will be ignored.

If not all vertices can be reached from the supplied root vertex, then additional root vertices will be
used, in the order of their vertex IDs.

Arguments:

graph: The input graph.

root: The id of the root vertex.

mode: For directed graphs, it defines which edges to follow. IGRAPH_OUT means
following the direction of the edges, IGRAPH_IN means the opposite, and
IGRAPH_ALL ignores the direction of the edges. This parameter is ignored for
undirected graphs.

unreachable: Logical scalar, whether the search should visit the vertices that are unreachable
from the given root node(s). If true, then additional searches are performed until
all vertices are visited.

order: If not null pointer, then the vertex IDs of the graph are stored here, in the same
order as they were discovered. The tail of the vector will be padded with -1 to
ensure that the length of the vector is the same as the number of vertices, even
if some vertices were not visited during the traversal.

order_out: If not a null pointer, then the vertex IDs of the graphs are stored here, in the order
of the completion of their subtree. The tail of the vector will be padded with -1
to ensure that the length of the vector is the same as the number of vertices, even
if some vertices were not visited during the traversal.

486

Graph visitors

parents: If not a null pointer, then the id of the parent of each vertex is stored here. -1
will be stored for the root of the search tree; -2 will be stored for vertices that
were not visited.

dist: If not a null pointer, then the distance from the root of the current search tree is
stored here. -1 will be stored for vertices that were not visited.

in_callback: If not null, then it should be a pointer to a function of type igraph_dfshan-
dler_t. This function will be called, whenever a new vertex is discovered.

out_callback: If not null, then it should be a pointer to a function of type igraph_dfshan-
dler_t. This function will be called, whenever the subtree of a vertex is com-
pleted.

extra: Extra argument to pass to the callback function(s).

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_dfshandler_t — Callback type for the DFS
function.

typedef igraph_error_t igraph_dfshandler_t(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_integer_t dist,
 void *extra);

igraph_dfs() is able to call a callback function, whenever a new vertex is discovered, and/or
whenever a subtree is completed. These callbacks must be of type igraph_dfshandler_t. They
have the following arguments:

Arguments:

graph: The graph that the algorithm is working on. Of course this must not be modified.

vid: The id of the vertex just found by the depth-first search.

dist: The distance (number of hops) of the current vertex from the root of the current search tree.

extra: The extra argument that was passed to igraph_dfs().

Returns:

IGRAPH_SUCCESS if the DFS should continue, IGRAPH_STOP if the DFS should stop and return
to the caller normally. Any other value is treated as an igraph error code, terminating the search
and returning to the caller with the same error code. If a DFS is is terminated prematurely, then all
elements of the result vectors that were not yet calculated at the point of the termination contain
negative values.

See also:

igraph_dfs()

487

Graph visitors

Random walks

igraph_random_walk — Performs a random walk on
a graph.

igraph_error_t igraph_random_walk(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_int_t *vertices,
 igraph_vector_int_t *edges,
 igraph_integer_t start,
 igraph_neimode_t mode,
 igraph_integer_t steps,
 igraph_random_walk_stuck_t stuck);

Performs a random walk with a given length on a graph, from the given start vertex. Edge directions
are (potentially) considered, depending on the mode argument.

Arguments:

graph: The input graph, it can be directed or undirected. Multiple edges are respected, so are
loop edges.

weights: A vector of non-negative edge weights. It is assumed that at least one strictly posi-
tive weight is found among the outgoing edges of each vertex. Additionally, no edge
weight may be NaN. If either case does not hold, an error is returned. If it is NULL,
all edges are considered to have equal weight.

vertices: An allocated vector, the result is stored here as a list of vertex IDs. It will be resized
as needed. It includes the vertex IDs of starting and ending vertices. Length of the
vertices vector: steps + 1

edges: An initialized vector, the indices of traversed edges are stored here. It will be resized
as needed. Length of the edges vector: steps

start: The start vertex for the walk.

steps: The number of steps to take. If the random walk gets stuck, then the stuck argument
specifies what happens. steps is the number of edges to traverse during the walk.

mode: How to walk along the edges in directed graphs. IGRAPH_OUT means following edge
directions, IGRAPH_IN means going opposite the edge directions, IGRAPH_ALL
means ignoring edge directions. This argument is ignored for undirected graphs.

stuck: What to do if the random walk gets stuck. IGRAPH_RANDOM_WALK_STUCK_RE-
TURN means that the function returns with a shorter walk; IGRAPH_RAN-
DOM_WALK_STUCK_ERROR means that an IGRAPH_ERWSTUCK error is reported.
In both cases, vertices and edges are truncated to contain the actual interrupted
walk.

Returns:

Error code: IGRAPH_ERWSTUCK if the walk got stuck.

Time complexity: O(l + d) for unweighted graphs and O(l * log(k) + d) for weighted graphs, where
l is the length of the walk, d is the total degree of the visited nodes and k is the average degree of
vertices of the given graph.

488

Graph visitors

Deprecated functions

igraph_random_edge_walk — Performs a random
walk on a graph and returns the traversed edges.

igraph_error_t igraph_random_edge_walk(
 const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_int_t *edgewalk,
 igraph_integer_t start, igraph_neimode_t mode,
 igraph_integer_t steps,
 igraph_random_walk_stuck_t stuck);

Performs a random walk with a given length on a graph, from the given start vertex. Edge directions
are (potentially) considered, depending on the mode argument.

Arguments:

graph: The input graph, it can be directed or undirected. Multiple edges are respected, so are
loop edges.

weights: A vector of non-negative edge weights. It is assumed that at least one strictly posi-
tive weight is found among the outgoing edges of each vertex. Additionally, no edge
weight may be NaN. If either case does not hold, an error is returned. If it is a NULL
pointer, all edges are considered to have equal weight.

edgewalk: An initialized vector; the indices of traversed edges are stored here. It will be resized
as needed.

start: The start vertex for the walk.

steps: The number of steps to take. If the random walk gets stuck, then the stuck argument
specifies what happens.

mode: How to walk along the edges in directed graphs. IGRAPH_OUT means following edge
directions, IGRAPH_IN means going opposite the edge directions, IGRAPH_ALL
means ignoring edge directions. This argument is ignored for undirected graphs.

stuck: What to do if the random walk gets stuck. IGRAPH_RANDOM_WALK_STUCK_RE-
TURN means that the function returns with a shorter walk; IGRAPH_RAN-
DOM_WALK_STUCK_ERROR means that an IGRAPH_ERWSTUCK error is reported.
In both cases, edgewalk is truncated to contain the actual interrupted walk.

Returns:

Error code.

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_random_walk() instead.

489

Chapter 16. Cliques and independent
vertex sets

These functions calculate various graph properties related to cliques and independent vertex sets.

Cliques

igraph_is_complete — Decides whether the graph
is complete.

igraph_error_t igraph_is_complete(const igraph_t *graph, igraph_bool_t *res);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

A graph is considered complete if all pairs of different vertices are adjacent.

The null graph and the singleton graph are considered complete.

Arguments:

graph: The graph object to analyze.

res: Pointer to a logical variable, the result will be stored here.

Returns:

Error code.

Time complexity: O(|V| + |E|) at worst.

igraph_cliques — Finds all or some cliques in a
graph.

igraph_error_t igraph_cliques(const igraph_t *graph, igraph_vector_int_list_t *res,
 igraph_integer_t min_size, igraph_integer_t max_size);

Cliques are fully connected subgraphs of a graph.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_num-
ber() instead.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments:

490

http://users.aalto.fi/~pat/cliquer.html

Cliques and independent vertex sets

graph: The input graph.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here as vectors
of vertex IDs.

min_size: Integer specifying the minimum size of the cliques to be returned. If negative or zero,
no lower bound will be used.

max_size: Integer specifying the maximum size of the cliques to be returned. If negative or zero,
no upper bound will be used.

Returns:

Error code.

See also:

igraph_largest_cliques() and igraph_clique_number().

Time complexity: Exponential

Example 16.1. File examples/simple/igraph_cliques.c

igraph_clique_size_hist — Counts cliques of
each size in the graph.

igraph_error_t igraph_clique_size_hist(const igraph_t *graph, igraph_vector_t *hist,
 igraph_integer_t min_size, igraph_integer_t max_size);

Cliques are fully connected subgraphs of a graph.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments:

graph: The input graph.

hist: Pointer to an initialized vector. The result will be stored here. The first element will
store the number of size-1 cliques, the second element the number of size-2 cliques,
etc. For cliques smaller than min_size, zero counts will be returned.

min_size: Integer specifying the minimum size of the cliques to be returned. If negative or zero,
no lower bound will be used.

max_size: Integer specifying the maximum size of the cliques to be returned. If negative or zero,
no upper bound will be used.

Returns:

Error code.

See also:

igraph_cliques() and igraph_cliques_callback()

491

http://users.aalto.fi/~pat/cliquer.html

Cliques and independent vertex sets

Time complexity: Exponential

igraph_cliques_callback — Calls a function for
each clique in the graph.

igraph_error_t igraph_cliques_callback(const igraph_t *graph,
 igraph_integer_t min_size, igraph_integer_t max_size,
 igraph_clique_handler_t *cliquehandler_fn, void *arg);

Cliques are fully connected subgraphs of a graph. This function enumerates all cliques within the
given size range and calls cliquehandler_fn for each of them. The cliques are passed to the
callback function as a pointer to an igraph_vector_int_t. Destroying and freeing this vector
is left up to the user. Use igraph_vector_int_destroy() to destroy it first, then free it using
igraph_free().

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments:

graph: The input graph.

min_size: Integer specifying the minimum size of the cliques to be returned. If neg-
ative or zero, no lower bound will be used.

max_size: Integer specifying the maximum size of the cliques to be returned. If neg-
ative or zero, no upper bound will be used.

cliquehandler_fn: Callback function to be called for each clique. See also
igraph_clique_handler_t.

arg: Extra argument to supply to cliquehandler_fn.

Returns:

Error code.

See also:

igraph_cliques()

Time complexity: Exponential

igraph_clique_handler_t — Type of clique handler
functions.

typedef igraph_error_t igraph_clique_handler_t(const igraph_vector_int_t *clique, void *arg);

Callback type, called when a clique was found. See the details at the documentation of
igraph_cliques_callback().

Arguments:

492

http://users.aalto.fi/~pat/cliquer.html

Cliques and independent vertex sets

clique: The current clique. The clique is owned by the clique search routine. You do not need to
destroy or free it if you do not want to store it; however, if you want to hold on to it for a
longer period of time, you need to make a copy of it on your own and store the copy itself.

arg: This extra argument was passed to igraph_cliques_callback() when it was
called.

Returns:

Error code; IGRAPH_SUCCESS to continue the search or IGRAPH_STOP to stop the search with-
out signaling an error.

igraph_largest_cliques — Finds the largest
clique(s) in a graph.

igraph_error_t igraph_largest_cliques(const igraph_t *graph, igraph_vector_int_list_t *res);

A clique is largest (quite intuitively) if there is no other clique in the graph which contains more
vertices.

Note that this is not necessarily the same as a maximal clique, i.e. the largest cliques are always
maximal but a maximal clique is not always largest.

The current implementation of this function searches for maximal cliques using igraph_maxi-
mal_cliques_callback() and drops those that are not the largest.

The implementation of this function changed between igraph 0.5 and 0.6, so the order of the cliques
and the order of vertices within the cliques will almost surely be different between these two versions.

Arguments:

graph: The input graph.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here as vectors
of vertex IDs.

Returns:

Error code.

See also:

igraph_cliques(), igraph_maximal_cliques()

Time complexity: O(3^(|V|/3)) worst case.

igraph_maximal_cliques — Finds all maximal
cliques in a graph.

igraph_error_t igraph_maximal_cliques(
 const igraph_t *graph, igraph_vector_int_list_t *res,

493

Cliques and independent vertex sets

 igraph_integer_t min_size, igraph_integer_t max_size
);

A maximal clique is a clique which can't be extended any more by adding a new vertex to it.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_num-
ber() instead.

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques,
see: David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs
in Near-Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume
6506, 2010, pp 403-414.

The implementation of this function changed between igraph 0.5 and 0.6 and also between 0.6 and 0.7,
so the order of the cliques and the order of vertices within the cliques will almost surely be different
between these three versions.

Arguments:

graph: The input graph.

res: Pointer to list of integer vectors. The maximal cliques will be returned here as vectors
of vertex IDs. Note that vertices of a clique may be returned in arbitrary order.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no
upper bound will be used.

Returns:

Error code.

See also:

igraph_maximal_independent_vertex_sets(), igraph_clique_number()

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

Example 16.2. File examples/simple/igraph_maximal_cliques.c

igraph_maximal_cliques_count — Count the num-
ber of maximal cliques in a graph.

igraph_error_t igraph_maximal_cliques_count(const igraph_t *graph,
 igraph_integer_t *res,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques,
see: David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs
in Near-Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume
6506, 2010, pp 403-414.

494

Cliques and independent vertex sets

Arguments:

graph: The input graph.

res: Pointer to an igraph_integer_t; the number of maximal cliques will be stored
here.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no
upper bound will be used.

Returns:

Error code.

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

Example 16.3. File examples/simple/igraph_maximal_cliques.c

igraph_maximal_cliques_file — Find maximal
cliques and write them to a file.

igraph_error_t igraph_maximal_cliques_file(const igraph_t *graph,
 FILE *outfile,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

This function enumerates all maximal cliques and writes them to file.

Edge directions are ignored.

Arguments:

graph: The input graph.

outfile: Pointer to the output file, it should be writable.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no
upper bound will be used.

Returns:

Error code.

495

Cliques and independent vertex sets

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.*

igraph_maximal_cliques_subset — Maximal
cliques for a subset of initial vertices.

igraph_error_t igraph_maximal_cliques_subset(
 const igraph_t *graph, const igraph_vector_int_t *subset,
 igraph_vector_int_list_t *res, igraph_integer_t *no,
 FILE *outfile, igraph_integer_t min_size, igraph_integer_t max_size
);

This function enumerates all maximal cliques for a subset of initial vertices and writes them to file.

Edge directions are ignored.

Arguments:

graph: The input graph.

subset: Pointer to an igraph_vector_int_t containing the subset of initial vertices

res: Pointer to a list of integer vectors; the cliques will be stored here

no: Pointer to an igraph_integer_t; the number of maximal cliques will be stored
here.

outfile: Pointer to an output file or NULL. When not NULL, the file should be writable.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no
upper bound will be used.

Returns:

Error code.

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

igraph_maximal_cliques_hist — Counts the num-
ber of maximal cliques of each size in a graph.

496

Cliques and independent vertex sets

igraph_error_t igraph_maximal_cliques_hist(const igraph_t *graph,
 igraph_vector_t *hist,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

This function counts how many maximal cliques of each size are present in the graph. Size-1 maximal
cliques are simply isolated vertices.

Edge directions are ignored.

Arguments:

graph: The input graph.

hist: Pointer to an initialized vector. The result will be stored here. The first element will
store the number of size-1 maximal cliques, the second element the number of size-2
maximal cliques, etc. For cliques smaller than min_size, zero counts will be re-
turned.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no
upper bound will be used.

Returns:

Error code.

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

igraph_maximal_cliques_callback — Finds max-
imal cliques in a graph and calls a function for each
one.

igraph_error_t igraph_maximal_cliques_callback(const igraph_t *graph,
 igraph_clique_handler_t *cliquehandler_fn, void *arg,
 igraph_integer_t min_size, igraph_integer_t max_size);

This function enumerates all maximal cliques within the given size range and calls cliquehan-
dler_fn for each of them. The cliques are passed to the callback function as a pointer to an
igraph_vector_int_t. The vector is owned by the maximal clique search routine so users are
expected to make a copy of the vector using igraph_vector_int_init_copy() if they want
to hold on to it.

Edge directions are ignored.

Arguments:

graph: The input graph.

497

Cliques and independent vertex sets

cliquehandler_fn: Callback function to be called for each clique. See also
igraph_clique_handler_t.

arg: Extra argument to supply to cliquehandler_fn.

min_size: Integer giving the minimum size of the cliques to be returned. If negative
or zero, no lower bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative
or zero, no upper bound will be used.

Returns:

Error code.

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

igraph_clique_number — Finds the clique number
of the graph.

igraph_error_t igraph_clique_number(const igraph_t *graph, igraph_integer_t *no);

The clique number of a graph is the size of the largest clique.

The current implementation of this function searches for maximal cliques using igraph_maxi-
mal_cliques_callback() and keeps track of the size of the largest clique that was found.

Arguments:

graph: The input graph.

no: The clique number will be returned to the igraph_integer_t pointed by this variable.

Returns:

Error code.

See also:

igraph_cliques(), igraph_largest_cliques().

Time complexity: O(3^(|V|/3)) worst case.

Weighted cliques

igraph_weighted_cliques — Finds all cliques in a
given weight range in a vertex weighted graph.

498

Cliques and independent vertex sets

igraph_error_t igraph_weighted_cliques(const igraph_t *graph,
 const igraph_vector_t *vertex_weights, igraph_vector_int_list_t *res,
 igraph_real_t min_weight, igraph_real_t max_weight, igraph_bool_t maximal);

Cliques are fully connected subgraphs of a graph. The weight of a clique is the sum of the weights
of individual vertices within the clique.

Only positive integer vertex weights are supported.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments:

graph: The input graph.

vertex_weights: A vector of vertex weights. The current implementation will truncate all
weights to their integer parts. You may pass NULL here to make each vertex
have a weight of 1.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here
as vectors of vertex IDs.

min_weight: Integer specifying the minimum weight of the cliques to be returned. If neg-
ative or zero, no lower bound will be used.

max_weight: Integer specifying the maximum weight of the cliques to be returned. If neg-
ative or zero, no upper bound will be used.

maximal: If true, only maximal cliques will be returned

Returns:

Error code.

See also:

igraph_cliques(), igraph_maximal_cliques()

Time complexity: Exponential

igraph_largest_weighted_cliques — Finds the
largest weight clique(s) in a graph.

igraph_error_t igraph_largest_weighted_cliques(const igraph_t *graph,
 const igraph_vector_t *vertex_weights, igraph_vector_int_list_t *res);

The weight of a clique is the sum of the weights of its vertices. This function finds the clique(s) having
the largest weight in the graph.

Only positive integer vertex weights are supported.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

499

http://users.aalto.fi/~pat/cliquer.html
http://users.aalto.fi/~pat/cliquer.html

Cliques and independent vertex sets

Arguments:

graph: The input graph.

vertex_weights: A vector of vertex weights. The current implementation will truncate all
weights to their integer parts. You may pass NULL here to make each vertex
have a weight of 1.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here
as vectors of vertex IDs.

Returns:

Error code.

See also:

igraph_weighted_cliques(), igraph_weighted_clique_number(),
igraph_largest_cliques()

Time complexity: TODO

igraph_weighted_clique_number — Finds the
weight of the largest weight clique in the graph.

igraph_error_t igraph_weighted_clique_number(const igraph_t *graph,
 const igraph_vector_t *vertex_weights, igraph_real_t *res);

The weight of a clique is the sum of the weights of its vertices. This function finds the weight of the
largest weight clique.

Only positive integer vertex weights are supported.

The current implementation of this function uses version 1.21 of the Cliquer library by Sampo Niska-
nen and Patric R. J. Östergård, http://users.aalto.fi/~pat/cliquer.html

Arguments:

graph: The input graph.

vertex_weights: A vector of vertex weights. The current implementation will truncate all
weights to their integer parts. You may pass NULL here to make each vertex
have a weight of 1.

res: The largest weight will be returned to the igraph_real_t pointed to by
this variable.

Returns:

Error code.

See also:

igraph_weighted_cliques(), igraph_largest_weighted_cliques(),
igraph_clique_number()

500

http://users.aalto.fi/~pat/cliquer.html

Cliques and independent vertex sets

Time complexity: TODO

Independent vertex sets

igraph_independent_vertex_sets — Finds all in-
dependent vertex sets in a graph.

igraph_error_t igraph_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_int_list_t *res,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

A vertex set is considered independent if there are no edges between them.

If you are interested in the size of the largest independent vertex set, use igraph_indepen-
dence_number() instead.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs
and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new
algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here as vectors
of vertex IDs.

min_size: Integer specifying the minimum size of the sets to be returned. If negative or zero, no
lower bound will be used.

max_size: Integer specifying the maximum size of the sets to be returned. If negative or zero,
no upper bound will be used.

Returns:

Error code.

See also:

igraph_largest_independent_vertex_sets(), igraph_independence_num-
ber().

Time complexity: TODO

Example 16.4. File examples/simple/igraph_independent_sets.c

igraph_largest_independent_vertex_sets —
Finds the largest independent vertex set(s) in a graph.

501

Cliques and independent vertex sets

igraph_error_t igraph_largest_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_int_list_t *res);

An independent vertex set is largest if there is no other independent vertex set with more vertices in
the graph.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs
and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new
algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here as vectors
of vertex IDs.

Returns:

Error code.

See also:

igraph_independent_vertex_sets(), igraph_maximal_independent_ver-
tex_sets().

Time complexity: TODO

igraph_maximal_independent_vertex_sets —
Finds all maximal independent vertex sets of a graph.

igraph_error_t igraph_maximal_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_int_list_t *res);

A maximal independent vertex set is an independent vertex set which can't be extended any more by
adding a new vertex to it.

The algorithm used here is based on the following paper: S. Tsukiyama, M. Ide, H. Ariyoshi and I.
Shirawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing,
6:505--517, 1977.

The implementation was originally written by Kevin O'Neill and modified by K M Briggs in the Very
Nauty Graph Library. I simply re-wrote it to use igraph's data structures.

If you are interested in the size of the largest independent vertex set, use igraph_indepen-
dence_number() instead.

Arguments:

graph: The input graph.

res: Pointer to an initialized list of integer vectors. The cliques will be stored here as vectors
of vertex IDs.

502

Cliques and independent vertex sets

Returns:

Error code.

See also:

igraph_maximal_cliques(), igraph_independence_number()

Time complexity: TODO.

igraph_independence_number — Finds the indepen-
dence number of the graph.

igraph_error_t igraph_independence_number(const igraph_t *graph, igraph_integer_t *no);

The independence number of a graph is the cardinality of the largest independent vertex set.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs
and uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new
algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

no: The independence number will be returned to the igraph_integer_t pointed by this
variable.

Returns:

Error code.

See also:

igraph_independent_vertex_sets().

Time complexity: TODO.

503

Chapter 17. Graph isomorphism
The simple interface

igraph provides four set of functions to deal with graph isomorphism problems.

The igraph_isomorphic() and igraph_subisomorphic() functions make up the first set
(in addition with the igraph_permute_vertices() function). These functions choose the al-
gorithm which is best for the supplied input graph. (The choice is not very sophisticated though, see
their documentation for details.)

The VF2 graph (and subgraph) isomorphism algorithm is implemented in igraph, these functions are
the second set. See igraph_isomorphic_vf2() and igraph_subisomorphic_vf2() for
starters.

Functions for the Bliss algorithm constitute the third set, see igraph_isomorphic_bliss().

Finally, the isomorphism classes of all directed graphs with three and four vertices and all undirected
graphs with 3-6 vertices are precomputed and stored in igraph, so for these small graphs there is a
separate fast path in the code that does not use more complex, generic isomorphism algorithms.

igraph_isomorphic — Are two graphs isomorphic?

igraph_error_t igraph_isomorphic(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso);

In simple terms, two graphs are isomorphic if they become indistinguishable from each other once their
vertex labels are removed (rendering the vertices within each graph indistiguishable). More precisely,
two graphs are isomorphic if there is a one-to-one mapping from the vertices of the first one to the
vertices of the second such that it transforms the edge set of the first graph into the edge set of the
second. This mapping is called an isomorphism.

This function decides which graph isomorphism algorithm to be used based on the input graphs. Right
now it does the following:

1. If one graph is directed and the other undirected then an error is triggered.

2. If one of the graphs has multi-edges then both graphs are simplified and colorized using
igraph_simplify_and_colorize() and sent to VF2.

3. If the two graphs does not have the same number of vertices and edges it returns with false.

4. Otherwise, if the igraph_isoclass() function supports both graphs (which is true for directed
graphs with 3 and 4 vertices, and undirected graphs with 3-6 vertices), an O(1) algorithm is used
with precomputed data.

5. Otherwise Bliss is used, see igraph_isomorphic_bliss().

Please call the VF2 and Bliss functions directly if you need something more sophisticated, e.g. you
need the isomorphic mapping.

Arguments:

graph1: The first graph.

graph2: The second graph.

504

Graph isomorphism

iso: Pointer to a logical variable, will be set to true if the two graphs are isomorphic, and
false otherwise.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isoclass_subgraph(), igraph_isoclass_cre-
ate().

Time complexity: exponential.

igraph_subisomorphic — Decide subgraph isomor-
phism.

igraph_error_t igraph_subisomorphic(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso);

Check whether graph2 is isomorphic to a subgraph of graph1. Currently this function just calls
igraph_subisomorphic_vf2() for all graphs.

Currently this function does not support non-simple graphs.

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be the bigger
graph.

graph2: The second input graph, it must have the same directedness as graph2, or an error is
triggered. This is supposed to be the smaller graph.

iso: Pointer to a boolean, the result is stored here.

Returns:

Error code.

Time complexity: exponential.

The BLISS algorithm
Bliss is a successor of the famous NAUTY algorithm and implementation. While using the same ideas
in general, with better heuristics and data structures Bliss outperforms NAUTY on most graphs.

Bliss was developed and implemented by Tommi Junttila and Petteri Kaski at Helsinki University
of Technology, Finland. For more information, see the Bliss homepage at https://users.aalto.fi/~tjunt-
til/bliss/ and the following publication:

Tommi Junttila and Petteri Kaski: "Engineering an Efficient Canonical Labeling Tool
for Large and Sparse Graphs" In ALENEX 2007, pages 135–149, 2007 https://
doi.org/10.1137/1.9781611972870.13

505

https://users.aalto.fi/~tjunttil/bliss/
https://users.aalto.fi/~tjunttil/bliss/
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1137/1.9781611972870.13

Graph isomorphism

Tommi Junttila and Petteri Kaski: "Conflict Propagation and Component Recursion for Canonical
Labeling" in TAPAS 2011, pages 151–162, 2011. https://doi.org/10.1007/978-3-642-19754-3_16

Bliss works with both directed graphs and undirected graphs. It supports graphs with self-loops, but
not graphs with multi-edges.

Bliss version 0.75 is included in igraph.

igraph_bliss_sh_t — Splitting heuristics for Bliss.

typedef enum { IGRAPH_BLISS_F = 0, IGRAPH_BLISS_FL,
 IGRAPH_BLISS_FS, IGRAPH_BLISS_FM,
 IGRAPH_BLISS_FLM, IGRAPH_BLISS_FSM
 } igraph_bliss_sh_t;

IGRAPH_BLISS_FL provides good performance for many graphs, and is a reasonable default choice.
IGRAPH_BLISS_FSM is recommended for graphs that have some combinatorial structure, and is the
default of the Bliss library's command line tool.

Values:

IGRAPH_BLISS_F: First non-singleton cell.

IGRAPH_BLISS_FL: First largest non-singleton cell.

IGRAPH_BLISS_FS: First smallest non-singleton cell.

IGRAPH_BLISS_FM: First maximally non-trivially connected non-singleton cell.

IGRAPH_BLISS_FLM: Largest maximally non-trivially connected non-singleton cell.

IGRAPH_BLISS_FSM: Smallest maximally non-trivially connected non-singletion cell.

igraph_bliss_info_t — Information about a Bliss
run.

typedef struct igraph_bliss_info_t {
 unsigned long nof_nodes;
 unsigned long nof_leaf_nodes;
 unsigned long nof_bad_nodes;
 unsigned long nof_canupdates;
 unsigned long nof_generators;
 unsigned long max_level;
 char *group_size;
} igraph_bliss_info_t;

Some secondary information found by the Bliss algorithm is stored here. It is useful if you wany to
study the internal working of the algorithm.

Values:

nof_nodes: The number of nodes in the search tree.

506

https://doi.org/10.1007/978-3-642-19754-3_16

Graph isomorphism

nof_leaf_nodes: The number of leaf nodes in the search tree.

nof_bad_nodes: Number of bad nodes.

nof_canupdates: Number of canrep updates.

nof_generators: Number of generators of the automorphism group.

max_level: Maximum level.

group_size: The size of the automorphism group of the graph, given as a string. It should
be deallocated via igraph_free() if not needed any more.

See https://users.aalto.fi/~tjunttil/bliss/ for details about the algorithm and these parameters.

igraph_canonical_permutation — Canonical per-
mutation using Bliss.

igraph_error_t igraph_canonical_permutation(const igraph_t *graph, const igraph_vector_int_t *colors,
 igraph_vector_int_t *labeling, igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

This function computes the vertex permutation which transforms the graph into a canonical form,
using the Bliss algorithm. Two graphs have the same canonical form if and only if they are isomorphic.
Use igraph_is_same_graph() to compare two canonical forms.

Arguments:

graph: The input graph. Multiple edges between the same nodes are not supported and will
cause an incorrect result to be returned.

colors: An optional vertex color vector for the graph. Supply a null pointer is the graph is
not colored.

labeling: Pointer to a vector, the result is stored here. The permutation takes vertex 0 to the first
element of the vector, vertex 1 to the second, etc. The vector will be resized as needed.

sh: The splitting heuristics to be used in Bliss. See igraph_bliss_sh_t.

info: If not NULL then information on Bliss internals is stored here. The memory used by
this structure must to be freed when no longer needed, see igraph_bliss_in-
fo_t.

Returns:

Error code.

See also:

igraph_is_same_graph()

Time complexity: exponential, in practice it is fast for many graphs.

igraph_isomorphic_bliss — Graph isomorphism
via Bliss.

507

https://users.aalto.fi/~tjunttil/bliss/

Graph isomorphism

igraph_error_t igraph_isomorphic_bliss(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *colors1, const igraph_vector_int_t *colors2,
 igraph_bool_t *iso, igraph_vector_int_t *map12,
 igraph_vector_int_t *map21, igraph_bliss_sh_t sh,
 igraph_bliss_info_t *info1, igraph_bliss_info_t *info2);

This function uses the Bliss graph isomorphism algorithm, a successor of the famous NAUTY algo-
rithm and implementation. Bliss is open source and licensed according to the GNU LGPL. See https://
users.aalto.fi/~tjunttil/bliss/ for details. Currently the 0.75 version of Bliss is included in igraph.

Isomorphism testing is implemented by producing the canonical form of both graphs using
igraph_canonical_permutation() and comparing them.

Arguments:

graph1: The first input graph. Multiple edges between the same nodes are not supported and
will cause an incorrect result to be returned.

graph2: The second input graph. Multiple edges between the same nodes are not supported and
will cause an incorrect result to be returned.

colors1: An optional vertex color vector for the first graph. Supply a null pointer if your graph
is not colored.

colors2: An optional vertex color vector for the second graph. Supply a null pointer if your graph
is not colored.

iso: Pointer to a boolean, the result is stored here.

map12: A vector or NULL pointer. If not NULL then an isomorphic mapping from graph1 to
graph2 is stored here. If the input graphs are not isomorphic then this vector is cleared,
i.e. it will have length zero.

map21: Similar to map12, but for the mapping from graph2 to graph1.

sh: Splitting heuristics to be used for the graphs. See igraph_bliss_sh_t.

info1: If not NULL, information about the canonization of the first input graph is stored here.
Note that if the two graphs have different number of vertices or edges, then this is only
partially filled. The memory used by this structure should be released when no longer
needed, see igraph_bliss_info_t for details.

info2: Same as info1, but for the second graph.

Returns:

Error code.

Time complexity: exponential, but in practice it is quite fast.

igraph_count_automorphisms — Number of auto-
morphisms using Bliss.

igraph_error_t igraph_count_automorphisms(const igraph_t *graph, const igraph_vector_int_t *colors,
 igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

508

https://users.aalto.fi/~tjunttil/bliss/
https://users.aalto.fi/~tjunttil/bliss/

Graph isomorphism

The number of automorphisms of a graph is computed using Bliss. The result is returned as part of
the info structure, in tag group_size. It is returned as a string, as it can be very high even for
relatively small graphs. See also igraph_bliss_info_t.

Arguments:

graph: The input graph. Multiple edges between the same nodes are not supported and will cause
an incorrect result to be returned.

colors: An optional vertex color vector for the graph. Supply a null pointer is the graph is not
colored.

sh: The splitting heuristics to be used in Bliss. See igraph_bliss_sh_t.

info: The result is stored here, in particular in the group_size tag of info. The memory
used by this structure must be released when no longer needed, see igraph_blis-
s_info_t.

Returns:

Error code.

Time complexity: exponential, in practice it is fast for many graphs.

igraph_automorphism_group — Automorphism
group generators using Bliss.

igraph_error_t igraph_automorphism_group(
 const igraph_t *graph, const igraph_vector_int_t *colors, igraph_vector_int_list_t *generators,
 igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

The generators of the automorphism group of a graph are computed using Bliss. The generator set
may not be minimal and may depend on the splitting heuristics. The generators are permutations
represented using zero-based indexing.

Arguments:

graph: The input graph. Multiple edges between the same nodes are not supported and
will cause an incorrect result to be returned.

colors: An optional vertex color vector for the graph. Supply a null pointer is the graph
is not colored.

generators: Must be an initialized interger vector list. The generators of the automorphism
group will be stored here.

sh: The splitting heuristics to be used in Bliss. See igraph_bliss_sh_t.

info: If not NULL then information on Bliss internals is stored here. The memory used
by this structure must to be freed when no longer needed, see igraph_blis-
s_info_t.

Returns:

Error code.

Time complexity: exponential, in practice it is fast for many graphs.

509

Graph isomorphism

Deprecated aliases

igraph_automorphisms — Number of automorphisms using
Bliss (deprecated alias).

igraph_error_t igraph_automorphisms(const igraph_t *graph, const igraph_vector_int_t *colors,
 igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_count_automorphisms() instead.

The VF2 algorithm
The VF2 algorithm can search for a subgraph in a larger graph, or check if two graphs are isomorphic.
See P. Foggia, C. Sansone, M. Vento, An Improved algorithm for matching large graphs, Proc. of the
3rd IAPR-TC-15 International Workshop on Graph-based Representations, Italy, 2001.

VF2 supports both vertex and edge-colored graphs, as well as custom vertex or edge compatibility
functions.

VF2 works with both directed and undirected graphs. Only simple graphs are supported. Self-loops
or multi-edges must not be present in the graphs. Currently, the VF2 functions do not check that the
input graph is simple: it is the responsibility of the user to pass in valid input.

igraph_isomorphic_vf2 — Isomorphism via VF2.

igraph_error_t igraph_isomorphic_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_bool_t *iso, igraph_vector_int_t *map12,
 igraph_vector_int_t *map21,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function performs the VF2 algorithm via calling igraph_get_isomorphism-
s_vf2_callback().

Note that this function cannot be used for deciding subgraph isomorphism, use igraph_subiso-
morphic_vf2() for that.

Arguments:

graph1: The first graph, may be directed or undirected.

graph2: The second graph. It must have the same directedness as graph1, otherwise
an error is reported.

510

Graph isomorphism

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two
vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

iso: Pointer to a logical constant, the result of the algorithm will be placed here.

map12: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer
then the mapping from graph1 to graph2 is stored here. If the graphs are
not isomorphic then the vector is cleared (i.e. has zero elements).

map21: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer
then the mapping from graph2 to graph1 is stored here. If the graphs are
not isomorphic then the vector is cleared (i.e. has zero elements).

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

See also:

igraph_subisomorphic_vf2(), igraph_count_isomorphisms_vf2(),
igraph_get_isomorphisms_vf2(),

Time complexity: exponential, what did you expect?

Example 17.1. File examples/simple/igraph_isomorphic_vf2.c

igraph_count_isomorphisms_vf2 — Number of iso-
morphisms via VF2.

igraph_error_t igraph_count_isomorphisms_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_integer_t *count,

511

Graph isomorphism

 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function counts the number of isomorphic mappings between two graphs. It uses the generic
igraph_get_isomorphisms_vf2_callback() function.

Arguments:

graph1: The first input graph, may be directed or undirected.

graph2: The second input graph, it must have the same directedness as graph1, or
an error will be reported.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two
vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

count: Point to an integer, the result will be stored here.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

See also:

igraph_count_automorphisms()

Time complexity: exponential.

igraph_get_isomorphisms_vf2 — Collect all iso-
morphic mappings of two graphs.

igraph_error_t igraph_get_isomorphisms_vf2(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,

512

Graph isomorphism

 const igraph_vector_int_t *edge_color2,
 igraph_vector_int_list_t *maps,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function finds all the isomorphic mappings between two simple graphs. It uses the
igraph_get_isomorphisms_vf2_callback() function. Call the function with the same
graph as graph1 and graph2 to get automorphisms.

Arguments:

graph1: The first input graph, may be directed or undirected.

graph2: The second input graph, it must have the same directedness as graph1, or
an error will be reported.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two
vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

maps: Pointer to a list of integer vectors. On return it is empty if the input
graphs are not isomorphic. Otherwise it contains pointers to igraph_vec-
tor_int_t objects, each vector is an isomorphic mapping of graph2 to
graph1.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_get_isomorphisms_vf2_callback — The
generic VF2 interface

igraph_error_t igraph_get_isomorphisms_vf2_callback(
 const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1, const igraph_vector_int_t *vertex_color2,

513

Graph isomorphism

 const igraph_vector_int_t *edge_color1, const igraph_vector_int_t *edge_color2,
 igraph_vector_int_t *map12, igraph_vector_int_t *map21,
 igraph_isohandler_t *isohandler_fn, igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn, void *arg
);

This function is an implementation of the VF2 isomorphism algorithm, see P. Foggia, C. Sansone, M.
Vento, An Improved algorithm for matching large graphs, Proc. of the 3rd IAPR-TC-15 International
Workshop on Graph-based Representations, Italy, 2001.

For using it you need to define a callback function of type igraph_isohandler_t. This function
will be called whenever VF2 finds an isomorphism between the two graphs. The mapping between
the two graphs will be also provided to this function. If the callback returns IGRAPH_SUCCESS, then
the search is continued, otherwise it stops. IGRAPH_STOP as a return value can be used to indicate
normal premature termination; any other return value will be treated as an igraph error code, making
the caller function return the same error code as well. The callback function must not destroy the
mapping vectors that are passed to it.

Arguments:

graph1: The first input graph.

graph2: The second input graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two
vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

map12: Pointer to an initialized vector or NULL. If not NULL and the supplied graphs
are isomorphic then the permutation taking graph1 to graph is stored here.
If not NULL and the graphs are not isomorphic then a zero-length vector is
returned.

map21: This is the same as map12, but for the permutation taking graph2 to
graph1.

isohandler_fn: The callback function to be called if an isomorphism is found. See also
igraph_isohandler_t.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions isohandler_fn, node_com-
pat_fn and edge_compat_fn.

Returns:

514

Graph isomorphism

Error code.

Time complexity: exponential.

igraph_isohandler_t — Callback type, called when
an isomorphism was found

typedef igraph_error_t igraph_isohandler_t(const igraph_vector_int_t *map12,
 const igraph_vector_int_t *map21, void *arg);

See the details at the documentation of igraph_get_isomorphisms_vf2_callback().

Arguments:

map12: The mapping from the first graph to the second.

map21: The mapping from the second graph to the first, the inverse of map12 basically.

arg: This extra argument was passed to igraph_get_isomorphisms_vf2_call-
back() when it was called.

Returns:

IGRAPH_SUCCESS to continue the search, IGRAPH_STOP to terminate the search. Any other
return value is interpreted as an igraph error code, which will then abort the search and return the
same error code from the caller function.

igraph_isocompat_t — Callback type, called to
check whether two vertices or edges are compatible

typedef igraph_bool_t igraph_isocompat_t(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_integer_t g1_num,
 const igraph_integer_t g2_num,
 void *arg);

VF2 (subgraph) isomorphism functions can be restricted by defining relations on the vertices and/or
edges of the graphs, and then checking whether the vertices (edges) match according to these relations.

This feature is implemented by two callbacks, one for vertices, one for edges. Every time igraph tries
to match a vertex (edge) of the first (sub)graph to a vertex of the second graph, the vertex (edge)
compatibility callback is called. The callback returns a logical value, giving whether the two vertices
match.

Both callback functions are of type igraph_isocompat_t.

Arguments:

graph1: The first graph.

graph2: The second graph.

g1_num: The id of a vertex or edge in the first graph.

515

Graph isomorphism

g2_num: The id of a vertex or edge in the second graph.

arg: Extra argument to pass to the callback functions.

Returns:

Logical scalar, whether vertex (or edge) g1_num in graph1 is compatible with vertex (or edge)
g2_num in graph2.

igraph_subisomorphic_vf2 — Decide subgraph
isomorphism using VF2

igraph_error_t igraph_subisomorphic_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_bool_t *iso, igraph_vector_int_t *map12,
 igraph_vector_int_t *map21,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

Decides whether a subgraph of graph1 is isomorphic to graph2. It uses igraph_get_subi-
somorphisms_vf2_callback().

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be
the larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This
is supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs;
i.e. two vertices can match only if their color also matches. Supply a null
pointer here if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

iso: Pointer to a boolean. The result of the decision problem is stored here.

map12: Pointer to a vector or NULL. If not NULL, then an isomorphic mapping from
graph1 to graph2 is stored here.

map21: Pointer to a vector ot NULL. If not NULL, then an isomorphic mapping from
graph2 to graph1 is stored here.

516

Graph isomorphism

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_count_subisomorphisms_vf2 — Number of
subgraph isomorphisms using VF2

igraph_error_t igraph_count_subisomorphisms_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_integer_t *count,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

Count the number of isomorphisms between subgraphs of graph1 and graph2. This function uses
igraph_get_subisomorphisms_vf2_callback().

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be
the larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This
is supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs;
i.e. two vertices can match only if their color also matches. Supply a null
pointer here if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

count: Pointer to an integer. The number of subgraph isomorphisms is stored here.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

517

Graph isomorphism

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_get_subisomorphisms_vf2 — Return all
subgraph isomorphic mappings.

igraph_error_t igraph_get_subisomorphisms_vf2(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_vector_int_list_t *maps,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function collects all isomorphic mappings of graph2 to a subgraph of graph1. It uses the
igraph_get_subisomorphisms_vf2_callback() function. The graphs should be simple.

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be
the larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This
is supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs;
i.e. two vertices can match only if their color also matches. Supply a null
pointer here if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

maps: Pointer to a list of integer vectors. On return it contains pointers to
igraph_vector_int_t objects, each vector is an isomorphic mapping
of graph2 to a subgraph of graph1.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

518

Graph isomorphism

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_get_subisomorphisms_vf2_callback —
Generic VF2 function for subgraph isomorphism prob-
lems.

igraph_error_t igraph_get_subisomorphisms_vf2_callback(
 const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1, const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1, const igraph_vector_int_t *edge_color2,
 igraph_vector_int_t *map12, igraph_vector_int_t *map21,
 igraph_isohandler_t *isohandler_fn, igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn, void *arg
);

This function is the pair of igraph_get_isomorphisms_vf2_callback(), for subgraph iso-
morphism problems. It searches for subgraphs of graph1 which are isomorphic to graph2. When
it founds an isomorphic mapping it calls the supplied callback isohandler_fn. The mapping (and
its inverse) and the additional arg argument are supplied to the callback.

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be
the larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This
is supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs;
i.e. two vertices can match only if their color also matches. Supply a null
pointer here if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument
for explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the
two graphs must have matching colors as well. Supply a null pointer here if
your graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

map12: Pointer to a vector or NULL. If not NULL, then an isomorphic mapping from
graph1 to graph2 is stored here.

map21: Pointer to a vector ot NULL. If not NULL, then an isomorphic mapping from
graph2 to graph1 is stored here.

519

Graph isomorphism

isohandler_fn: A pointer to a function of type igraph_isohandler_t. This will be
called whenever a subgraph isomorphism is found. If the function returns
IGRAPH_SUCCESS, then the search is continued. If the function returns
IGRAPH_STOP, the search is terminated normally. Any other value is treat-
ed as an igraph error code.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will
be called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions isohandler_fn, node_com-
pat_fn and edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

Deprecated aliases

igraph_isomorphic_function_vf2 — The generic VF2 inter-
face (deprecated alias).

igraph_error_t igraph_isomorphic_function_vf2(
 const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1, const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1, const igraph_vector_int_t *edge_color2,
 igraph_vector_int_t *map12, igraph_vector_int_t *map21,
 igraph_isohandler_t *isohandler_fn, igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn, void *arg
);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_get_isomorphisms_vf2_callback() instead.

igraph_subisomorphic_function_vf2 — Generic VF2 func-
tion for subgraph isomorphism problems (deprecated alias).

igraph_error_t igraph_subisomorphic_function_vf2(
 const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1, const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1, const igraph_vector_int_t *edge_color2,
 igraph_vector_int_t *map12, igraph_vector_int_t *map21,
 igraph_isohandler_t *isohandler_fn, igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn, void *arg
);

520

Graph isomorphism

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_get_subisomorphisms_vf2_callback() instead.

The LAD algorithm
The LAD algorithm can search for a subgraph in a larger graph, or check if two graphs are isomorphic.
See Christine Solnon: AllDifferent-based Filtering for Subgraph Isomorphism. Artificial Intelligence,
174(12-13):850-864, 2010. https://doi.org/10.1016/j.artint.2010.05.002 as well as the homepage of
the LAD library at http://liris.cnrs.fr/csolnon/LAD.html The implementation in igraph is based on
LADv1, but it is modified to use igraph's own memory allocation and error handling.

LAD uses the concept of domains to indicate vertex compatibility when matching the pattern graph.
Domains can be used to implement matching of colored vertices.

LAD works with both directed and undirected graphs. Graphs with multi-edges are not supported.

igraph_subisomorphic_lad — Check subgraph iso-
morphism with the LAD algorithm

igraph_error_t igraph_subisomorphic_lad(const igraph_t *pattern, const igraph_t *target,
 const igraph_vector_int_list_t *domains,
 igraph_bool_t *iso, igraph_vector_int_t *map,
 igraph_vector_int_list_t *maps,
 igraph_bool_t induced, igraph_integer_t time_limit);

Check whether pattern is isomorphic to a subgraph os target. The original LAD implementation
by Christine Solnon was used as the basis of this code.

See more about LAD at http://liris.cnrs.fr/csolnon/LAD.html and in Christine Solnon: AllDiffer-
ent-based Filtering for Subgraph Isomorphism. Artificial Intelligence, 174(12-13):850-864, 2010.
https://doi.org/10.1016/j.artint.2010.05.002

Arguments:

pattern: The smaller graph, it can be directed or undirected.

target: The bigger graph, it can be directed or undirected.

domains: An integer vector list of NULL. The length of each vector must match the number of
vertices in the pattern graph. For each vertex, the IDs of the compatible vertices
in the target graph are listed.

iso: Pointer to a boolean, or a null pointer. If not a null pointer, then the boolean is set
to true if a subgraph isomorphism is found, and to false otherwise.

map: Pointer to a vector or a null pointer. If not a null pointer and a subgraph isomor-
phism is found, the matching vertices from the target graph are listed here, for each
vertex (in vertex ID order) from the pattern graph.

maps: Pointer to a list of integer vectors or a null pointer. If not a null pointer, then all
subgraph isomorphisms are stored in the vector list, in igraph_vector_int_t
objects.

521

https://doi.org/10.1016/j.artint.2010.05.002
http://liris.cnrs.fr/csolnon/LAD.html
http://liris.cnrs.fr/csolnon/LAD.html
https://doi.org/10.1016/j.artint.2010.05.002

Graph isomorphism

induced: Boolean, whether to search for induced matching subgraphs.

time_limit: Processor time limit in seconds. Supply zero here for no limit. If the time limit is
over, then the function signals an error.

Returns:

Error code

See also:

igraph_subisomorphic_vf2() for the VF2 algorithm.

Time complexity: exponential.

Example 17.2. File examples/simple/igraph_subisomorphic_lad.c

Functions for small graphs

igraph_isoclass — Determine the isomorphism
class of small graphs.

igraph_error_t igraph_isoclass(const igraph_t *graph, igraph_integer_t *isoclass);

All graphs with a given number of vertices belong to a number of isomorphism classes, with every
graph in a given class being isomorphic to each other.

This function gives the isomorphism class (a number) of a graph. Two graphs have the same isomor-
phism class if and only if they are isomorphic.

The first isomorphism class is numbered zero and it contains the edgeless graph. The last isomorphism
class contains the full graph. The number of isomorphism classes for directed graphs with three vertices
is 16 (between 0 and 15), for undirected graph it is only 4. For graphs with four vertices it is 218
(directed) and 11 (undirected). For 5 and 6 vertex undirected graphs, it is 34 and 156, respectively.
These values can also be retrieved using igraph_graph_count(). For more information, see
https://oeis.org/A000273 and https://oeis.org/A000088.

At the moment, 3- and 4-vertex directed graphs and 3 to 6 vertex undirected graphs are supported.

Multi-edges and self-loops are ignored by this function.

Arguments:

graph: The graph object.

isoclass: Pointer to an integer, the isomorphism class will be stored here.

Returns:

Error code.

See also:

522

https://oeis.org/A000273
https://oeis.org/A000088

Graph isomorphism

igraph_isomorphic(), igraph_isoclass_subgraph(), igraph_iso-
class_create(), igraph_motifs_randesu().

Because of some limitations this function works only for graphs with three of four vertices.

Time complexity: O(|E|), the number of edges in the graph.

igraph_isoclass_subgraph — The isomorphism
class of a subgraph of a graph.

igraph_error_t igraph_isoclass_subgraph(const igraph_t *graph, const igraph_vector_int_t *vids,
 igraph_integer_t *isoclass);

This function identifies the isomorphism class of the subgraph induced the vertices specified in vids.

At the moment, 3- and 4-vertex directed graphs and 3 to 6 vertex undirected graphs are supported.

Multi-edges and self-loops are ignored by this function.

Arguments:

graph: The graph object.

vids: A vector containing the vertex IDs to be considered as a subgraph. Each vertex ID
should be included at most once.

isoclass: Pointer to an integer, this will be set to the isomorphism class.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isomorphic(), igraph_isoclass_create().

Time complexity: O((d+n)*n), d is the average degree in the network, and n is the number of vertices
in vids.

igraph_isoclass_create — Creates a graph from
the given isomorphism class.

igraph_error_t igraph_isoclass_create(igraph_t *graph, igraph_integer_t size,
 igraph_integer_t number, igraph_bool_t directed);

This function creates the canonical representative graph of the given isomorphism class.

The isomorphism class is an integer between 0 and the number of unique unlabeled (i.e. non-isomor-
phic) graphs on the given number of vertices and give directedness. See https://oeis.org/A000273 and
https://oeis.org/A000088 for the number of directed and undirected graphs on size nodes.

At the moment, 3- and 4-vertex directed graphs and 3 to 6 vertex undirected graphs are supported.

523

https://oeis.org/A000273
https://oeis.org/A000088

Graph isomorphism

Arguments:

graph: Pointer to an uninitialized graph object.

size: The number of vertices to add to the graph.

number: The isomorphism class.

directed: Logical constant, whether to create a directed graph.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isoclass_subgraph(), igraph_isomorphic().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph to create.

igraph_graph_count — The number of unlabelled
graphs on the given number of vertices.

igraph_error_t igraph_graph_count(igraph_integer_t n, igraph_bool_t directed, igraph_integer_t *count);

Gives the number of unlabelled simple graphs on the specified number of vertices. The "isoclass" of
a graph of this size is at most one less than this value.

This function is meant to be used in conjunction with isoclass and motif finder functions. It will only
work for small n values for which the result is represetable in an igraph_integer_t. For larger n values,
an overflow error is raised.

Arguments:

n: The number of vertices.

directed: Boolean, whether to consider directed graphs.

count: Pointer to an integer, the result will be stored here.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_motifs_randesu_callback().

Time complexity: O(1).

Utility functions

igraph_permute_vertices — Permute the vertices.

524

Graph isomorphism

igraph_error_t igraph_permute_vertices(const igraph_t *graph, igraph_t *res,
 const igraph_vector_int_t *permutation);

This function creates a new graph from the input graph by permuting its vertices according to the
specified mapping. Call this function with the output of igraph_canonical_permutation()
to create the canonical form of a graph.

Arguments:

graph: The input graph.

res: Pointer to an uninitialized graph object. The new graph is created here.

permutation: The permutation to apply. Vertex 0 is mapped to the first element of the vector,
vertex 1 to the second, etc.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in terms of the number of vertices and edges.

igraph_simplify_and_colorize — Simplify the
graph and compute self-loop and edge multiplicities.

igraph_error_t igraph_simplify_and_colorize(
 const igraph_t *graph, igraph_t *res,
 igraph_vector_int_t *vertex_color, igraph_vector_int_t *edge_color);

This function creates a vertex and edge colored simple graph from the input graph. The vertex colors
are computed as the number of incident self-loops to each vertex in the input graph. The edge colors
are computed as the number of parallel edges in the input graph that were merged to create each edge
in the simple graph.

The resulting colored simple graph is suitable for use by isomorphism checking algorithms such as
VF2, which only support simple graphs, but can consider vertex and edge colors.

Arguments:

graph: The graph object, typically having self-loops or multi-edges.

res: An uninitialized graph object. The result will be stored here

vertex_color: Computed vertex colors corresponding to self-loop multiplicities.

edge_color: Computed edge colors corresponding to edge multiplicities

Returns:

Error code.

See also:

igraph_simplify(), igraph_isomorphic_vf2(), igraph_subisomor-
phic_vf2()

525

Graph isomorphism

Deprecated functions

igraph_isomorphic_34 — Graph isomorphism for
3-4 vertices (deprecated).

igraph_error_t igraph_isomorphic_34(
 const igraph_t *graph1, const igraph_t *graph2, igraph_bool_t *iso
);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_isomorphic() instead.

If you really care about performance and you know for sure that your input graphs are simple and have
either 3 or 4 vertices for directed graphs, or 3-6 vertices for undirected graphs, you can compare their
isomorphism classes obtained from igraph_isoclass() directly instead of calling igraph_i-
somorphic(); this saves the cost of checking whether the graphs do not contain multiple edges
or self-loops.

Arguments:

graph1: The first input graph.

graph2: The second input graph. Must have the same directedness as graph1.

iso: Pointer to a boolean, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

526

Chapter 18. Graph coloring
igraph_vertex_coloring_greedy — Com-
putes a vertex coloring using a greedy algo-
rithm.

igraph_error_t igraph_vertex_coloring_greedy(const igraph_t *graph, igraph_vector_int_t *colors, igraph_coloring_greedy_t heuristic);

This function assigns a "color"—represented as a non-negative integer—to each vertex of the graph
in such a way that neighboring vertices never have the same color. The obtained coloring is not nec-
essarily minimal.

Vertices are colored greedily, one by one, always choosing the smallest color index that differs from
that of already colored neighbors. Vertices are picked in an order determined by the speified heuristic.
Colors are represented by non-negative integers 0, 1, 2, ...

Arguments:

graph: The input graph.

colors: Pointer to an initialized integer vector. The vertex colors will be stored here.

heuristic: The vertex ordering heuristic to use during greedy coloring. See igraph_color-
ing_greedy_t for more information.

Returns:

Error code.

Example 18.1. File examples/simple/igraph_coloring.c

igraph_coloring_greedy_t — Ordering
heuristics for greedy graph coloring.

typedef enum {
 IGRAPH_COLORING_GREEDY_COLORED_NEIGHBORS = 0,
 IGRAPH_COLORING_GREEDY_DSATUR = 1
} igraph_coloring_greedy_t;

Ordering heuristics for igraph_vertex_coloring_greedy().

Values:

IGRAPH_COL-
ORING_GREEDY_COL-
ORED_NEIGHBORS:

Choose the vertex with largest number of already colored
neighbors.

IGRAPH_COL-
ORING_GREEDY_DSATUR:

Choose the vertex with largest number of unique colors in
its neighborhood, i.e. its "saturation degree". When multi-

527

Graph coloring

ple vertices have the same saturation degree, choose the one
with the most not yet colored neighbors. Added in igraph
0.10.4. This heuristic is known as "DSatur", and was pro-
posed in Daniel Brélaz: New methods to color the vertices
of a graph, Commun. ACM 22, 4 (1979), 251–256. https://
doi.org/10.1145/359094.359101

igraph_is_perfect — Checks if the graph
is perfect.

igraph_error_t igraph_is_perfect(const igraph_t *graph, igraph_bool_t *perfect);

A perfect graph is an undirected graph in which the chromatic number of every induced subgraph
equals the order of the largest clique of that subgraph. The chromatic number of a graph G is the
smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the
same color.

Warning: This function may create the complement of the graph internally, which consumes a lot of
memory. For moderately sized graphs, consider decomposing them into biconnected components and
running the check separately on each component.

This implementation is based on the strong perfect graph theorem which was conjectured by Claude
Berge and proved by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas.

Arguments:

graph: The input graph. It is expected to be undirected and simple.

perfect: Pointer to an integer, the result will be stored here.

Returns:

Error code.

Time complexity: worst case exponenital, often faster in practice.

528

https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/359094.359101

Chapter 19. Graph motifs, dyad
census and triad census

This section deals with functions which find small induced subgraphs in a graph. These were first
defined for subgraphs of two and three vertices by Holland and Leinhardt, and named dyad census
and triad census.

igraph_dyad_census — Dyad census, as
defined by Holland and Leinhardt.

igraph_error_t igraph_dyad_census(const igraph_t *graph, igraph_real_t *mut,
 igraph_real_t *asym, igraph_real_t *null);

Dyad census means classifying each pair of vertices of a directed graph into three categories: mutual
(there is at least one edge from a to b and also from b to a); asymmetric (there is at least one edge
either from a to b or from b to a, but not the other way) and null (no edges between a and b in either
direction).

Holland, P.W. and Leinhardt, S. (1970). A Method for Detecting Structure in Sociometric Data. Amer-
ican Journal of Sociology, 70, 492-513.

Arguments:

graph: The input graph. For an undirected graph, there are no asymmetric connections.

mut: Pointer to a real, the number of mutual dyads is stored here.

asym: Pointer to a real, the number of asymmetric dyads is stored here.

null: Pointer to a real, the number of null dyads is stored here.

Returns:

Error code.

See also:

igraph_reciprocity(), igraph_triad_census().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_triad_census — Triad census, as
defined by Davis and Leinhardt.

igraph_error_t igraph_triad_census(const igraph_t *graph, igraph_vector_t *res);

Calculating the triad census means classifying every triple of vertices in a directed graph based on the
type of pairwise connections it contains, i.e. mutual, asymmetric or no connection. A triple can be in

529

Graph motifs, dyad cen-
sus and triad census

one of 16 states, commonly described using Davis and Leinhardt's "MAN labels". The res vector
will contain the counts of these in the following order:

 0: 003 A, B, C, the empty graph.

 1: 012 A->B, C, a graph with a single directed edge.

 2: 102 A<->B, C, a graph with a mutual connection between two vertices.

 3: 021D A<-B->C, the binary out-tree.

 4: 021U A->B<-C, the binary in-tree.

 5: 021C A->B->C, the directed line.

 6: 111D A<->B<-C.

 7: 111U A<->B->C.

 8: 030T A->B<-C, A->C.

 9: 030C A<-B<-C, A->C.

10: 201 A<->B<->C.

11: 120D A<-B->C, A<->C.

12: 120U A->B<-C, A<->C.

13: 120C A->B->C, A<->C.

14: 210 A->B<->C, A<->C.

15: 300 A<->B<->C, A<->C, the complete graph.

This function is intended for directed graphs. If the input is undirected, a warning is shown, and undi-
rected edges will be interpreted as mutual.

This function calls igraph_motifs_randesu() which is an implementation of the FANMOD
motif finder tool, see igraph_motifs_randesu() for details. Note that the order of the triads is
not the same for igraph_triad_census() and igraph_motifs_randesu().

References:

Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in Small
Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218-251. Boston: Houghton
Mifflin.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here in the same order as given in the
list above. Note that this order is different than the one used by igraph_motifs_ran-
desu().

Returns:

Error code.

See also:

530

Graph motifs, dyad cen-
sus and triad census

igraph_motifs_randesu(), igraph_dyad_census().

Time complexity: TODO.

Finding triangles

igraph_adjacent_triangles — Count the number
of triangles a vertex is part of.

igraph_error_t igraph_adjacent_triangles(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vs_t vids);

Arguments:

graph: The input graph. Edge directions and multiplicities are ignored.

res: Initiliazed vector, the results are stored here.

vids: The vertices to perform the calculation for.

Returns:

Error mode.

See also:

igraph_list_triangles() to list them.

Time complexity: O(d^2 n), d is the average vertex degree of the queried vertices, n is their number.

igraph_list_triangles — Find all triangles in a
graph.

igraph_error_t igraph_list_triangles(const igraph_t *graph,
 igraph_vector_int_t *res);

The triangles are reported as a long list of vertex ID triplets. Use the int variant of igraph_ma-
trix_view_from_vector() to create a matrix view into the vector where each triangle is stored
in a column of the matrix (see the example).

Arguments:

graph: The input graph, edge directions are ignored. Multiple edges are ignored.

res: Pointer to an initialized integer vector, the result is stored here, in a long list of triples of
vertex IDs. Each triple is a triangle in the graph. Each triangle is listed exactly once.

Returns:

531

Graph motifs, dyad cen-
sus and triad census

Error code.

See also:

igraph_transitivity_undirected() to count the triangles, igraph_adjacen-
t_triangles() to count the triangles a vertex participates in.

Time complexity: O(d^2 n), d is the average degree, n is the number of vertices.

Example 19.1. File examples/simple/igraph_list_triangles.c

Graph motifs

igraph_motifs_randesu — Count the number of mo-
tifs in a graph.

igraph_error_t igraph_motifs_randesu(const igraph_t *graph, igraph_vector_t *hist,
 igraph_integer_t size, const igraph_vector_t *cut_prob);

Motifs are small weakly connected induced subgraphs of a given structure in a graph. It is argued that
the motif profile (i.e. the number of different motifs in the graph) is characteristic for different types
of networks and network function is related to the motifs in the graph.

This function is able to find directed motifs of sizes three and four and undirected motifs of sizes three
to six (i.e. the number of different subgraphs with three to six vertices in the network).

In a big network the total number of motifs can be very large, so it takes a lot of time to find all of
them. In this case, a sampling method can be used. This function is capable of doing sampling via the
cut_prob argument. This argument gives the probability that a branch of the motif search tree will
not be explored. See S. Wernicke and F. Rasche: FANMOD: a tool for fast network motif detection,
Bioinformatics 22(9), 1152--1153, 2006 for details. https://doi.org/10.1093/bioinformatics/btl038

Set the cut_prob argument to a zero vector for finding all motifs.

Directed motifs will be counted in directed graphs and undirected motifs in undirected graphs.

Arguments:

graph: The graph to find the motifs in.

hist: The result of the computation, it gives the number of motifs found for each isomor-
phism class. See igraph_isoclass() for help about isomorphism classes. Note
that this function does not count isomorphism classes that are not connected and will
report NaN (more precisely IGRAPH_NAN) for them.

size: The size of the motifs to search for. For directed graphs, only 3 and 4 are implemented,
for undirected, 3 to 6. The limitation is not in the motif finding code, but the graph
isomorphism code.

cut_prob: Vector of probabilities for cutting the search tree at a given level. The first element is
the first level, etc. Supply all zeros here (of length size) to find all motifs in a graph.

Returns:

532

https://doi.org/10.1093/bioinformatics/btl038

Graph motifs, dyad cen-
sus and triad census

Error code.

See also:

igraph_motifs_randesu_estimate() for estimating the number of motifs in a graph, this
can help to set the cut_prob parameter; igraph_motifs_randesu_no() to calculate the
total number of motifs of a given size in a graph; igraph_motifs_randesu_callback()
for calling a callback function for every motif found; igraph_subisomorphic_lad() for
finding subgraphs on more than 4 (directed) or 6 (undirected) vertices; igraph_graph_coun-
t() to find the number of graph on a given number of vertices, i.e. the length of the hist vector.

Time complexity: TODO.

Example 19.2. File examples/simple/igraph_motifs_randesu.c

igraph_motifs_randesu_no — Count the total num-
ber of motifs in a graph.

igraph_error_t igraph_motifs_randesu_no(const igraph_t *graph, igraph_integer_t *no,
 igraph_integer_t size, const igraph_vector_t *cut_prob);

This function counts the total number of (weakly) connected induced subgraphs on size vertices,
without assigning isomorphism classes to them. Arbitrarily large motif sizes are supported.

Arguments:

graph: The graph object to study.

no: Pointer to an integer type, the result will be stored here.

size: The size of the motifs to count.

cut_prob: Vector giving the probabilities that a branch of the search tree will be cut at a given
level.

Returns:

Error code.

See also:

igraph_motifs_randesu(), igraph_motifs_randesu_estimate().

Time complexity: TODO.

igraph_motifs_randesu_estimate — Estimate the
total number of motifs in a graph.

igraph_error_t igraph_motifs_randesu_estimate(const igraph_t *graph, igraph_integer_t *est,
 igraph_integer_t size, const igraph_vector_t *cut_prob,
 igraph_integer_t sample_size,

533

Graph motifs, dyad cen-
sus and triad census

 const igraph_vector_int_t *parsample);

This function estimates the total number of (weakly) connected induced subgraphs on size vertices.
For example, an undirected complete graph on n vertices will have one motif of size n, and n motifs of
size n - 1. As another example, one triangle and a separate vertex will have zero motifs of size four.

This function is useful for large graphs for which it is not feasible to count all connected subgraphs,
as there are too many of them.

The estimate is made by taking a sample of vertices and counting all connected subgraphs in which
these vertices are included. There is also a cut_prob parameter which gives the probabilities to cut
a branch of the search tree.

Arguments:

graph: The graph object to study.

est: Pointer to an integer, the result will be stored here.

size: The size of the subgraphs to look for.

cut_prob: Vector giving the probabilities to cut a branch of the search tree and omit counting
the motifs in that branch. It contains a probability for each level. Supply size
zeros here to count all the motifs in the sample.

sample_size: The number of vertices to use as the sample. This parameter is only used if the
parsample argument is a null pointer.

parsample: Either pointer to an initialized vector or a null pointer. If a vector then the vertex
IDs in the vector are used as a sample. If a null pointer then the sample_size
argument is used to create a sample of vertices drawn with uniform probability.

Returns:

Error code.

See also:

igraph_motifs_randesu(), igraph_motifs_randesu_no().

Time complexity: TODO.

igraph_motifs_randesu_callback — Finds motifs
in a graph and calls a function for each of them.

igraph_error_t igraph_motifs_randesu_callback(const igraph_t *graph, igraph_integer_t size,
 const igraph_vector_t *cut_prob, igraph_motifs_handler_t *callback,
 void* extra);

Similarly to igraph_motifs_randesu(), this function is able to find directed motifs of sizes
three and four and undirected motifs of sizes three to six (i.e. the number of different subgraphs with
three to six vertices in the network). However, instead of counting them, the function will call a call-
back function for each motif found to allow further tests or post-processing.

The cut_prob argument also allows sampling the motifs, just like for igraph_motifs_ran-
desu(). Set the cut_prob argument to a zero vector for finding all motifs.

534

Graph motifs, dyad cen-
sus and triad census

Arguments:

graph: The graph to find the motifs in.

size: The size of the motifs to search for. Only three and four are implemented currently.
The limitation is not in the motif finding code, but the graph isomorphism code.

cut_prob: Vector of probabilities for cutting the search tree at a given level. The first element is
the first level, etc. Supply all zeros here (of length size) to find all motifs in a graph.

callback: A pointer to a function of type igraph_motifs_handler_t. This function will
be called whenever a new motif is found.

extra: Extra argument to pass to the callback function.

Returns:

Error code.

Time complexity: TODO.

Example 19.3. File examples/simple/igraph_motifs_randesu.c

igraph_motifs_handler_t — Callback type for
igraph_motifs_randesu_callback.

typedef igraph_error_t igraph_motifs_handler_t(const igraph_t *graph,
 igraph_vector_int_t *vids,
 igraph_integer_t isoclass,
 void* extra);

igraph_motifs_randesu_callback() calls a specified callback function whenever a new
motif is found during a motif search. This callback function must be of type igraph_motifs_han-
dler_t. It has the following arguments:

Arguments:

graph: The graph that that algorithm is working on. Of course this must not be modified.

vids: The IDs of the vertices in the motif that has just been found. This vector is owned by
the motif search algorithm, so do not modify or destroy it; make a copy of it if you
need it later.

isoclass: The isomorphism class of the motif that has just been found. Use
igraph_graph_count() to find the maximum possible isoclass for graphs of
a given size. See igraph_isoclass and igraph_isoclass_subgraph for
more information.

extra: The extra argument that was passed to igraph_motifs_randesu_call-
back().

Returns:

IGRAPH_SUCCESS to continue the motif search, IGRAPH_STOP to stop the motif search and
return to the caller normally. Any other return value is interpreted as an igraph error code, which
will terminate the search and return the same error code to the caller.

535

Graph motifs, dyad cen-
sus and triad census

See also:

igraph_motifs_randesu_callback()

536

Chapter 20. Generating layouts for
graph drawing
2D layout generators

Layout generator functions (or at least most of them) try to place the vertices and edges of a graph on
a 2D plane or in 3D space in a way which visually pleases the human eye.

They take a graph object and a number of parameters as arguments and return an igraph_matrix_t, in
which each row gives the coordinates of a vertex.

igraph_layout_random — Places the vertices uni-
form randomly on a plane.

igraph_error_t igraph_layout_random(const igraph_t *graph, igraph_matrix_t *res);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

Returns:

Error code. The current implementation always returns with success.

Time complexity: O(|V|), the number of vertices.

igraph_layout_circle — Places the vertices uni-
formly on a circle in arbitrary order.

igraph_error_t igraph_layout_circle(const igraph_t *graph, igraph_matrix_t *res,
 igraph_vs_t order);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

order: The order of the vertices on the circle. The vertices not included here, will be placed at
(0,0). Supply igraph_vss_all() here to place vertices in the order of their vertex IDs.

Returns:

Error code.

537

Generating layouts
for graph drawing

Time complexity: O(|V|), the number of vertices.

igraph_layout_star — Generates a star-like layout.

igraph_error_t igraph_layout_star(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t center, const igraph_vector_int_t *order);

Arguments:

graph: The input graph. Its edges are ignored by this function.

res: Pointer to an initialized matrix object. This will contain the result and will be resized
as needed.

center: The id of the vertex to put in the center. You can set it to any arbitrary value for the
special case when the input graph has no vertices; otherwise it must be between 0 and
the number of vertices minus 1.

order: A numeric vector giving the order of the vertices (including the center vertex!). If a null
pointer, then the vertices are placed in increasing vertex ID order.

Returns:

Error code.

Time complexity: O(|V|), linear in the number of vertices.

See also:

igraph_layout_circle() and other layout generators.

igraph_layout_grid — Places the vertices on a reg-
ular grid on the plane.

igraph_error_t igraph_layout_grid(const igraph_t *graph, igraph_matrix_t *res, igraph_integer_t width);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

width: The number of vertices in a single row of the grid. When zero or negative, the width of the
grid will be the square root of the number of vertices, rounded up if needed.

Returns:

Error code. The current implementation always returns with success.

Time complexity: O(|V|), the number of vertices.

538

Generating layouts
for graph drawing

igraph_layout_graphopt — Optimizes vertex layout
via the graphopt algorithm.

igraph_error_t igraph_layout_graphopt(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t niter,
 igraph_real_t node_charge, igraph_real_t node_mass,
 igraph_real_t spring_length,
 igraph_real_t spring_constant,
 igraph_real_t max_sa_movement,
 igraph_bool_t use_seed);

This is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt version 0.4.1 was rewrit-
ten in C, the support for layers was removed and the code was reorganized to avoid some unnecessary
steps when the node charge (see below) is zero.

Graphopt uses physical analogies for defining attracting and repelling forces among the vertices and
then the physical system is simulated until it reaches an equilibrium. (There is no simulated annealing
or anything like that, so a stable fixed point is not guaranteed.)

See also http://www.schmuhl.org/graphopt/ for the original graphopt.

Arguments:

graph: The input graph.

res: Pointer to an initialized matrix, the result will be stored here and its initial
contents are used as the starting point of the simulation if the use_seed
argument is true. Note that in this case the matrix should have the proper
size, otherwise a warning is issued and the supplied values are ignored. If
no starting positions are given (or they are invalid) then a random starting
position is used. The matrix will be resized if needed.

niter: Integer constant, the number of iterations to perform. Should be a couple of
hundred in general. If you have a large graph then you might want to only
do a few iterations and then check the result. If it is not good enough you can
feed it in again in the res argument. The original graphopt default is 500.

node_charge: The charge of the vertices, used to calculate electric repulsion. The original
graphopt default is 0.001.

node_mass: The mass of the vertices, used for the spring forces. The original graphopt
defaults to 30.

spring_length: The length of the springs. The original graphopt defaults to zero.

spring_constant: The spring constant, the original graphopt defaults to one.

max_sa_movement: Real constant, it gives the maximum amount of movement allowed in a
single step along a single axis. The original graphopt default is 5.

use_seed: Logical scalar, whether to use the positions in res as a starting configura-
tion. See also res above.

Returns:

Error code.

539

http://www.schmuhl.org/graphopt/

Generating layouts
for graph drawing

Time complexity: O(n (|V|^2+|E|)), n is the number of iterations, |V| is the number of vertices, |E| the
number of edges. If node_charge is zero then it is only O(n|E|).

igraph_layout_bipartite — Simple layout for bi-
partite graphs.

igraph_error_t igraph_layout_bipartite(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_matrix_t *res, igraph_real_t hgap,
 igraph_real_t vgap, igraph_integer_t maxiter);

The layout is created by first placing the vertices in two rows, according to their types. Then the
positions within the rows are optimized to minimize edge crossings, by calling igraph_lay-
out_sugiyama().

Arguments:

graph: The input graph.

types: A boolean vector containing ones and zeros, the vertex types. Its length must match the
number of vertices in the graph.

res: Pointer to an initialized matrix, the result, the x and y coordinates are stored here.

hgap: The preferred minimum horizontal gap between vertices in the same layer (i.e. vertices
of the same type).

vgap: The distance between layers.

maxiter: Maximum number of iterations in the crossing minimization stage. 100 is a reasonable
default; if you feel that you have too many edge crossings, increase this.

Returns:

Error code.

See also:

igraph_layout_sugiyama().

The DrL layout generator
DrL is a sophisticated layout generator developed and implemented by Shawn Martin et al. As of
October 2012 the original DrL homepage is unfortunately not available. You can read more about this
algorithm in the following technical report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W.,
DrL: Distributed Recursive (Graph) Layout. SAND Reports, 2008. 2936: p. 1-10.

Only a subset of the complete DrL functionality is included in igraph, parallel runs and recursive,
multi-level layouting is not supported.

The parameters of the layout are stored in an igraph_layout_drl_options_t structure, this
can be initialized by calling the function igraph_layout_drl_options_init(). The fields
of this structure can then be adjusted by hand if needed. The layout is calculated by an igraph_lay-
out_drl() call.

540

Generating layouts
for graph drawing

igraph_layout_drl_options_t — Parameters for the DrL lay-
out generator

typedef struct igraph_layout_drl_options_t {
 igraph_real_t edge_cut;
 igraph_integer_t init_iterations;
 igraph_real_t init_temperature;
 igraph_real_t init_attraction;
 igraph_real_t init_damping_mult;
 igraph_integer_t liquid_iterations;
 igraph_real_t liquid_temperature;
 igraph_real_t liquid_attraction;
 igraph_real_t liquid_damping_mult;
 igraph_integer_t expansion_iterations;
 igraph_real_t expansion_temperature;
 igraph_real_t expansion_attraction;
 igraph_real_t expansion_damping_mult;
 igraph_integer_t cooldown_iterations;
 igraph_real_t cooldown_temperature;
 igraph_real_t cooldown_attraction;
 igraph_real_t cooldown_damping_mult;
 igraph_integer_t crunch_iterations;
 igraph_real_t crunch_temperature;
 igraph_real_t crunch_attraction;
 igraph_real_t crunch_damping_mult;
 igraph_integer_t simmer_iterations;
 igraph_real_t simmer_temperature;
 igraph_real_t simmer_attraction;
 igraph_real_t simmer_damping_mult;
} igraph_layout_drl_options_t;

Values:

edge_cut: The edge cutting parameter. Edge cutting is done in the late
stages of the algorithm in order to achieve less dense layouts.
Edges are cut if there is a lot of stress on them (a large value
in the objective function sum). The edge cutting parameter is a
value between 0 and 1 with 0 representing no edge cutting and 1
representing maximal edge cutting. The default value is 32/40.

init_iterations: Number of iterations, initial phase.

init_temperature: Start temperature, initial phase.

init_attraction: Attraction, initial phase.

init_damping_mult: Damping factor, initial phase.

liquid_iterations: Number of iterations in the liquid phase.

liquid_temperature: Start temperature in the liquid phase.

liquid_attraction: Attraction in the liquid phase.

liquid_damping_mult: Multiplicatie damping factor, liquid phase.

541

Generating layouts
for graph drawing

expansion_iterations: Number of iterations in the expansion phase.

expansion_temperature: Start temperature in the expansion phase.

expansion_attraction: Attraction, expansion phase.

expansion_damping_mult: Damping factor, expansion phase.

cooldown_iterations: Number of iterations in the cooldown phase.

cooldown_temperature: Start temperature in the cooldown phase.

cooldown_attraction: Attraction in the cooldown phase.

cooldown_damping_mult: Damping fact int the cooldown phase.

crunch_iterations: Number of iterations in the crunch phase.

crunch_temperature: Start temperature in the crunch phase.

crunch_attraction: Attraction in the crunch phase.

crunch_damping_mult: Damping factor in the crunch phase.

simmer_iterations: Number of iterations in the simmer phase.

simmer_temperature: Start temperature in te simmer phase.

simmer_attraction: Attraction in the simmer phase.

simmer_damping_mult: Multiplicative damping factor in the simmer phase.

igraph_layout_drl_default_t — Predefined parameter tem-
plates for the DrL layout generator

typedef enum { IGRAPH_LAYOUT_DRL_DEFAULT = 0,
 IGRAPH_LAYOUT_DRL_COARSEN,
 IGRAPH_LAYOUT_DRL_COARSEST,
 IGRAPH_LAYOUT_DRL_REFINE,
 IGRAPH_LAYOUT_DRL_FINAL
 } igraph_layout_drl_default_t;

These constants can be used to initialize a set of DrL parameters. These can then be modified according
to the user's needs.

Values:

IGRAPH_LAYOUT_DRL_DE-
FAULT:

The deafult parameters.

IGRAPH_LAYOUT_DR-
L_COARSEN:

Slightly modified parameters to get a coarser layout.

IGRAPH_LAYOUT_DR-
L_COARSEST:

An even coarser layout.

IGRAPH_LAYOUT_DRL_RE-
FINE:

Refine an already calculated layout.

542

Generating layouts
for graph drawing

IGRAPH_LAYOUT_DRL_FINAL: Finalize an already refined layout.

igraph_layout_drl_options_init — Initialize parameters for
the DrL layout generator

igraph_error_t igraph_layout_drl_options_init(igraph_layout_drl_options_t *options,
 igraph_layout_drl_default_t templ);

This function can be used to initialize the struct holding the parameters for the DrL layout generator.
There are a number of predefined templates available, it is a good idea to start from one of these by
modifying some parameters.

Arguments:

options: The struct to initialize.

templ: The template to use. Currently the following templates are sup-
plied: IGRAPH_LAYOUT_DRL_DEFAULT, IGRAPH_LAYOUT_DRL_COARSEN,
IGRAPH_LAYOUT_DRL_COARSEST, IGRAPH_LAYOUT_DRL_REFINE and
IGRAPH_LAYOUT_DRL_FINAL.

Returns:

Error code.

Time complexity: O(1).

igraph_layout_drl — The DrL layout generator

igraph_error_t igraph_layout_drl(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed,
 const igraph_layout_drl_options_t *options,
 const igraph_vector_t *weights);

This function implements the force-directed DrL layout generator. Please see more in the following
technical report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL: Distributed Recursive
(Graph) Layout. SAND Reports, 2008. 2936: p. 1-10.

Arguments:

graph: The input graph.

use_seed: Logical scalar, if true, then the coordinates supplied in the res argument are used as
starting points.

res: Pointer to a matrix, the result layout is stored here. It will be resized as needed.

options: The parameters to pass to the layout generator.

weights: Edge weights, pointer to a vector. If this is a null pointer then every edge will have
the same weight.

Returns:

543

Generating layouts
for graph drawing

Error code.

Time complexity: ???.

igraph_layout_drl_3d — The DrL layout generator, 3d version.

igraph_error_t igraph_layout_drl_3d(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed,
 const igraph_layout_drl_options_t *options,
 const igraph_vector_t *weights);

This function implements the force-directed DrL layout generator. Please see more in the technical
report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL: Distributed Recursive (Graph)
Layout. SAND Reports, 2008. 2936: p. 1-10.

This function uses a modified DrL generator that does the layout in three dimensions.

Arguments:

graph: The input graph.

use_seed: Logical scalar, if true, then the coordinates supplied in the res argument are used as
starting points.

res: Pointer to a matrix, the result layout is stored here. It will be resized as needed.

options: The parameters to pass to the layout generator.

weights: Edge weights, pointer to a vector. If this is a null pointer then every edge will have
the same weight.

Returns:

Error code.

Time complexity: ???.

See also:

igraph_layout_drl() for the standard 2d version.

igraph_layout_fruchterman_reingold — Places
the vertices on a plane according to the Fruchter-
man-Reingold algorithm.

igraph_error_t igraph_layout_fruchterman_reingold(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_bool_t use_seed,
 igraph_integer_t niter,
 igraph_real_t start_temp,
 igraph_layout_grid_t grid,
 const igraph_vector_t *weights,
 const igraph_vector_t *minx,

544

Generating layouts
for graph drawing

 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy);

This is a force-directed layout that simulates an attractive force f_a between connected vertex pairs
and a repulsive force f_r between all vertex pairs. The forces are computed as a function of the
distance d between the two vertices as

f_a(d) = -w * d^2 and f_r(d) = 1/d,

where w represents the edge weight. The equilibrium distance of two connected vertices is thus 1/
w^3, assuming no other forces acting on them.

In disconnected graphs, igraph effectively inserts a weak connection of weight n^(-3/2) between
all pairs of vertices, where n is the vertex count. This ensures that components are kept near each other.

Reference:

Fruchterman, T.M.J. and Reingold, E.M.: Graph Drawing by Force-directed Placement. Software --
Practice and Experience, 21/11, 1129--1164, 1991. https://doi.org/10.1002/spe.4380211102

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be re-
sized as needed.

use_seed: Logical, if true the supplied values in the res argument are used as an initial layout,
if false a random initial layout is used.

niter: The number of iterations to do. A reasonable default value is 500.

start_temp: Start temperature. This is the maximum amount of movement allowed along one
axis, within one step, for a vertex. Currently it is decreased linearly to zero during
the iteration.

grid: Whether to use the (fast but less accurate) grid based version of the algo-
rithm. Possible values: IGRAPH_LAYOUT_GRID, IGRAPH_LAYOUT_NOGRID,
IGRAPH_LAYOUT_AUTOGRID. The last one uses the grid based version only for
large graphs, currently the ones with more than 1000 vertices.

weights: Pointer to a vector containing edge weights, the attraction along the edges will be
multiplied by these. Weights must be positive. It will be ignored if it is a null-
pointer.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives
the minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives
the minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

Returns:

Error code.

Time complexity: O(|V|^2) in each iteration, |V| is the number of vertices in the graph.

545

https://doi.org/10.1002/spe.4380211102

Generating layouts
for graph drawing

igraph_layout_kamada_kawai — Places the ver-
tices on a plane according to the Kamada-Kawai algo-
rithm.

igraph_error_t igraph_layout_kamada_kawai(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed, igraph_integer_t maxiter,
 igraph_real_t epsilon, igraph_real_t kkconst,
 const igraph_vector_t *weights,
 const igraph_vector_t *minx, const igraph_vector_t *maxx,
 const igraph_vector_t *miny, const igraph_vector_t *maxy);

This is a force-directed layout. A spring is inserted between all pairs of vertices, both those which
are directly connected and those that are not. The unstretched length of springs is chosen based on
the undirected graph distance between the corresponding pair of vertices. Thus, in a weighted graph,
increasing the weight between two vertices pushes them apart. The Young modulus of springs is
inversely proportional to the graph distance, ensuring that springs between far-apart veritces will have
a smaller effect on the layout.

Disconnected graphs are handled by assuming that the graph distance between vertices in different
components is the same as the graph diameter.

This layout works particularly well for locally connected spatial networks such as lattices.

This layout algorithm is not suitable for large graphs. The memory requirements are of the order O(|
V|^2).

Reference:

Kamada, T. and Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Pro-
cessing Letters, 31/1, 7--15, 1989. https://doi.org/10.1016/0020-0190(89)90102-6

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result (x-positions in col-
umn zero and y-positions in column one) and will be resized if needed.

use_seed: Boolean, whether to use the values supplied in the res argument as the initial con-
figuration. If zero and there are any limits on the X or Y coordinates, then a random
initial configuration is used. Otherwise the vertices are placed on a circle of radius 1
as the initial configuration.

maxiter: The maximum number of iterations to perform. A reasonable default value is at least
ten (or more) times the number of vertices.

epsilon: Stop the iteration, if the maximum delta value of the algorithm is smaller than still. It
is safe to leave it at zero, and then maxiter iterations are performed.

kkconst: The Kamada-Kawai vertex attraction constant. Typical value: number of vertices.

weights: Edge weights, larger values will result longer edges. Weights must be positive. Pass
NULL to assume unit weights for all edges.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “x” coordinate for every vertex.

546

https://doi.org/10.1016/0020-0190(89)90102-6

Generating layouts
for graph drawing

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

Returns:

Error code.

Time complexity: O(|V|) for each iteration, after an O(|V|^2 log|V|) initialization step. |V| is the number
of vertices in the graph.

igraph_layout_gem — Layout graph according to
GEM algorithm.

igraph_error_t igraph_layout_gem(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed, igraph_integer_t maxiter,
 igraph_real_t temp_max, igraph_real_t temp_min,
 igraph_real_t temp_init);

The GEM layout algorithm, as described in Arne Frick, Andreas Ludwig, Heiko Mehldau: A Fast
Adaptive Layout Algorithm for Undirected Graphs, Proc. Graph Drawing 1994, LNCS 894, pp.
388-403, 1995.

Arguments:

graph: The input graph. Edge directions are ignored in directed graphs.

res: The result is stored here. If the use_seed argument is true, then this matrix is also
used as the starting point of the algorithm.

use_seed: Boolean, whether to use the supplied coordinates in res as the starting point. If false
(zero), then a uniform random starting point is used.

maxiter: The maximum number of iterations to perform. Updating a single vertex counts as
an iteration. A reasonable default is 40 * n * n, where n is the number of vertices. The
original paper suggests 4 * n * n, but this usually only works if the other parameters
are set up carefully.

temp_max: The maximum allowed local temperature. A reasonable default is the number of
vertices.

temp_min: The global temperature at which the algorithm terminates (even before reaching
maxiter iterations). A reasonable default is 1/10.

temp_init: Initial local temperature of all vertices. A reasonable default is the square root of the
number of vertices.

Returns:

Error code.

Time complexity: O(t * n * (n+e)), where n is the number of vertices, e is the number of edges and
t is the number of time steps performed.

547

Generating layouts
for graph drawing

igraph_layout_davidson_harel — Davidson-Harel
layout algorithm.

igraph_error_t igraph_layout_davidson_harel(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed, igraph_integer_t maxiter,
 igraph_integer_t fineiter, igraph_real_t cool_fact,
 igraph_real_t weight_node_dist, igraph_real_t weight_border,
 igraph_real_t weight_edge_lengths,
 igraph_real_t weight_edge_crossings,
 igraph_real_t weight_node_edge_dist);

This function implements the algorithm by Davidson and Harel, see Ron Davidson, David Harel:
Drawing Graphs Nicely Using Simulated Annealing. ACM Transactions on Graphics 15(4), pp.
301-331, 1996. https://doi.org/10.1145/234535.234538

The algorithm uses simulated annealing and a sophisticated energy function, which is unfortunately
hard to parameterize for different graphs. The original publication did not disclose any parameter
values, and the ones below were determined by experimentation.

The algorithm consists of two phases, an annealing phase, and a fine-tuning phase. There is no simu-
lated annealing in the second phase.

Our implementation tries to follow the original publication, as much as possible. The only major
difference is that coordinates are explicitly kept within the bounds of the rectangle of the layout.

Arguments:

graph: The input graph, edge directions are ignored.

res: A matrix, the result is stored here. It can be used to supply start
coordinates, see use_seed.

use_seed: Boolean, whether to use the supplied res as start coordinates.

maxiter: The maximum number of annealing iterations. A reasonable value
for smaller graphs is 10.

fineiter: The number of fine tuning iterations. A reasonable value is
max(10, log2(n)) where n is the number of vertices.

cool_fact: Cooling factor. A reasonable value is 0.75.

weight_node_dist: Weight for the node-node distances component of the energy func-
tion. Reasonable value: 1.0.

weight_border: Weight for the distance from the border component of the energy
function. It can be set to zero, if vertices are allowed to sit on the
border.

weight_edge_lengths: Weight for the edge length component of the energy function, a
reasonable value is the density of the graph divided by 10.

weight_edge_crossings: Weight for the edge crossing component of the energy function,
a reasonable default is 1 minus the square root of the density of
the graph.

weight_node_edge_dist: Weight for the node-edge distance component of the energy func-
tion. A reasonable value is 1 minus the density, divided by 5.

548

https://doi.org/10.1145/234535.234538

Generating layouts
for graph drawing

Returns:

Error code.

Time complexity: one first phase iteration has time complexity O(n^2+m^2), one fine tuning iteration
has time complexity O(mn). Time complexity might be smaller if some of the weights of the compo-
nents of the energy function are set to zero.

igraph_layout_mds — Place the vertices on a plane
using multidimensional scaling.

igraph_error_t igraph_layout_mds(const igraph_t* graph, igraph_matrix_t *res,
 const igraph_matrix_t *dist, igraph_integer_t dim);

This layout requires a distance matrix, where the intersection of row i and column j specifies the
desired distance between vertex i and vertex j. The algorithm will try to place the vertices in a space
having a given number of dimensions in a way that approximates the distance relations prescribed in
the distance matrix. igraph uses the classical multidimensional scaling by Torgerson; for more details,
see Cox & Cox: Multidimensional Scaling (1994), Chapman and Hall, London.

If the input graph is disconnected, igraph will decompose it first into its subgraphs, lay out the sub-
graphs one by one using the appropriate submatrices of the distance matrix, and then merge the lay-
outs using igraph_layout_merge_dla. Since igraph_layout_merge_dla works for 2D
layouts only, you cannot run the MDS layout on disconnected graphs for more than two dimensions.

Warning: if the graph is symmetric to the exchange of two vertices (as is the case with leaves of a tree
connecting to the same parent), classical multidimensional scaling may assign the same coordinates
to these vertices.

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized if
needed.

dist: The distance matrix. It must be symmetric and this function does not check whether the
matrix is indeed symmetric. Results are unspecified if you pass a non-symmetric matrix
here. You can set this parameter to null; in this case, the undirected shortest path lengths
between vertices will be used as distances.

dim: The number of dimensions in the embedding space. For 2D layouts, supply 2 here.

Returns:

Error code.

Added in version 0.6.

Time complexity: usually around O(|V|^2 dim).

igraph_layout_lgl — Force based layout algorithm
for large graphs.

549

Generating layouts
for graph drawing

igraph_error_t igraph_layout_lgl(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t maxit, igraph_real_t maxdelta,
 igraph_real_t area, igraph_real_t coolexp,
 igraph_real_t repulserad, igraph_real_t cellsize,
 igraph_integer_t proot);

This is a layout generator similar to the Large Graph Layout algorithm and program (http://lgl.source-
forge.net/). But unlike LGL, this version uses a Fruchterman-Reingold style simulated annealing al-
gorithm for placing the vertices. The speedup is achieved by placing the vertices on a grid and calcu-
lating the repulsion only for vertices which are closer to each other than a limit.

Arguments:

graph: The (initialized) graph object to place. It must be connnected; disconnected graphs
are not handled by the algorithm.

res: Pointer to an initialized matrix object to hold the result. It will be resized if needed.

maxit: The maximum number of cooling iterations to perform for each layout step. A
reasonable default is 150.

maxdelta: The maximum length of the move allowed for a vertex in a single iteration. A
reasonable default is the number of vertices.

area: This parameter gives the area of the square on which the vertices will be placed. A
reasonable default value is the number of vertices squared.

coolexp: The cooling exponent. A reasonable default value is 1.5.

repulserad: Determines the radius at which vertex-vertex repulsion cancels out attraction of
adjacent vertices. A reasonable default value is area times the number of vertices.

cellsize: The size of the grid cells, one side of the square. A reasonable default value is the
fourth root of area (or the square root of the number of vertices if area is also
left at its default value).

proot: The root vertex, this is placed first, its neighbors in the first iteration, second neigh-
bors in the second, etc. If negative then a random vertex is chosen.

Returns:

Error code.

Added in version 0.2.

Time complexity: ideally O(dia*maxit*(|V|+|E|)), |V| is the number of vertices, dia is the diameter of
the graph, worst case complexity is still O(dia*maxit*(|V|^2+|E|)), this is the case when all vertices
happen to be in the same grid cell.

Layouts for trees and acyclic graphs

igraph_layout_reingold_tilford — Reingold-Til-
ford layout for tree graphs.

igraph_error_t igraph_layout_reingold_tilford(const igraph_t *graph,
 igraph_matrix_t *res,

550

http://lgl.sourceforge.net/
http://lgl.sourceforge.net/

Generating layouts
for graph drawing

 igraph_neimode_t mode,
 const igraph_vector_int_t *roots,
 const igraph_vector_int_t *rootlevel);

Arranges the nodes in a tree where the given node is used as the root. The tree is directed downwards
and the parents are centered above its children. For the exact algorithm, see:

Reingold, E and Tilford, J: Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223--228, 1981.
https://doi.org/10.1109/TSE.1981.234519

If the given graph is not a tree, a breadth-first search is executed first to obtain a possible spanning tree.

Arguments:

graph: The graph object.

res: The result, the coordinates in a matrix. The parameter should point to an initialized
matrix object and will be resized.

mode: Specifies which edges to consider when building the tree. If it is IGRAPH_OUT then
only the outgoing, if it is IGRAPH_IN then only the incoming edges of a parent
are considered. If it is IGRAPH_ALL then all edges are used (this was the behavior
in igraph 0.5 and before). This parameter also influences how the root vertices are
calculated, if they are not given. See the roots parameter.

roots: The index of the root vertex or root vertices. The set of roots should be specified so
that all vertices of the graph are reachable from them. Simply put, in the undirected
case, one root should be given from each connected component. If roots is NULL or
a pointer to an empty vector, then the roots will be selected automatically. Currently,
automatic root selection prefers low eccentricity vertices in graphs with fewer than
500 vertices, and high degree vertices (according to mode) in larger graphs. The
root selection heuristic may change without notice. To ensure a consistent output,
please specify the roots manually. The igraph_roots_for_tree_layout()
function gives more control over automatic root selection.

rootlevel: This argument can be useful when drawing forests which are not trees (i.e. they are
unconnected and have tree components). It specifies the level of the root vertices
for every tree in the forest. It is only considered if not a null pointer and the roots
argument is also given (and it is not a null pointer of an empty vector).

Returns:

Error code.

Added in version 0.2.

See also:

igraph_layout_reingold_tilford_circular(), igraph_root-
s_for_tree_layout()

Example 20.1. File examples/simple/
igraph_layout_reingold_tilford.c

igraph_layout_reingold_tilford_circular —
Circular Reingold-Tilford layout for trees.

551

https://doi.org/10.1109/TSE.1981.234519

Generating layouts
for graph drawing

igraph_error_t igraph_layout_reingold_tilford_circular(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_neimode_t mode,
 const igraph_vector_int_t *roots,
 const igraph_vector_int_t *rootlevel);

This layout is almost the same as igraph_layout_reingold_tilford(), but the tree is
drawn in a circular way, with the root vertex in the center.

Arguments:

graph: The graph object.

res: The result, the coordinates in a matrix. The parameter should point to an initialized
matrix object and will be resized.

mode: Specifies which edges to consider when building the tree. If it is IGRAPH_OUT then
only the outgoing, if it is IGRAPH_IN then only the incoming edges of a parent
are considered. If it is IGRAPH_ALL then all edges are used (this was the behavior
in igraph 0.5 and before). This parameter also influences how the root vertices are
calculated, if they are not given. See the roots parameter.

roots: The index of the root vertex or root vertices. The set of roots should be specified so
that all vertices of the graph are reachable from them. Simply put, in the undirected
case, one root should be given from each connected component. If roots is NULL or
a pointer to an empty vector, then the roots will be selected automatically. Currently,
automatic root selection prefers low eccentricity vertices in graphs with fewer than
500 vertices, and high degree vertices (according to mode) in larger graphs. The root
selection heuristic may change without notice. To ensure a consistent output, please
specify the roots manually.

rootlevel: This argument can be useful when drawing forests which are not trees (i.e. they are
unconnected and have tree components). It specifies the level of the root vertices
for every tree in the forest. It is only considered if not a null pointer and the roots
argument is also given (and it is not a null pointer or an empty vector).

Returns:

Error code.

See also:

igraph_layout_reingold_tilford().

igraph_roots_for_tree_layout — Roots suitable
for a nice tree layout.

igraph_error_t igraph_roots_for_tree_layout(
 const igraph_t *graph,
 igraph_neimode_t mode,
 igraph_vector_int_t *roots,
 igraph_root_choice_t heuristic);

552

Generating layouts
for graph drawing

This function chooses a root, or a set of roots suitable for visualizing a tree, or a tree-like graph.
It is typically used with igraph_layout_reingold_tilford(). The principle is to select a
minimal set of roots so that all other vertices will be reachable from them.

In the undirected case, one root is chosen from each connected component. In the directed case, one
root is chosen from each strongly connected component that has no incoming (or outgoing) edges
(depending on 'mode'). When more than one root choice is possible, vertices are prioritized based on
the given heuristic.

Arguments:

graph: The graph, typically a tree, but any graph is accepted.

mode: Whether to interpret the input as undirected, a directed out-tree or in-tree.

roots: An initialized integer vector, the roots will be returned here.

heuristic: The heuristic to use for breaking ties when multiple root choices are possible.

IGRAPH_ROOT_CHOICE_DE-
GREE

Choose the vertices with the highest degree
(out- or in-degree in directed mode). This
simple heuristic is fast even in large graphs.

IGRAPH_ROOT_CHOICE_EC-
CENTRICITY

Choose the vertices with the lowest eccen-
tricity. This usually results in a "wide and
shallow" tree layout. While this heuristic pro-
duces high-quality results, it is slow for large
graphs: computing the eccentricities has qua-
dratic complexity in the number of vertices.

Returns:

Error code.

Time complexity: depends on the heuristic.

igraph_layout_sugiyama — Sugiyama layout algo-
rithm for layered directed acyclic graphs.

igraph_error_t igraph_layout_sugiyama(const igraph_t *graph, igraph_matrix_t *res,
 igraph_t *extd_graph, igraph_vector_int_t *extd_to_orig_eids,
 const igraph_vector_int_t* layers, igraph_real_t hgap, igraph_real_t vgap,
 igraph_integer_t maxiter, const igraph_vector_t *weights);

This layout algorithm is designed for directed acyclic graphs where each vertex is assigned to a layer.
Layers are indexed from zero, and vertices of the same layer will be placed on the same horizontal line.
The X coordinates of vertices within each layer are decided by the heuristic proposed by Sugiyama
et al to minimize edge crossings.

You can also try to lay out undirected graphs, graphs containing cycles, or graphs without an a priori
layered assignment with this algorithm. igraph will try to eliminate cycles and assign vertices to layers,
but there is no guarantee on the quality of the layout in such cases.

The Sugiyama layout may introduce "bends" on the edges in order to obtain a visually more pleasing
layout. This is achieved by adding dummy nodes to edges spanning more than one layer. The resulting

553

Generating layouts
for graph drawing

layout assigns coordinates not only to the nodes of the original graph but also to the dummy nodes. The
layout algorithm will also return the extended graph with the dummy nodes. An edge in the original
graph may either be mapped to a single edge in the extended graph or a path that starts and ends
in the original source and target vertex and passes through multiple dummy vertices. In such cases,
the user may also request the mapping of the edges of the extended graph back to the edges of the
original graph.

For more details, see K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of
Hierarchical Systems". IEEE Transactions on Systems, Man and Cybernetics 11(2):109-125, 1981.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and
will be resized as needed. The first |V| rows of the layout will contain
the coordinates of the original graph, the remaining rows contain the
positions of the dummy nodes. Therefore, you can use the result both
with graph or with extended_graph.

extended_graph: Pointer to an uninitialized graph object or NULL. The extended graph
with the added dummy nodes will be returned here. In this graph, each
edge points downwards to lower layers, spans exactly one layer and the
first |V| vertices coincide with the vertices of the original graph.

extd_to_orig_eids: Pointer to a vector or NULL. If not NULL, the mapping from the edge
IDs of the extended graph back to the edge IDs of the original graph will
be stored here.

layers: The layer index for each vertex or NULL if the layers should be deter-
mined automatically by igraph.

hgap: The preferred minimum horizontal gap between vertices in the same lay-
er.

vgap: The distance between layers.

maxiter: Maximum number of iterations in the crossing minimization stage. 100
is a reasonable default; if you feel that you have too many edge crossings,
increase this.

weights: Weights of the edges. These are used only if the graph contains cycles;
igraph will tend to reverse edges with smaller weights when breaking
the cycles.

igraph_layout_umap — Layout using Uniform Mani-
fold Approximation and Projection (UMAP).

igraph_error_t igraph_layout_umap(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_bool_t use_seed,
 const igraph_vector_t *distances,
 igraph_real_t min_dist,
 igraph_integer_t epochs,
 igraph_bool_t distances_are_weights);

554

Generating layouts
for graph drawing

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

UMAP is mostly used to embed high-dimensional vectors in a low-dimensional space (most com-
monly 2D). The algorithm is probabilistic and introduces nonlinearities, unlike e.g. PCA and similar
to T-distributed Stochastic Neighbor Embedding (t-SNE). Nonlinearity helps "cluster" very similar
vectors together without imposing a global geometry on the embedded space (e.g. a rigid rotation +
compression in PCA). UMAP uses graphs as intermediate data structures, hence it can be used as a
graph layout algorithm as well.

The general UMAP workflow is to start from vectors, compute a sparse distance graph that only con-
tains edges between simiar points (e.g. a k-nearest neighbors graph), and then convert these distances
into exponentially decaying weights between 0 and 1 that are larger for points that are closest neigh-
bors in the distance graph. If a graph without any distances associated to the edges is used, all weights
will be set to 1.

If you are trying to use this function to embed high-dimensional vectors, you should first compute a k-
nearest neighbors graph between your vectors and compute the associated distances, and then call this
function on that graph. If you already have a distance graph, or you have a graph with no distances,
you can call this function directly. If you already have a graph with meaningful weights associated
to each edge, you can also call this function, but set the argument distances_are_weights to true. To
compute weights from distances without computing the layout, see igraph_layout_umap_com-
pute_weights().

References:

Leland McInnes, John Healy, and James Melville. https://arxiv.org/abs/1802.03426

Arguments:

graph: Pointer to the graph to find a layout for (i.e. to embed). This is
typically a sparse graph with only edges for the shortest distances
stored, e.g. a k-nearest neighbors graph.

res: Pointer to the n by 2 matrix where the layout coordinates will be
stored.

use_seed: Logical, if true the supplied values in the res argument are used
as an initial layout, if false a random initial layout is used.

distances: Pointer to a vector of distances associated with the graph edges. If
this argument is NULL, all weights will be set to 1.

min_dist: A fudge parameter that decides how close two unconnected ver-
tices can be in the embedding before feeling a repulsive force. It
must not be negative. Typical values are between 0 and 1.

epochs: Number of iterations of the main stochastic gradient descent loop
on the cross-entropy. Typical values are between 30 and 500.

distances_are_weights: Whether to use precomputed weights. If true, the "distances" vec-
tor contains precomputed weights. If false (the typical use case),
this function will compute weights from distances and then use
them to compute the layout.

Returns:

555

https://arxiv.org/abs/1802.03426

Generating layouts
for graph drawing

Error code.

igraph_layout_umap_compute_weights — Com-
pute weights for a UMAP layout starting from dis-
tances.

igraph_error_t igraph_layout_umap_compute_weights(
 const igraph_t *graph,
 const igraph_vector_t *distances,
 igraph_vector_t *weights);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

UMAP is used to embed high-dimensional vectors in a low-dimensional space (most commonly 2D). It
uses a distance graph as an intermediate data structure, making it also a useful graph layout algorithm.
See igraph_layout_umap() for more information.

An early step in UMAP is to compute exponentially decaying "weights" from the distance graph.
Connectivities can also be viewed as edge weights that quantify similarity between two vertices. This
function computes weights from the distance graph. To compute the layout from precomputed weights,
call igraph_layout_umap() with the distances_are_weights argument set to true.

While the distance graph can be directed (e.g. in a k-nearest neighbors, it is clear *who* you are a
neighbor of), the weights are usually undirected. Whenever two vertices are doubly connected in the
distance graph, the resulting weight W is set as: W = W1 + W2 - W1 * W2 Because UMAP weights
are interpreted as probabilities, this is just the probability that either edge is present, without double
counting. It is called "fuzzy union" in the original UMAP implementation and is the default. One could
also require that both edges are there, i.e. W = W1 * W2: this would represent the fuzzy intersection
and is not implemented in igraph. As a consequence of this symmetrization, information is lost, i.e.
one needs fewer weights than one had distances. To keep things efficient, here we set the weight for
one of the two edges as above and the weight for its opposite edge as 0, so that it will be skipped in
the UMAP gradient descent later on.

Technical note: For each vertex, this function computes its scale factor (sigma), its connectivity cor-
rection (rho), and finally the weights themselves.

References:

Leland McInnes, John Healy, and James Melville. https://arxiv.org/abs/1802.03426

Arguments:

graph: Pointer to the distance graph. This can be directed (e.g. connecting each vertex to its
neighbors in a k-nearest neighbor) or undirected, but must have no loops nor parallel
edges. The only exception is: if the graph is directed, having pairs of edges with
opposite direction is accepted.

distances: Pointer to the vector with the vertex-to-vertex distance associated with each edge.
This argument can be NULL, in which case all edges are assumed to have the same
distance.

556

https://arxiv.org/abs/1802.03426

Generating layouts
for graph drawing

weights: Pointer to an initialized vector where the result will be stored. If the input graph is
directed, the weights represent a symmetrized version which contains less informa-
tion. Therefore, whenever two edges between the same vertices and opposite direc-
tion are present in the input graph, only one of the weights is set and the other is
fixed to zero. That format is accepted by igraph_layout_umap(), which skips
all zero-weight edges from the layout optimization.

Returns:

Error code.

3D layout generators

igraph_layout_random_3d — Places the vertices
uniform randomly in a cube.

igraph_error_t igraph_layout_random_3d(const igraph_t *graph, igraph_matrix_t *res);

Vertex coordinates range from -1 to 1, and are placed in 3 columns of a matrix, with a row for each
vertex.

Arguments:

graph: The graph to place.

res: Pointer to an initialized matrix object. It will be resized to hold the result.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(|V|), the number of vertices.

igraph_layout_sphere — Places vertices (more or
less) uniformly on a sphere.

igraph_error_t igraph_layout_sphere(const igraph_t *graph, igraph_matrix_t *res);

The vertices are placed with approximately equal spacing on a spiral wrapped around a sphere, in the
order of their vertex IDs. Vertices with consecutive vertex IDs are placed near each other.

The algorithm was described in the following paper:

Distributing many points on a sphere by E.B. Saff and A.B.J. Kuijlaars, Mathematical Intelligencer
19.1 (1997) 5--11. https://doi.org/10.1007/BF03024331

Arguments:

557

https://doi.org/10.1007/BF03024331

Generating layouts
for graph drawing

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(|V|), the number of vertices in the graph.

igraph_layout_grid_3d — Places the vertices on a
regular grid in the 3D space.

igraph_error_t igraph_layout_grid_3d(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t width, igraph_integer_t height);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized
as needed.

width: The number of vertices in a single row of the grid. When zero or negative, the width is
determined automatically.

height: The number of vertices in a single column of the grid. When zero or negative, the height
is determined automatically.

Returns:

Error code. The current implementation always returns with success.

Time complexity: O(|V|), the number of vertices.

igraph_layout_fruchterman_reingold_3d — 3D
Fruchterman-Reingold algorithm.

igraph_error_t igraph_layout_fruchterman_reingold_3d(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_bool_t use_seed,
 igraph_integer_t niter,
 igraph_real_t start_temp,
 const igraph_vector_t *weights,
 const igraph_vector_t *minx,
 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy,
 const igraph_vector_t *minz,

558

Generating layouts
for graph drawing

 const igraph_vector_t *maxz);

This is the 3D version of the force based Fruchterman-Reingold layout. See igraph_lay-
out_fruchterman_reingold() for the 2D version.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be re-
sized as needed.

use_seed: Logical, if true the supplied values in the res argument are used as an initial layout,
if false a random initial layout is used.

niter: The number of iterations to do. A reasonable default value is 500.

start_temp: Start temperature. This is the maximum amount of movement alloved along one
axis, within one step, for a vertex. Currently it is decreased linearly to zero during
the iteration.

weights: Pointer to a vector containing edge weights, the attraction along the edges will be
multiplied by these. Weights must be positive. It will be ignored if it is a null-
pointer.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives
the minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives
the minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

minz: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives
the minimum “z” coordinate for every vertex.

maxz: Same as minz, but the maximum “z” coordinates.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|^2) in each iteration, |V| is the number of vertices in the graph.

igraph_layout_kamada_kawai_3d — 3D version of
the Kamada-Kawai layout generator.

igraph_error_t igraph_layout_kamada_kawai_3d(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed, igraph_integer_t maxiter,
 igraph_real_t epsilon, igraph_real_t kkconst,
 const igraph_vector_t *weights,
 const igraph_vector_t *minx, const igraph_vector_t *maxx,
 const igraph_vector_t *miny, const igraph_vector_t *maxy,

559

Generating layouts
for graph drawing

 const igraph_vector_t *minz, const igraph_vector_t *maxz);

This is the 3D version of igraph_layout_kamada_kawai(). See the documentation of that
function for more information.

This layout algorithm is not suitable for large graphs. The memory requirements are of the order O(|
V|^2).

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result (x-, y- and z-posi-
tions in columns one through three) and will be resized if needed.

use_seed: Boolean, whether to use the values supplied in the res argument as the initial con-
figuration. If zero and there are any limits on the z, y or z coordinates, then a random
initial configuration is used. Otherwise the vertices are placed uniformly on a sphere
of radius 1 as the initial configuration.

maxiter: The maximum number of iterations to perform. A reasonable default value is at least
ten (or more) times the number of vertices.

epsilon: Stop the iteration, if the maximum delta value of the algorithm is smaller than still. It
is safe to leave it at zero, and then maxiter iterations are performed.

kkconst: The Kamada-Kawai vertex attraction constant. Typical value: number of vertices.

weights: Edge weights, larger values will result longer edges. Weights must be positive. Pass
NULL to assume unit weights for all edges.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

minz: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “z” coordinate for every vertex.

maxz: Same as minz, but the maximum “z” coordinates.

Returns:

Error code.

Time complexity: O(|V|) for each iteration, after an O(|V|^2 log|V|) initialization step. |V| is the number
of vertices in the graph.

igraph_layout_umap_3d — 3D layout using UMAP.

igraph_error_t igraph_layout_umap_3d(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_bool_t use_seed,

560

Generating layouts
for graph drawing

 const igraph_vector_t *distances,
 igraph_real_t min_dist,
 igraph_integer_t epochs,
 igraph_bool_t distances_are_weights);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This is the 3D version of the UMAP algorithm (see igraph_layout_umap() for the 2D version).

Arguments:

graph: Pointer to the graph to find a layout for (i.e. to embed). This is
typically a directed, sparse graph with only edges for the shortest
distances stored, e.g. a k-nearest neighbors graph with the edges
going from each focal vertex to its neighbors. However, it can also
be an undirected graph. If the distances_are_weights is
true, this is treated as an undirected graph.

res: Pointer to the n by 3 matrix where the layout coordinates will be
stored.

use_seed: Logical, if true the supplied values in the res argument are used
as an initial layout, if false a random initial layout is used.

distances: Pointer to a vector of distances associated with the graph edges.
If this argument is NULL, all edges are assumed to have the same
distance.

min_dist: A fudge parameter that decides how close two unconnected ver-
tices can be in the embedding before feeling a repulsive force. It
must not be negative. Typical values are between 0 and 1.

epochs: Number of iterations of the main stochastic gradient descent loop
on the cross-entropy. Typical values are between 30 and 500.

distances_are_weights: Whether to use precomputed weights. If false (the typical use
case), this function will compute weights from distances and then
use them to compute the layout. If true, the "distances" vector
contains precomputed weights, including possibly some weights
equal to zero that are inconsequential for the layout optimization.

Returns:

Error code.

Merging layouts

igraph_layout_merge_dla — Merges multiple lay-
outs by using a DLA algorithm.

561

Generating layouts
for graph drawing

igraph_error_t igraph_layout_merge_dla(
 const igraph_vector_ptr_t *thegraphs, const igraph_matrix_list_t *coords,
 igraph_matrix_t *res
);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

First each layout is covered by a circle. Then the layout of the largest graph is placed at the origin.
Then the other layouts are placed by the DLA algorithm, larger ones first and smaller ones last.

Arguments:

thegraphs: Pointer vector containing the graph objects of which the layouts will be merged.

coords: List of matrices with the 2D layouts of the graphs in thegraphs.

res: Pointer to an initialized matrix object, the result will be stored here. It will be resized
if needed.

Returns:

Error code.

Added in version 0.2.

Time complexity: TODO.

562

Chapter 21. Reading and writing
graphs from and to files

These functions can write a graph to a file, or read a graph from a file.

They assume that the current locale uses a decimal point and not a decimal comma. See igraph_en-
ter_safelocale() and igraph_exit_safelocale() for more information.

Note that as igraph uses the traditional C streams, it is possible to read/write files from/to memory,
at least on GNU operating systems supporting “non-standard” streams.

Simple edge list and similar formats

igraph_read_graph_edgelist — Reads an edge list
from a file and creates a graph.

igraph_error_t igraph_read_graph_edgelist(igraph_t *graph, FILE *instream,
 igraph_integer_t n, igraph_bool_t directed);

This format is simply a series of an even number of non-negative integers separated by whitespace. The
integers represent vertex IDs. Placing each edge (i.e. pair of integers) on a separate line is not required,
but it is recommended for readability. Edges of directed graphs are assumed to be in "from, to" order.

The largest vertex ID plus one, or the parameter n determines the vertex count, whichever is larger.
See igraph_read_graph_ncol() for reading files where vertices are specified by name instead
of by a numerical vertex ID.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: Pointer to a stream, it should be readable.

n: The number of vertices in the graph. If smaller than the largest integer in the file it
will be ignored. It is thus safe to supply zero here.

directed: Logical, if true the graph is directed, if false it will be undirected.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges. It is assumed that
reading an integer requires O(1) time.

igraph_write_graph_edgelist — Writes the edge
list of a graph to a file.

igraph_error_t igraph_write_graph_edgelist(const igraph_t *graph, FILE *outstream);

563

Reading and writing
graphs from and to files

Edges are represented as pairs of 0-based vertex indices. One edge is written per line, separated by a
single space. For directed graphs edges are written in from, to order.

Arguments:

graph: The graph object to write.

outstream: Pointer to a stream, it should be writable.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|E|), the number of edges in the graph. It is assumed that writing an integer to
the file requires O(1) time.

igraph_read_graph_ncol — Reads an .ncol file
used by LGL.

igraph_error_t igraph_read_graph_ncol(igraph_t *graph, FILE *instream,
 const igraph_strvector_t *predefnames,
 igraph_bool_t names,
 igraph_add_weights_t weights,
 igraph_bool_t directed);

Also useful for creating graphs from “named” (and optionally weighted) edge lists.

This format is used by the Large Graph Layout program (http://lgl.sourceforge.net), and it is simply
a symbolic weighted edge list. It is a simple text file with one edge per line. An edge is defined by
two symbolic vertex names separated by whitespace. The vertex names themselves cannot contain
whitespace. They may be followed by an optional number, the weight of the edge; the number can
be negative and can be in scientific notation. If there is no weight specified to an edge it is assumed
to be zero.

The resulting graph is always undirected. LGL cannot deal with files which contain multiple or loop
edges, this is however not checked here, as igraph is happy with these.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: Pointer to a stream, it should be readable.

predefnames: Pointer to the symbolic names of the vertices in the file. If NULL is given here
then vertex IDs will be assigned to vertex names in the order of their appearance
in the .ncol file. If it is not NULL and some unknown vertex names are found
in the .ncol file then new vertex ids will be assigned to them.

names: Logical value, if true the symbolic names of the vertices will be added to the
graph as a vertex attribute called “name”.

weights: Whether to add the weights of the edges to the graph as an edge attribute
called “weight”. IGRAPH_ADD_WEIGHTS_YES adds the weights (even if
they are not present in the file, in this case they are assumed to be zero).
IGRAPH_ADD_WEIGHTS_NO does not add any edge attribute. IGRAPH_AD-

564

http://lgl.sourceforge.net

Reading and writing
graphs from and to files

D_WEIGHTS_IF_PRESENT adds the attribute if and only if there is at least one
explicit edge weight in the input file.

directed: Whether to create a directed graph. As this format was originally used only for
undirected graphs there is no information in the file about the directedness of the
graph. Set this parameter to IGRAPH_DIRECTED or IGRAPH_UNDIRECTED
to create a directed or undirected graph.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|log(|V|)) if we neglect the time required by the parsing. As usual |V| is the
number of vertices, while |E| is the number of edges.

See also:

igraph_read_graph_lgl(), igraph_write_graph_ncol()

igraph_write_graph_ncol — Writes the graph to a
file in .ncol format.

igraph_error_t igraph_write_graph_ncol(const igraph_t *graph, FILE *outstream,
 const char *names, const char *weights);

.ncol is a format used by LGL, see igraph_read_graph_ncol() for details.

Note that having multiple or loop edges in an .ncol file breaks the LGL software but igraph does
not check for this condition.

This format cannot represent zero-degree vertices.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

names: The name of a string vertex attribute, if symbolic names are to be written to the file.
Supply NULL to write vertex ids instead.

weights: The name of a numerical edge attribute, which will be written as weights to the file.
Supply NULL to skip writing edge weights.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|E|), the number of edges. All file operations are expected to have time complexity
O(1).

See also:

igraph_read_graph_ncol(), igraph_write_graph_lgl()

565

Reading and writing
graphs from and to files

igraph_read_graph_lgl — Reads a graph from an
.lgl file.

igraph_error_t igraph_read_graph_lgl(igraph_t *graph, FILE *instream,
 igraph_bool_t names,
 igraph_add_weights_t weights,
 igraph_bool_t directed);

The .lgl format is used by the Large Graph Layout visualization software (http://lgl.source-
forge.net), it can describe undirected optionally weighted graphs. From the LGL manual:

The second format is the LGL file format (.lgl file suffix). This is yet another
graph file format that tries to be as stingy as possible with space, yet keeping the edge
file in a human readable (not binary) format. The format itself is like the following:

 # vertex1name
vertex2name [optionalWeight]
vertex3name [optionalWeight]

Here, the first vertex of an edge is preceded with a pound sign '#'. Then each vertex
that shares an edge with that vertex is listed one per line on subsequent lines.

LGL cannot handle loop and multiple edges or directed graphs, but in igraph it is not an error to have
multiple and loop edges.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: A stream, it should be readable.

names: Logical value, if true the symbolic names of the vertices will be added to the graph
as a vertex attribute called “name”.

weights: Whether to add the weights of the edges to the graph as an edge at-
tribute called “weight”. IGRAPH_ADD_WEIGHTS_YES adds the weights (even
if they are not present in the file, in this case they are assumed to be zero).
IGRAPH_ADD_WEIGHTS_NO does not add any edge attribute. IGRAPH_AD-
D_WEIGHTS_IF_PRESENT adds the attribute if and only if there is at least one ex-
plicit edge weight in the input file.

directed: Whether to create a directed graph. As this format was originally used only for undi-
rected graphs there is no information in the file about the directedness of the graph.
Set this parameter to IGRAPH_DIRECTED or IGRAPH_UNDIRECTED to create a
directed or undirected graph.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|log(|V|)) if we neglect the time required by the parsing. As usual |V| is the
number of vertices, while |E| is the number of edges.

See also:

igraph_read_graph_ncol(), igraph_write_graph_lgl()

566

http://lgl.sourceforge.net
http://lgl.sourceforge.net

Reading and writing
graphs from and to files

Example 21.1. File examples/simple/igraph_read_graph_lgl.c

igraph_write_graph_lgl — Writes the graph to a
file in .lgl format.

igraph_error_t igraph_write_graph_lgl(const igraph_t *graph, FILE *outstream,
 const char *names, const char *weights,
 igraph_bool_t isolates);

.lgl is a format used by LGL, see igraph_read_graph_lgl() for details.

Note that having multiple or loop edges in an .lgl file breaks the LGL software but igraph does
not check for this condition.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

names: The name of a string vertex attribute, if symbolic names are to be written to the file.
Supply NULL to write vertex ids instead.

weights: The name of a numerical edge attribute, which will be written as weights to the file.
Supply NULL to skip writing edge weights.

isolates: Logical, if true isolated vertices are also written to the file. If false they will
be omitted.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|E|), the number of edges if isolates is false, O(|V|+|E|) otherwise. All file
operations are expected to have time complexity O(1).

See also:

igraph_read_graph_lgl(), igraph_write_graph_ncol()

Example 21.2. File examples/simple/igraph_write_graph_lgl.c

igraph_read_graph_dimacs_flow — Read a graph
in DIMACS format.

igraph_error_t igraph_read_graph_dimacs_flow(
 igraph_t *graph, FILE *instream,
 igraph_strvector_t *problem,
 igraph_vector_int_t *label,
 igraph_integer_t *source,
 igraph_integer_t *target,

567

Reading and writing
graphs from and to files

 igraph_vector_t *capacity,
 igraph_bool_t directed);

This function reads the DIMACS file format, more specifically the version for network flow problems,
see the files at http://archive.dimacs.rutgers.edu/pub/netflow/general-info/

This is a line-oriented text file (ASCII) format. The first character of each line defines the type of the
line. If the first character is c the line is a comment line and it is ignored. There is one problem line (p
in the file), it must appear before any node and arc descriptor lines. The problem line has three fields
separated by spaces: the problem type (max or edge), the number of vertices, and number of edges
in the graph. In MAX problems, exactly two node identification lines are expected (n), one for the
source, and one for the target vertex. These have two fields: the ID of the vertex and the type of the
vertex, either s (= source) or t (= target). Arc lines start with a and have three fields: the source
vertex, the target vertex and the edge capacity. In EDGE problems, there may be a node line (n) for
each node. It specifies the node index and an integer node label. Nodes for which no explicit label was
specified will use their index as label. In EDGE problems, each edge is specified as an edge line (e).

Within DIMACS files, vertex IDs are numbered from 1.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The file to read from.

problem: If not NULL, it will contain the problem type.

label: If not NULL, node labels will be stored here for edge problems. Ignored for max
problems.

source: Pointer to an integer, the ID of the source node will be stored here. (The igraph vertex
ID, which is one less than the actual number in the file.) It is ignored if NULL.

target: Pointer to an integer, the (igraph) ID of the target node will be stored here. It is ignored
if NULL.

capacity: Pointer to an initialized vector, the capacity of the edges will be stored here if not \
NULL.

directed: Boolean, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|+c), the number of vertices plus the number of edges, plus the size of the
file in characters.

See also:

igraph_write_graph_dimacs()

igraph_write_graph_dimacs_flow — Write a graph
in DIMACS format.

igraph_error_t igraph_write_graph_dimacs_flow(const igraph_t *graph, FILE *outstream,

568

http://archive.dimacs.rutgers.edu/pub/netflow/general-info/

Reading and writing
graphs from and to files

 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

This function writes a graph to an output stream in DIMACS format, describing a maximum flow
problem. See ftp://dimacs.rutgers.edu/pub/netflow/general-info/

This file format is discussed in the documentation of igraph_read_graph_dimacs_flow(),
see that for more information.

Arguments:

graph: The graph to write to the stream.

outstream: The stream.

source: Integer, the id of the source vertex for the maximum flow.

target: Integer, the id of the target vertex.

capacity: Pointer to an initialized vector containing the edge capacity values.

Returns:

Error code.

Time complexity: O(|E|), the number of edges in the graph.

See also:

igraph_read_graph_dimacs_flow()

Binary formats

igraph_read_graph_graphdb — Read a graph in the
binary graph database format.

igraph_error_t igraph_read_graph_graphdb(igraph_t *graph, FILE *instream,
 igraph_bool_t directed);

This is a binary format, used in the ARG Graph Database for isomorphism testing. For more informa-
tion, see https://mivia.unisa.it/datasets/graph-database/arg-database/

From the graph database homepage:

The graphs are stored in a compact binary format, one graph per file. The file is
composed of 16 bit words, which are represented using the so-called little-endian
convention, i.e. the least significant byte of the word is stored first.

Then, for each node, the file contains the list of edges coming out of the node itself.
The list is represented by a word encoding its length, followed by a word for each
edge, representing the destination node of the edge. Node numeration is 0-based, so
the first node of the graph has index 0.

As of igraph 0.10, only unlabelled graphs are implemented.

Arguments:

569

https://mivia.unisa.it/datasets/graph-database/arg-database/

Reading and writing
graphs from and to files

graph: Pointer to an uninitialized graph object.

instream: The stream to read from. It should be opened in binary mode.

directed: Logical scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 21.3. File examples/simple/
igraph_read_graph_graphdb.c

GraphML format

igraph_read_graph_graphml — Reads a graph from
a GraphML file.

igraph_error_t igraph_read_graph_graphml(igraph_t *graph, FILE *instream, igraph_integer_t index);

GraphML is an XML-based file format for representing various types of graphs. Currently only the
most basic import functionality is implemented in igraph: it can read GraphML files without nested
graphs and hyperedges. Attributes of the graph are loaded only if an attribute interface is attached, see
igraph_set_attribute_table(). String attrribute values are returned in UTF-8 encoding.

Graph attribute names are taken from the attr.name attributes of the key tags in the GraphML
file. Since attr.name is not mandatory, igraph will fall back to the id attribute of the key tag if
attr.name is missing.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: A stream, it should be readable.

index: If the GraphML file contains more than one graph, the one specified by this index will
be loaded. Indices start from zero, so supply zero here if your GraphML file contains
only a single graph.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect. IGRAPH_UNIMPLEMENTED: the GraphML functionality was disabled at compile-time

Example 21.4. File examples/simple/graphml.c

igraph_write_graph_graphml — Writes the graph
to a file in GraphML format.

570

Reading and writing
graphs from and to files

igraph_error_t igraph_write_graph_graphml(const igraph_t *graph, FILE *outstream,
 igraph_bool_t prefixattr);

GraphML is an XML-based file format for representing various types of graphs. See the GraphML
Primer (http://graphml.graphdrawing.org/primer/graphml-primer.html) for detailed format descrip-
tion.

When a numerical attribute value is NaN, it will be omitted from the file.

This function assumes that non-ASCII characters in attribute names and string attribute values are
UTF-8 encoded. If this is not the case, the resulting XML file will be invalid.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

prefixattr: Logical value, whether to put a prefix in front of the attribute names to ensure
uniqueness if the graph has vertex and edge (or graph) attributes with the same
name.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|V|+|E|) otherwise. All file operations are expected to have time complexity O(1).

Example 21.5. File examples/simple/graphml.c

GML format

igraph_read_graph_gml — Read a graph in GML for-
mat.

igraph_error_t igraph_read_graph_gml(igraph_t *graph, FILE *instream);

GML is a simple textual format, see https://web.archive.org/web/20190207140002/http://www.fim.u-
ni-passau.de/index.php?id=17297%26L=1 for details.

Although all syntactically correct GML can be parsed, we implement only a subset of this format.
Some attributes might be ignored. Here is a list of all the differences:

1. Only attributes with a simple type are used: integer, real or string. If an attribute is composite, i.e.
an array or a record, then it is ignored. When some values of the attribute are simple and some
compound, the composite ones are replaced with a default value (NaN for numeric, "" for string).

2. comment fields are not ignored. They are treated as any other field and converted to attributes.

3. Top level attributes except for Version and the first graph attribute are completely ignored.

4. There is no maximum line length or maximum keyword length.

5. Only the quot, amp, apos, lt and gt character entities are supported. Any other entity is passed
through unchanged by the reader after issuing a warning, and is expected to be decoded by the user.

571

http://graphml.graphdrawing.org/primer/graphml-primer.html
https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297%26L=1
https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297%26L=1

Reading and writing
graphs from and to files

6. We allow inf, -inf and nan (not a number) as a real number. This is case insensitive, so nan,
NaN and NAN are equivalent.

Please contact us if you cannot live with these limitations of the GML parser.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The stream to read the GML file from.

Returns:

Error code.

Time complexity: should be proportional to the length of the file.

See also:

igraph_read_graph_graphml() for a more modern format,
igraph_write_graph_gml() for writing GML files.

Example 21.6. File examples/simple/gml.c

igraph_write_graph_gml — Write the graph to a
stream in GML format.

igraph_error_t igraph_write_graph_gml(const igraph_t *graph, FILE *outstream,
 igraph_write_gml_sw_t options,
 const igraph_vector_t *id, const char *creator);

GML is a quite general textual format, see https://web.archive.org/web/20190207140002/http://
www.fim.uni-passau.de/index.php?id=17297%26L=1 for details.

The graph, vertex and edges attributes are written to the file as well, if they are numeric or string.
Boolean attributes are converted to numeric, with 0 and 1 used for false and true, respectively. NaN val-
ues of numeric attributes are skipped, as NaN is not part of the GML specification and other software
may not be able to read files containing them. This is consistent with igraph_read_graph_gm-
l(), which produces NaN when an attribute value is missing. In contrast with NaN, infinite values
are retained. Ensure that none of the numeric attributes values are infinite to produce a conformant
GML file that can be read by other software.

As igraph is more forgiving about attribute names, it might be necessary to simplify the them before
writing to the GML file. This way we'll have a syntactically correct GML file. The following simple
procedure is performed on each attribute name: first the alphanumeric characters are extracted, the
others are ignored. Then if the first character is not a letter then the attribute name is prefixed with
“igraph”. Note that this might result identical names for two attributes, igraph does not check this.

The “id” vertex attribute is treated specially. If the id argument is not NULL then it should be a
numeric vector with the vertex IDs and the “id” vertex attribute is ignored (if there is one). If id is
NULL and there is a numeric “id” vertex attribute, it will be used instead. If ids are not specified in
either way then the regular igraph vertex IDs are used. If some of the supplied id values are invalid
(non-integer or NaN), all supplied id are ignored and igraph vertex IDs are used instead.

Note that whichever way vertex IDs are specified, their uniqueness is not checked.

572

https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297%26L=1
https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297%26L=1

Reading and writing
graphs from and to files

If the graph has edge attributes that become “source” or “target” after encoding, or the graph has an
attribute that becomes “directed”, they will be ignored with a warning. GML uses these attributes to
specify the edge endpoints, and the graph directedness, so we cannot write them to the file. Rename
them before calling this function if you want to preserve them.

Arguments:

graph: The graph to write to the stream.

outstream: The stream to write the file to.

options: Set of |-combinable boolean flags for writing the GML file.

0 All options turned off.

IGRAPH_WRITE_GML_DE-
FAULT_SW

Default options, currently equivalent to 0.
May change in future versions.

IGRAPH_WRITE_GML_EN-
CODE_ONLY_QUOT_SW

Do not encode any other characters than " as
entities. Specifically, this option prevents the
encoding of &. Useful when re-exporting a
graph that was read from a GML file in which
igraph could not interpret all entities, and thus
passed them through without decoding.

id: Either NULL or a numeric vector with the vertex IDs. See details above.

creator: An optional string to write to the stream in the creator line. If NULL, the igraph
version with the current date and time is added. If "", the creator line is omitted.
Otherwise, the supplied string is used verbatim.

Returns:

Error code.

Time complexity: should be proportional to the number of characters written to the file.

See also:

igraph_read_graph_gml() for reading GML files, igraph_read_graph_graphml()
for a more modern format.

Example 21.7. File examples/simple/gml.c

Pajek format

igraph_read_graph_pajek — Reads a file in Pajek
format.

igraph_error_t igraph_read_graph_pajek(igraph_t *graph, FILE *instream);

Only a subset of the Pajek format is implemented. This is partially because there is no formal spec-
ification for this format, but also because igraph does not support some Pajek features, like mixed
graphs.

573

Reading and writing
graphs from and to files

Starting from version 0.6.1 igraph reads bipartite (two-mode) graphs from Pajek files and adds the
type Boolean vertex attribute for them. Warnings are given for invalid edges, i.e. edges connecting
vertices of the same type.

The list of the current limitations:

1. Only .net files are supported, Pajek project files (.paj) are not.

2. Temporal networks (i.e. with time events) are not supported.

3. Graphs with both directed and non-directed edges are not supported, as they cannot be represented
in igraph.

4. Only Pajek networks are supported; permutations, hierarchies, clusters and vectors are not.

5. Multi-relational networks (i.e. networks with multiple edge types) are not supported.

6. Unicode characters encoded as &#dddd;, or newlines encoded as \n will not be decoded.

If an attribute handler is installed, igraph also reads the vertex and edge attributes from the file.
Most attributes are renamed to be more informative: color instead of c, xfact instead of
x_fact, yfact instead of y_fact, labeldist instead of lr, labeldegree2 instead of lphi,
framewidth instead of bw, fontsize instead of fos, rotation instead of phi, radius in-
stead of r, diamondratio instead of q, labeldegree instead of la, color instead of ic,
framecolor instead of bc, labelcolor instead of lc; these belong to vertices.

Edge attributes are also renamed, s to arrowsize, w to edgewidth, h1 to hook1, h2 to hook2,
a1 to angle1, a2 to angle2, k1 to velocity1, k2 to velocity2, ap to arrowpos, lp to
labelpos, lr to labelangle, lphi to labelangle2, la to labeldegree, fos to font-
size, a to arrowtype, p to linepattern, l to label, lc to labelcolor, c to color.

Unknown vertex or edge parameters are read as string vertex or edge attributes. If the parameter name
conflicts with one the standard attribute names mentioned above, a _ character is appended to it to
avoid conflict.

In addition the following vertex attributes might be added: id and name are added (with the same
value) if there are vertex IDs in the file. id is deprecated in favour of name and will no longer be used
by future versions of igraph. x and y, and potentially z are also added if there are vertex coordinates
in the file.

The weight edge attribute will be added if there are edge weights present.

See the Pajek homepage: http://vlado.fmf.uni-lj.si/pub/networks/pajek/ for more info on Pajek. The
Pajek manual, http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf, and http://mrvar.fd-
v.uni-lj.si/pajek/DrawEPS.htm have information on the Pajek file format. There is additional useful
information and sample files at http://mrvar.fdv.uni-lj.si/pajek/history.htm

Arguments:

graph: Pointer to an uninitialized graph object.

file: An already opened file handler.

Returns:

Error code.

Time complexity: O(|V|+|E|+|A|), |V| is the number of vertices, |E| the number of edges, |A| the number
of attributes (vertex + edge) in the graph if there are attribute handlers installed.

See also:

574

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
http://mrvar.fdv.uni-lj.si/pajek/DrawEPS.htm
http://mrvar.fdv.uni-lj.si/pajek/DrawEPS.htm
http://mrvar.fdv.uni-lj.si/pajek/history.htm

Reading and writing
graphs from and to files

igraph_write_graph_pajek() for writing Pajek files,
igraph_read_graph_graphml() for reading GraphML files.

Example 21.8. File examples/simple/foreign.c

igraph_write_graph_pajek — Writes a graph to a
file in Pajek format.

igraph_error_t igraph_write_graph_pajek(const igraph_t *graph, FILE *outstream);

Writes files in the native format of the Pajek software. This format is not recommended for data
exchange or archival. It is meant solely for interoperability with Pajek.

The Pajek vertex and edge parameters (like color) are determined by the attributes of the vertices and
edges. Of course this requires an attribute handler to be installed. The names of the corresponding
vertex and edge attributes are listed at igraph_read_graph_pajek(), e.g. the color vertex
attributes determines the color (c in Pajek) parameter.

Vertex and edge attributes that do not correspond to any documented Pajek parameter are discarded.

As of version 0.6.1 igraph writes bipartite graphs into Pajek files correctly, i.e. they will be also bipar-
tite when read into Pajek. As Pajek is less flexible for bipartite graphs (the numeric IDs of the vertices
must be sorted according to vertex type), igraph might need to reorder the vertices when writing a
bipartite Pajek file. This effectively means that numeric vertex IDs usually change when a bipartite
graph is written to a Pajek file, and then read back into igraph.

Early versions of Pajek supported only Windows-style line endings in Pajek files, but recent versions
support both Windows and Unix line endings. igraph therefore uses the platform-native line endings
when the input file is opened in text mode, and uses Unix-style line endings when the input file is
opened in binary mode. If you are using an old version of Pajek, you are on Unix and you are having
problems reading files written by igraph on a Windows machine, convert the line endings manually
with a text editor or with unix2dos or iconv from the command line).

Pajek will only interpret UTF-8 encoded files if they contain a byte-order mark (BOM) at the begin-
ning. igraph is agnostic of string attribute encodings and therefore it will never write a BOM. You
need to add this manually if/when necessary.

Arguments:

graph: The graph object to write.

outstream: The file to write to. It should be opened and writable.

Returns:

Error code.

Time complexity: O(|V|+|E|+|A|), |V| is the number of vertices, |E| is the number of edges, |A| the
number of attributes (vertex + edge) in the graph if there are attribute handlers installed.

See also:

igraph_read_graph_pajek() for reading Pajek graphs,
igraph_write_graph_graphml() for writing a graph in GraphML format, this suites
igraph graphs better.

575

Reading and writing
graphs from and to files

Example 21.9. File examples/simple/igraph_write_graph_pajek.c

UCINET's DL file format

igraph_read_graph_dl — Reads a file in the DL for-
mat of UCINET.

igraph_error_t igraph_read_graph_dl(igraph_t *graph, FILE *instream,
 igraph_bool_t directed);

This is a simple textual file format used by UCINET. See http://www.analytictech.com/net-
works/dataentry.htm for examples. All the forms described here are supported by igraph. Vertex names
and edge weights are also supported and they are added as attributes. (If an attribute handler is at-
tached.)

Note the specification does not mention whether the format is case sensitive or not. For igraph DL
files are case sensitive, i.e. Larry and larry are not the same.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The stream to read the DL file from.

directed: Logical scalar, whether to create a directed file.

Returns:

Error code.

Time complexity: linear in terms of the number of edges and vertices, except for the matrix format,
which is quadratic in the number of vertices.

Example 21.10. File examples/simple/igraph_read_graph_dl.c

Graphviz format

igraph_write_graph_dot — Write the graph to a
stream in DOT format.

igraph_error_t igraph_write_graph_dot(const igraph_t *graph, FILE* outstream);

DOT is the format used by the widely known GraphViz software, see http://www.graphviz.org for de-
tails. The grammar of the DOT format can be found here: http://www.graphviz.org/doc/info/lang.html

This is only a preliminary implementation, no visualization information is written.

This format is meant solely for interoperability with Graphviz. It is not recommended for data ex-
change or archival.

576

http://www.analytictech.com/networks/dataentry.htm
http://www.analytictech.com/networks/dataentry.htm
http://www.graphviz.org
http://www.graphviz.org/doc/info/lang.html

Reading and writing
graphs from and to files

Arguments:

graph: The graph to write to the stream.

outstream: The stream to write the file to.

Time complexity: should be proportional to the number of characters written to the file.

See also:

igraph_write_graph_graphml() for a more modern format.

Example 21.11. File examples/simple/dot.c

LEDA format

igraph_write_graph_leda — Write a graph in LEDA
native graph format.

igraph_error_t igraph_write_graph_leda(const igraph_t *graph, FILE *outstream,
 const char *vertex_attr_name,
 const char *edge_attr_name);

This function writes a graph to an output stream in LEDA format. See http://www.algorithmic-solu-
tions.info/leda_guide/graphs/leda_native_graph_fileformat.html

The support for the LEDA format is very basic at the moment; igraph writes only the LEDA graph
section which supports one selected vertex and edge attribute and no layout information or visual
attributes.

Arguments:

graph: The graph to write to the stream.

outstream: The stream.

vertex_attr_name: The name of the vertex attribute whose values are to be stored in the out-
put, or NULL if no vertex attribute should be stored.

edge_attr_name: The name of the edge attribute whose values are to be stored in the output,
or NULL if no edge attribute should be stored.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices and edges in the graph.

Convenience functions for locale change

igraph_enter_safelocale — Temporarily set the C
locale.

577

http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

Reading and writing
graphs from and to files

igraph_error_t igraph_enter_safelocale(igraph_safelocale_t *loc);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

igraph's foreign format readers and writers require a locale that uses a decimal point instead of a
decimal comma. This is a convenience function that temporarily sets the C locale so that readers and
writers would work correctly. It must be paired with a call to igraph_exit_safelocale(),
otherwise a memory leak will occur.

This function tries to set the locale for the current thread only on a best-effort basis. Restricting the
locale change to a single thread is not supported on all platforms. In these cases, this function falls
back to using the standard setlocale() function, which affects the entire process and is not safe
to use from concurrent threads.

It is generally recommended to run igraph within a thread that has been permanently set to the C
locale using system-specific means. This is a convenience function for situations when this is not
easily possible because the programmer is not in control of the process, such as when developing
plugins/extensions. Note that processes start up in the C locale by default, thus nothing needs to be
done unless the locale has been changed away from the default.

Arguments:

loc: Pointer to a variable of type igraph_safelocale_t. The current locale will be stored
here, so that it can be restored using igraph_exit_safelocale().

Returns:

Error code.

Example 21.12. File examples/simple/safelocale.c

igraph_exit_safelocale — Temporarily set the C
locale.

void igraph_exit_safelocale(igraph_safelocale_t *loc);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

Restores a locale saved by igraph_enter_safelocale() and deallocates all associated data.
This function must be paired with a call to igraph_enter_safelocale().

Arguments:

loc: A variable of type igraph_safelocale_t, originally set by igraph_enter_safe-
locale().

578

Reading and writing
graphs from and to files

Deprecated functions

igraph_read_graph_dimacs — Read a graph in DI-
MACS format (deprecated alias).

igraph_error_t igraph_read_graph_dimacs(igraph_t *graph, FILE *instream,
 igraph_strvector_t *problem,
 igraph_vector_int_t *label,
 igraph_integer_t *source,
 igraph_integer_t *target,
 igraph_vector_t *capacity,
 igraph_bool_t directed);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_read_graph_dimacs_flow() instead.

igraph_write_graph_dimacs — Write a graph in DI-
MACS format (deprecated alias).

igraph_error_t igraph_write_graph_dimacs(const igraph_t *graph, FILE *outstream,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

Warning

Deprecated since version 0.10.0. Please do not use this function in new code; use
igraph_write_graph_dimacs_flow() instead.

579

Chapter 22. Maximum flows,
minimum cuts and related measures
Maximum flows
igraph_maxflow — Maximum network flow between a
pair of vertices.

igraph_error_t igraph_maxflow(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_t *flow, igraph_vector_int_t *cut,
 igraph_vector_int_t *partition, igraph_vector_int_t *partition2,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity,
 igraph_maxflow_stats_t *stats);

This function implements the Goldberg-Tarjan algorithm for calculating value of the maximum flow
in a directed or undirected graph. The algorithm was given in Andrew V. Goldberg, Robert E. Tarjan:
A New Approach to the Maximum-Flow Problem, Journal of the ACM, 35(4), 921-940, 1988 https://
doi.org/10.1145/48014.61051.

The input of the function is a graph, a vector of real numbers giving the capacity of the edges and two
vertices of the graph, the source and the target. A flow is a function assigning positive real numbers
to the edges and satisfying two requirements: (1) the flow value is less than the capacity of the edge
and (2) at each vertex except the source and the target, the incoming flow (i.e. the sum of the flow
on the incoming edges) is the same as the outgoing flow (i.e. the sum of the flow on the outgoing
edges). The value of the flow is the incoming flow at the target vertex. The maximum flow is the flow
with the maximum value.

Arguments:

graph: The input graph, either directed or undirected.

value: Pointer to a real number, the value of the maximum will be placed here, unless it
is a null pointer.

flow: If not a null pointer, then it must be a pointer to an initialized vector. The vector
will be resized, and the flow on each edge will be placed in it, in the order of the
edge IDs. For undirected graphs this argument is bit trickier, since for these the
flow direction is not predetermined by the edge direction. For these graphs the
elements of the flow vector can be negative, this means that the flow goes from
the bigger vertex ID to the smaller one. Positive values mean that the flow goes
from the smaller vertex ID to the bigger one.

cut: A null pointer or a pointer to an initialized vector. If not a null pointer, then the
minimum cut corresponding to the maximum flow is stored here, i.e. all edge IDs
that are part of the minimum cut are stored in the vector.

partition: A null pointer or a pointer to an initialized vector. If not a null pointer, then the
first partition of the minimum cut that corresponds to the maximum flow will be
placed here. The first partition is always the one that contains the source vertex.

partition2: A null pointer or a pointer to an initialized vector. If not a null pointer, then the
second partition of the minimum cut that corresponds to the maximum flow will be
placed here. The second partition is always the one that contains the target vertex.

580

https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051

Maximum flows, minimum
cuts and related measures

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector containing the capacity of the edges. If NULL, then every edge is considered
to have capacity 1.0.

stats: Counts of the number of different operations preformed by the algorithm are stored
here.

Returns:

Error code.

Time complexity: O(|V|^3). In practice it is much faster, but i cannot prove a better lower bound for the
data structure i've used. In fact, this implementation runs much faster than the hi_pr implementation
discussed in B. V. Cherkassky and A. V. Goldberg: On implementing the push-relabel method for the
maximum flow problem, (Algorithmica, 19:390--410, 1997) on all the graph classes I've tried.

See also:

igraph_mincut_value(), igraph_edge_connectivity(), igraph_ver-
tex_connectivity() for properties based on the maximum flow.

Example 22.1. File examples/simple/flow.c

Example 22.2. File examples/simple/flow2.c

igraph_maxflow_value — Maximum flow in a net-
work with the push/relabel algorithm.

igraph_error_t igraph_maxflow_value(const igraph_t *graph, igraph_real_t *value,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity,
 igraph_maxflow_stats_t *stats);

This function implements the Goldberg-Tarjan algorithm for calculating value of the maximum flow
in a directed or undirected graph. The algorithm was given in Andrew V. Goldberg, Robert E. Tarjan:
A New Approach to the Maximum-Flow Problem, Journal of the ACM, 35(4), 921-940, 1988 https://
doi.org/10.1145/48014.61051.

The input of the function is a graph, a vector of real numbers giving the capacity of the edges and two
vertices of the graph, the source and the target. A flow is a function assigning positive real numbers
to the edges and satisfying two requirements: (1) the flow value is less than the capacity of the edge
and (2) at each vertex except the source and the target, the incoming flow (i.e. the sum of the flow
on the incoming edges) is the same as the outgoing flow (i.e. the sum of the flow on the outgoing
edges). The value of the flow is the incoming flow at the target vertex. The maximum flow is the flow
with the maximum value.

According to a theorem by Ford and Fulkerson (L. R. Ford Jr. and D. R. Fulkerson. Maximal flow
through a network. Canadian J. Math., 8:399-404, 1956.) the maximum flow between two vertices is
the same as the minimum cut between them (also called the minimum s-t cut). So igraph_st_min-
cut_value() gives the same result in all cases as igraph_maxflow_value().

Note that the value of the maximum flow is the same as the minimum cut in the graph.

581

https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051

Maximum flows, minimum
cuts and related measures

Arguments:

graph: The input graph, either directed or undirected.

value: Pointer to a real number, the result will be placed here.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector containing the capacity of the edges. If NULL, then every edge is considered
to have capacity 1.0.

stats: Counts of the number of different operations preformed by the algorithm are stored
here.

Returns:

Error code.

Time complexity: O(|V|^3).

See also:

igraph_maxflow() to calculate the actual flow. igraph_mincut_value(),
igraph_edge_connectivity(), igraph_vertex_connectivity() for properties
based on the maximum flow.

igraph_dominator_tree — Calculates the dominator
tree of a flowgraph.

igraph_error_t igraph_dominator_tree(const igraph_t *graph,
 igraph_integer_t root,
 igraph_vector_int_t *dom,
 igraph_t *domtree,
 igraph_vector_int_t *leftout,
 igraph_neimode_t mode);

A flowgraph is a directed graph with a distinguished start (or root) vertex r, such that for any vertex
v, there is a path from r to v. A vertex v dominates another vertex w (not equal to v), if every path
from r to w contains v. Vertex v is the immediate dominator or w, v=idom(w), if v dominates w and
every other dominator of w dominates v. The edges {(idom(w), w)| w is not r} form a directed tree,
rooted at r, called the dominator tree of the graph. Vertex v dominates vertex w if and only if v is an
ancestor of w in the dominator tree.

This function implements the Lengauer-Tarjan algorithm to construct the dominator tree of a directed
graph. For details please see Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for finding
dominators in a flowgraph, ACM Transactions on Programming Languages and Systems (TOPLAS)
I/1, 121--141, 1979. https://doi.org/10.1145/357062.357071

Arguments:

graph: A directed graph. If it is not a flowgraph, and it contains some vertices not reachable
from the root vertex, then these vertices will be collected in the leftout vector.

root: The ID of the root (or source) vertex, this will be the root of the tree.

582

https://doi.org/10.1145/357062.357071

Maximum flows, minimum
cuts and related measures

dom: Pointer to an initialized vector or a null pointer. If not a null pointer, then the immediate
dominator of each vertex will be stored here. For vertices that are not reachable from
the root, -2 is stored here. For the root vertex itself, -1 is added.

domtree: Pointer to an uninitialized igraph_t, or NULL. If not a null pointer, then the dominator
tree is returned here. The graph contains the vertices that are unreachable from the
root (if any), these will be isolates. Graph and vertex attributes are preserved, but edge
attributes are discarded.

leftout: Pointer to an initialized vector object, or NULL. If not NULL, then the IDs of the vertices
that are unreachable from the root vertex (and thus not part of the dominator tree) are
stored here.

mode: Constant, must be IGRAPH_IN or IGRAPH_OUT. If it is IGRAPH_IN, then all direc-
tions are considered as opposite to the original one in the input graph.

Returns:

Error code.

Time complexity: very close to O(|E|+|V|), linear in the number of edges and vertices. More precisely,
it is O(|V|+|E|alpha(|E|,|V|)), where alpha(|E|,|V|) is a functional inverse of Ackermann's function.

Example 22.3. File examples/simple/dominator_tree.c

igraph_maxflow_stats_t — Data structure holding
statistics from the push-relabel maximum flow solver.

typedef struct {
 igraph_integer_t nopush, norelabel, nogap, nogapnodes, nobfs;

Arguments:

nopush: The number of push operations performed.

norelabel: The number of relabel operarions performed.

nogap: The number of times the gap heuristics was used.

nogapnodes: The total number of vertices that were omitted form further calculations because
of the gap heuristics.

nobfs: The number of times the reverse BFS was run to assign good values to the height
function. This includes an initial run before the whole algorithm, so it is always
at least one.

Cuts and minimum cuts

igraph_st_mincut — Minimum cut between a source
and a target vertex.

583

Maximum flows, minimum
cuts and related measures

igraph_error_t igraph_st_mincut(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_int_t *cut, igraph_vector_int_t *partition,
 igraph_vector_int_t *partition2,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

Finds the edge set that has the smallest total capacity among all edge sets that disconnect the source
and target vertices.

The calculation is performed using maximum flow techniques, by calling igraph_maxflow().

Arguments:

graph: The input graph.

value: Pointer to a real variable, the value of the cut is stored here.

cut: Pointer to an initialized vector, the edge IDs that are included in the cut are stored
here. This argument is ignored if it is a null pointer.

partition: Pointer to an initialized vector, the vertex IDs of the vertices in the first partition of
the cut are stored here. The first partition is always the one that contains the source
vertex. This argument is ignored if it is a null pointer.

partition2: Pointer to an initialized vector, the vertex IDs of the vertices in the second partition
of the cut are stored here. The second partition is always the one that contains the
target vertex. This argument is ignored if it is a null pointer.

source: Integer, the id of the source vertex.

target: Integer, the id of the target vertex.

capacity: Vector containing the capacity of the edges. If a null pointer, then every edge is
considered to have capacity 1.0.

Returns:

Error code.

See also:

igraph_maxflow().

Time complexity: see igraph_maxflow().

igraph_st_mincut_value — The minimum s-t cut in
a graph.

igraph_error_t igraph_st_mincut_value(const igraph_t *graph, igraph_real_t *value,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

The minimum s-t cut in a weighted (=valued) graph is the total minimum edge weight needed to re-
move from the graph to eliminate all paths from a given vertex (source) to another vertex (tar-
get). Directed paths are considered in directed graphs, and undirected paths in undirected graphs.

584

Maximum flows, minimum
cuts and related measures

The minimum s-t cut between two vertices is known to be same as the maximum flow between these
two vertices. So this function calls igraph_maxflow_value() to do the calculation.

Arguments:

graph: The input graph.

value: Pointer to a real variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Pointer to the capacity vector, it should contain non-negative numbers and its length
should be the same the the number of edges in the graph. It can be a null pointer, then
every edge has unit capacity.

Returns:

Error code.

Time complexity: O(|V|^3), see also the discussion for igraph_maxflow_value(), |V| is the
number of vertices.

igraph_all_st_cuts — List all edge-cuts between
two vertices in a directed graph

igraph_error_t igraph_all_st_cuts(const igraph_t *graph,
 igraph_vector_int_list_t *cuts,
 igraph_vector_int_list_t *partition1s,
 igraph_integer_t source,
 igraph_integer_t target);

This function lists all edge-cuts between a source and a target vertex. Every cut is listed exactly once.
The implemented algorithm is described in JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts
in graphs, Algorithmica 15, 351--372, 1996.

Arguments:

graph: The input graph, is must be directed.

cuts: An initialized list of integer vectors, the cuts are stored here. Each vector will
contain the IDs of the edges in the cut. This argument is ignored if it is a null
pointer.

partition1s: An initialized list of integer vectors, the list of vertex sets generating the actual
edge cuts are stored here. Each vector contains a set of vertex IDs. If X is such a
set, then all edges going from X to the complement of X form an (s, t) edge-cut
in the graph. This argument is ignored if it is a null pointer.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

585

Maximum flows, minimum
cuts and related measures

Time complexity: O(n(|V|+|E|)), where |V| is the number of vertices, |E| is the number of edges, and
n is the number of cuts.

igraph_all_st_mincuts — All minimum s-t cuts of a
directed graph.

igraph_error_t igraph_all_st_mincuts(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_int_list_t *cuts,
 igraph_vector_int_list_t *partition1s,
 igraph_integer_t source,
 igraph_integer_t target,
 const igraph_vector_t *capacity);

This function lists all edge cuts between two vertices, in a directed graph, with minimum total capacity.
Possibly, multiple cuts may have the same total capacity, although there is often only one minimum cut
in weighted graphs. It is recommended to supply integer-values capacities. Otherwise, not all minimum
cuts may be detected because of numerical roundoff errors. The implemented algorithm is described in
JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351--372, 1996.

Arguments:

graph: The input graph, it must be directed.

value: Pointer to a real number or NULL. The value of the minimum cut is stored here,
unless it is a null pointer.

cuts: Pointer to initialized list of integer vectors or NULL. The cuts are stored here as
lists of vertex IDs.

partition1s: Pointer to an initialized list of integer vectors or NULL. The list of vertex sets,
generating the actual edge cuts, are stored here. Each vector contains a set of
vertex IDs. If X is such a set, then all edges going from X to the complement of
X form an (s,t) edge-cut in the graph.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector of edge capacities. All capacities must be strictly positive. If this is a null
pointer, then all edges are assumed to have capacity one.

Returns:

Error code.

Time complexity: O(n(|V|+|E|))+O(F), where |V| is the number of vertices, |E| is the number of
edges, and n is the number of cuts; O(F) is the time complexity of the maximum flow algorithm, see
igraph_maxflow().

Example 22.4. File examples/simple/igraph_all_st_mincuts.c

igraph_mincut — Calculates the minimum cut in a
graph.

586

Maximum flows, minimum
cuts and related measures

igraph_error_t igraph_mincut(const igraph_t *graph,
 igraph_real_t *value,
 igraph_vector_int_t *partition,
 igraph_vector_int_t *partition2,
 igraph_vector_int_t *cut,
 const igraph_vector_t *capacity);

This function calculates the minimum cut in a graph. The minimum cut is the minimum set of edges
which needs to be removed to disconnect the graph. The minimum is calculated using the weights
(capacity) of the edges, so the cut with the minimum total capacity is calculated.

For directed graphs an implementation based on calculating 2|V|-2 maximum flows is used. For undi-
rected graphs we use the Stoer-Wagner algorithm, as described in M. Stoer and F. Wagner: A simple
min-cut algorithm, Journal of the ACM, 44 585-591, 1997.

The first implementation of the actual cut calculation for undirected graphs was made by Gregory
Benison, thanks Greg.

Arguments:

graph: The input graph.

value: Pointer to a float, the value of the cut will be stored here.

partition: Pointer to an initialized vector, the ids of the vertices in the first partition after
separating the graph will be stored here. The vector will be resized as needed. This
argument is ignored if it is a NULL pointer.

partition2: Pointer to an initialized vector the ids of the vertices in the second partition will
be stored here. The vector will be resized as needed. This argument is ignored if
it is a NULL pointer.

cut: Pointer to an initialized vector, the IDs of the edges in the cut will be stored here.
This argument is ignored if it is a NULL pointer.

capacity: A numeric vector giving the capacities of the edges. If a null pointer then all edges
have unit capacity.

Returns:

Error code.

See also:

igraph_mincut_value(), a simpler interface for calculating the value of the cut only.

Time complexity: for directed graphs it is O(|V|^4), but see the remarks at igraph_maxflow().
For undirected graphs it is O(|V||E|+|V|^2 log|V|). |V| and |E| are the number of vertices and edges
respectively.

Example 22.5. File examples/simple/igraph_mincut.c

igraph_mincut_value — The minimum edge cut in a
graph.

587

Maximum flows, minimum
cuts and related measures

igraph_error_t igraph_mincut_value(const igraph_t *graph, igraph_real_t *res,
 const igraph_vector_t *capacity);

The minimum edge cut in a graph is the total minimum weight of the edges needed to remove from the
graph to make the graph not strongly connected. (If the original graph is not strongly connected then
this is zero.) Note that in undirected graphs strong connectedness is the same as weak connectedness.

The minimum cut can be calculated with maximum flow techniques, although the current implemen-
tation does this only for directed graphs and a separate non-flow based implementation is used for
undirected graphs. See Mechthild Stoer and Frank Wagner: A simple min-cut algorithm, Journal of
the ACM 44 585--591, 1997. For directed graphs the maximum flow is calculated between a fixed
vertex and all the other vertices in the graph and this is done in both directions. Then the minimum
is taken to get the minimum cut.

Arguments:

graph: The input graph.

res: Pointer to a real variable, the result will be stored here.

capacity: Pointer to the capacity vector, it should contain the same number of non-negative
numbers as the number of edges in the graph. If a null pointer then all edges will have
unit capacity.

Returns:

Error code.

See also:

igraph_mincut(), igraph_maxflow_value(), igraph_st_mincut_value().

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see
also the discussion at the documentation of igraph_maxflow_value().

igraph_gomory_hu_tree — Gomory-Hu tree of a
graph.

igraph_error_t igraph_gomory_hu_tree(const igraph_t *graph, igraph_t *tree,
 igraph_vector_t *flows, const igraph_vector_t *capacity);

The Gomory-Hu tree is a concise representation of the value of all the maximum flows (or minimum
cuts) in a graph. The vertices of the tree correspond exactly to the vertices of the original graph in the
same order. Edges of the Gomory-Hu tree are annotated by flow values. The value of the maximum
flow (or minimum cut) between an arbitrary (u,v) vertex pair in the original graph is then given by the
minimum flow value (i.e. edge annotation) along the shortest path between u and v in the Gomory-Hu
tree.

This implementation uses Gusfield's algorithm to construct the Gomory-Hu tree. See the following
paper for more details:

Reference:

588

Maximum flows, minimum
cuts and related measures

Gusfield D: Very simple methods for all pairs network flow analysis. SIAM J Comput 19(1):143-155,
1990 https://doi.org/10.1137/0219009.

Arguments:

graph: The input graph.

tree: Pointer to an uninitialized graph; the result will be stored here.

flows: Pointer to an uninitialized vector; the flow values corresponding to each edge in the
Gomory-Hu tree will be returned here. You may pass a NULL pointer here if you are
not interested in the flow values.

capacity: Vector containing the capacity of the edges. If NULL, then every edge is considered
to have capacity 1.0.

Returns:

Error code.

Time complexity: O(|V|^4) since it performs a max-flow calculation between vertex zero and every
other vertex and max-flow is O(|V|^3).

See also:

igraph_maxflow()

Connectivity

igraph_st_edge_connectivity — Edge connectivi-
ty of a pair of vertices.

igraph_error_t igraph_st_edge_connectivity(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

The edge connectivity of two vertices (source and target) is the minimum number of edges that
have to be deleted from the graph to eliminate all paths from source to target.

This function uses the maximum flow algorithm to calculate the edge connectivity.

Arguments:

graph: The input graph, it has to be directed.

res: Pointer to an integer, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

589

https://doi.org/10.1137/0219009

Maximum flows, minimum
cuts and related measures

Time complexity: O(|V|^3).

See also:

igraph_maxflow_value(), igraph_edge_disjoint_paths(),
igraph_edge_connectivity(), igraph_st_vertex_connectivity(),
igraph_vertex_connectivity().

igraph_edge_connectivity — The minimum edge
connectivity in a graph.

igraph_error_t igraph_edge_connectivity(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This is the minimum of the edge connectivity over all pairs of vertices in the graph.

The edge connectivity of a graph is the same as group adhesion as defined in Douglas R. White and
Frank Harary: The cohesiveness of blocks in social networks: node connectivity and conditional den-
sity, Sociological Methodology 31:305--359, 2001 https://doi.org/10.1111/0081-1750.00098.

Arguments:

graph: The input graph.

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of
the vertices. If the graph is not (strongly) connected then the connectivity is obviously
zero. Otherwise if the minimum degree is one then the edge connectivity is also one.
It is a good idea to perform these checks, as they can be done quickly compared to the
connectivity calculation itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see
also the discussion at the documentation of igraph_maxflow_value().

See also:

igraph_st_edge_connectivity(), igraph_maxflow_value(), igraph_ver-
tex_connectivity().

igraph_st_vertex_connectivity — The vertex
connectivity of a pair of vertices.

igraph_error_t igraph_st_vertex_connectivity(const igraph_t *graph,
 igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target,

590

https://doi.org/10.1111/0081-1750.00098

Maximum flows, minimum
cuts and related measures

 igraph_vconn_nei_t neighbors);

The vertex connectivity of two vertices (source and target) is the minimum number of vertices
that must be deleted to eliminate all paths from source to target. Directed paths are considered
in directed graphs.

The vertex connectivity of a pair is the same as the number of different (i.e. node-independent) paths
from source to target, assuming no direct edges between them.

The current implementation uses maximum flow calculations to obtain the result.

Arguments:

graph: The input graph.

res: Pointer to an integer, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

neighbors: A constant giving what to do if the two vertices are connected. Possible values:
IGRAPH_VCONN_NEI_ERROR, stop with an error message, IGRAPH_VCON-
N_NEI_NEGATIVE, return -1. IGRAPH_VCONN_NEI_NUMBER_OF_NODES,
return the number of nodes. IGRAPH_VCONN_NEI_IGNORE, ignore the fact that
the two vertices are connected and calculate the number of vertices needed to elim-
inate all paths except for the trivial (direct) paths between source and vertex.

Returns:

Error code.

Time complexity: O(|V|^3), but see the discussion at igraph_maxflow_value().

See also:

igraph_vertex_connectivity(), igraph_edge_connectivity(),
igraph_maxflow_value().

igraph_vertex_connectivity — The vertex con-
nectivity of a graph.

igraph_error_t igraph_vertex_connectivity(
 const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

The vertex connectivity of a graph is the minimum vertex connectivity along each pairs of vertices
in the graph.

The vertex connectivity of a graph is the same as group cohesion as defined in Douglas R. White
and Frank Harary: The cohesiveness of blocks in social networks: node connectivity and conditional
density, Sociological Methodology 31:305--359, 2001 https://doi.org/10.1111/0081-1750.00098.

Arguments:

graph: The input graph.

591

https://doi.org/10.1111/0081-1750.00098

Maximum flows, minimum
cuts and related measures

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of
the vertices. If the graph is not (strongly) connected then the connectivity is obviously
zero. Otherwise if the minimum degree is one then the vertex connectivity is also one.
It is a good idea to perform these checks, as they can be done quickly compared to the
connectivity calculation itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(|V|^5).

See also:

igraph_st_vertex_connectivity(), igraph_maxflow_value(), and
igraph_edge_connectivity().

Edge- and vertex-disjoint paths

igraph_edge_disjoint_paths — The maximum
number of edge-disjoint paths between two vertices.

igraph_error_t igraph_edge_disjoint_paths(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

A set of paths between two vertices is called edge-disjoint if they do not share any edges. The maxi-
mum number of edge-disjoint paths are calculated by this function using maximum flow techniques.
Directed paths are considered in directed graphs.

Note that the number of disjoint paths is the same as the edge connectivity of the two vertices using
uniform edge weights.

Arguments:

graph: The input graph, can be directed or undirected.

res: Pointer to an integer variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

Time complexity: O(|V|^3), but see the discussion at igraph_maxflow_value().

See also:

igraph_vertex_disjoint_paths(), igraph_st_edge_connectivity(),
igraph_maxflow_value().

592

Maximum flows, minimum
cuts and related measures

igraph_vertex_disjoint_paths — Maximum num-
ber of vertex-disjoint paths between two vertices.

igraph_error_t igraph_vertex_disjoint_paths(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

A set of paths between two vertices is called vertex-disjoint if they share no vertices, other than the
endpoints. This function computes the largest number of such paths that can be constructed between
a source and a target vertex. The calculation is performed by using maximum flow techniques.

When there are no edges from the source to the target, the number of vertex-disjoint paths is the
same as the vertex connectivity of the two vertices. When some edges are present, each one of them
contributes one extra path.

Arguments:

graph: The input graph.

res: Pointer to an integer variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

Time complexity: O(|V|^3).

See also:

igraph_edge_disjoint_paths(), igraph_st_vertex_connectivity(),
igraph_maxflow_value().

Graph adhesion and cohesion

igraph_adhesion — Graph adhesion, this is (almost)
the same as edge connectivity.

igraph_error_t igraph_adhesion(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This quantity is defined by White and Harary in The cohesiveness of blocks in social networks: node
connectivity and conditional density, (Sociological Methodology 31:305--359, 2001) and basically it
is the edge connectivity of the graph with uniform edge weights.

Arguments:

593

Maximum flows, minimum
cuts and related measures

graph: The input graph, either directed or undirected.

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of
the vertices. If the graph is not (strongly) connected then the adhesion is obviously zero.
Otherwise if the minimum degree is one then the adhesion is also one. It is a good idea
to perform these checks, as they can be done quickly compared to the edge connectivity
calculation itself. They were suggested by Peter McMahan, thanks Peter. *

Returns:

Error code.

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see
also the discussion at the documentation of igraph_maxflow_value().

See also:

igraph_cohesion(), igraph_maxflow_value(), igraph_edge_connectivi-
ty(), igraph_mincut_value().

igraph_cohesion — Graph cohesion, this is the
same as vertex connectivity.

igraph_error_t igraph_cohesion(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This quantity was defined by White and Harary in “The cohesiveness of blocks in social networks:
node connectivity and conditional density”, (Sociological Methodology 31:305--359, 2001) and it is
the same as the vertex connectivity of a graph.

Arguments:

graph: The input graph.

res: Pointer to an integer variable, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of
the vertices. If the graph is not (strongly) connected then the cohesion is obviously zero.
Otherwise if the minimum degree is one then the cohesion is also one. It is a good idea to
perform these checks, as they can be done quickly compared to the vertex connectivity
calculation itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(|V|^4), |V| is the number of vertices. In practice it is more like O(|V|^2), see
igraph_maxflow_value().

See also:

igraph_vertex_connectivity(), igraph_adhesion(), igraph_maxflow_val-
ue().

594

Maximum flows, minimum
cuts and related measures

Cohesive blocks

igraph_cohesive_blocks — Identifies the hierarchi-
cal cohesive block structure of a graph.

igraph_error_t igraph_cohesive_blocks(const igraph_t *graph,
 igraph_vector_int_list_t *blocks,
 igraph_vector_int_t *cohesion,
 igraph_vector_int_t *parent,
 igraph_t *block_tree);

Cohesive blocking is a method of determining hierarchical subsets of graph vertices based on their
structural cohesion (or vertex connectivity). For a given graph G, a subset of its vertices S is said to
be maximally k-cohesive if there is no superset of S with vertex connectivity greater than or equal
to k. Cohesive blocking is a process through which, given a k-cohesive set of vertices, maximally l-
cohesive subsets are recursively identified with l>k. Thus a hiearchy of vertex subsets is found, with
the entire graph G at its root.

This function implements cohesive blocking and calculates the complete cohesive block hierarchy of
a graph.

See the following reference for details:

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social
groups. American Sociological Review, 68(1):103--127, Feb 2003. https://doi.org/10.2307/3088904

Arguments:

graph: The input graph. It must be undirected and simple. See igraph_is_simple().

blocks: If not a null pointer, then it must be an initialized list of integers vectors; the co-
hesive blocks will be stored here. Each block is encoded with a vector of type
igraph_vector_int_t that contains the vertex IDs of the block.

cohesion: If not a null pointer, then it must be an initialized vector and the cohesion of the
blocks is stored here, in the same order as the blocks in the blocks vector list.

parent: If not a null pointer, then it must be an initialized vector and the block hierarchy is
stored here. For each block, the ID (i.e. the position in the blocks vector list) of
its parent block is stored. For the top block in the hierarchy, -1 is stored.

block_tree: If not a null pointer, then it must be a pointer to an uninitialized graph, and the
block hierarchy is stored here as an igraph graph. The vertex IDs correspond to the
order of the blocks in the blocks vector.

Returns:

Error code.

Time complexity: TODO.

Example 22.6. File examples/simple/cohesive_blocks.c

595

https://doi.org/10.2307/3088904

Chapter 23. Vertex separators
igraph_is_separator — Would removing
this set of vertices disconnect the graph?

igraph_error_t igraph_is_separator(const igraph_t *graph,
 const igraph_vs_t candidate,
 igraph_bool_t *res);

A vertex set S is a separator if there are vertices u and v in the graph such that all paths between u
and v pass through some vertices in S.

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

candidate: The candidate separator.

res: Pointer to a boolean variable, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number vertices and edges.

Example 23.1. File examples/simple/igraph_is_separator.c

igraph_is_minimal_separator — Decides
whether a set of vertices is a minimal separa-
tor.

igraph_error_t igraph_is_minimal_separator(const igraph_t *graph,
 const igraph_vs_t candidate,
 igraph_bool_t *res);

A vertex separator S is minimal is no proper subset of S is also a separator.

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

candidate: The candidate minimal separators.

res: Pointer to a boolean variable, the result is stored here.

Returns:

Error code.

596

Vertex separators

Time complexity: O(|V|+|E|), linear in the number vertices and edges.

Example 23.2. File examples/simple/
igraph_is_minimal_separator.c

igraph_all_minimal_st_separators —
List all vertex sets that are minimal (s,t) sepa-
rators for some s and t.

igraph_error_t igraph_all_minimal_st_separators(
 const igraph_t *graph, igraph_vector_int_list_t *separators
);

This function lists all vertex sets that are minimal (s,t) separators for some (s,t) vertex pair.

Note that some vertex sets returned by this function may not be minimal with respect to disconnecting
the graph (or increasing the number of connected components). Take for example the 5-vertex graph
with edges 0-1-2-3-4-1. This function returns the vertex sets {1}, {2,4} and {1,3}. Notice
that {1,3} is not minimal with respect to disconnecting the graph, as {1} would be sufficient for
that. However, it is minimal with respect to separating vertices 2 and 4.

See more about the implemented algorithm in Anne Berry, Jean-Paul Bordat and Olivier Cogis: Gen-
erating All the Minimal Separators of a Graph, In: Peter Widmayer, Gabriele Neyer and Stephan
Eidenbenz (editors): Graph-theoretic concepts in computer science, 1665, 167--172, 1999. Springer.
https://doi.org/10.1007/3-540-46784-X_17

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

separators: Pointer to a list of integer vectors, the separators will be stored here.

Returns:

Error code.

See also:

igraph_minimum_size_separators()

Time complexity: O(n|V|^3), |V| is the number of vertices, n is the number of separators.

Example 23.3. File examples/simple/
igraph_minimal_separators.c

igraph_minimum_size_separators — Find
all minimum size separating vertex sets.

597

https://doi.org/10.1007/3-540-46784-X_17

Vertex separators

igraph_error_t igraph_minimum_size_separators(
 const igraph_t *graph, igraph_vector_int_list_t *separators
);

This function lists all separator vertex sets of minimum size. A vertex set is a separator if its removal
disconnects the graph.

The implementation is based on the following paper: Arkady Kanevsky: Finding all mini-
mum-size separating vertex sets in a graph, Networks 23, 533--541, 1993. https://doi.org/10.1002/
net.3230230604

Arguments:

graph: The input graph, which must be undirected.

separators: An initialized list of integer vectors, the separators are stored here. It is a list of
pointers to igraph_vector_int_t objects. Each vector will contain the IDs of the
vertices in the separator. The separators are returned in an arbitrary order.

Returns:

Error code.

Time complexity: TODO.

Example 23.4. File examples/simple/
igraph_minimum_size_separators.c

igraph_even_tarjan_reduction — Even-
Tarjan reduction of a graph.

igraph_error_t igraph_even_tarjan_reduction(const igraph_t *graph, igraph_t *graphbar,
 igraph_vector_t *capacity);

A digraph is created with twice as many vertices and edges. For each original vertex i, two vertices
i' = i and i'' = i' + n are created, with a directed edge from i' to i''. For each original
directed edge from i to j, two new edges are created, from i' to j'' and from i'' to j'.

This reduction is used in the paper (observation 2): Arkady Kanevsky: Finding all minimum-size
separating vertex sets in a graph, Networks 23, 533--541, 1993.

The original paper where this reduction was conceived is Shimon Even and R. Endre Tar-
jan: Network Flow and Testing Graph Connectivity, SIAM J. Comput., 4(4), 507–518. https://
doi.org/10.1137/0204043

Arguments:

graph: A graph. Although directness is not checked, this function is commonly used only on
directed graphs.

graphbar: Pointer to a new directed graph that will contain the reduction, with twice as many
vertices and edges.

capacity: Pointer to an initialized vector or a null pointer. If not a null pointer, then it will be
filled the capacity from the reduction: the first |E| elements are 1, the remaining |E| are
equal to |V| (which is used to indicate infinity).

598

https://doi.org/10.1002/net.3230230604
https://doi.org/10.1002/net.3230230604
https://doi.org/10.1137/0204043
https://doi.org/10.1137/0204043

Vertex separators

Returns:

Error code.

Time complexity: O(|E|+|V|).

Example 23.5. File examples/simple/even_tarjan.c

599

Chapter 24. Detecting community
structure

Common functions related to community
structure

igraph_modularity — Calculates the modularity of a
graph with respect to some clusters or vertex types.

igraph_error_t igraph_modularity(const igraph_t *graph,
 const igraph_vector_int_t *membership,
 const igraph_vector_t *weights,
 const igraph_real_t resolution,
 const igraph_bool_t directed,
 igraph_real_t *modularity);

The modularity of a graph with respect to some clustering of the vertices (or assignment of vertex
types) measures how strongly separated the different clusters are from each other compared to a ran-
dom null model. It is defined as

Q = 1/(2m) sum_ij (A_ij - # k_i k_j / (2m)) #(c_i,c_j),

where m is the number of edges, A_ij is the adjacency matrix, k_i is the degree of vertex i, c_i
is the cluster that vertex i belongs to (or its vertex type), #(i,j)=1 if i=j and 0 otherwise, and
the sum goes over all i, j pairs of vertices. Note that in this formula, the diagonal of the adjacency
matrix contains twice the number of self-loops.

The resolution parameter # allows weighting the random null model, which might be useful when
finding partitions with a high modularity. Maximizing modularity with higher values of the resolution
parameter typically results in more, smaller clusters when finding partitions with a high modularity.
Lower values typically results in fewer, larger clusters. The original definition of modularity is re-
trieved when setting # = 1.

Modularity can also be calculated on directed graphs. This only requires a relatively modest change,

Q = 1/m sum_ij (A_ij - # k^out_i k^in_j / m) #(c_i,c_j),

where k^out_i is the out-degree of node i and k^in_j is the in-degree of node j.

Modularity on weighted graphs is also meaningful. When taking edge weights into account, A_ij
equals the weight of the corresponding edge (or 0 if there is no edge), k_i is the strength (i.e. the
weighted degree) of vertex i, with similar counterparts for a directed graph, and m is the total weight
of all edges.

Note that the modularity is not well-defined for graphs with no edges. igraph returns NaN for graphs
with no edges; see https://github.com/igraph/igraph/issues/1539 for a detailed discussion.

For the original definition of modularity, see Newman, M. E. J., and Girvan, M. (2004). Finding and
evaluating community structure in networks. Physical Review E 69, 026113. https://doi.org/10.1103/
PhysRevE.69.026113

600

https://github.com/igraph/igraph/issues/1539
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113

Detecting community structure

For the directed definition of modularity, see Leicht, E. A., and Newman, M. E. J. (2008). Commu-
nity Structure in Directed Networks. Physical Review Letters 100, 118703. https://doi.org/10.1103/
PhysRevLett.100.118703

For the introduction of the resolution parameter #, see Reichardt, J., and Bornholdt, S. (2006). Sta-
tistical mechanics of community detection. Physical Review E 74, 016110. https://doi.org/10.1103/
PhysRevE.74.016110

Arguments:

graph: The input graph.

membership: Numeric vector of integer values which gives the type of each vertex, i.e. the cluster
to which it belongs. It does not have to be consecutive, i.e. empty communities
are allowed.

weights: Weight vector or NULL if no weights are specified.

resolution: The resolution parameter #. Must not be negative. Set it to 1 to use the classical
definition of modularity.

directed: Whether to use the directed or undirected version of modularity. Ignored for undi-
rected graphs.

modularity: Pointer to a real number, the result will be stored here.

Returns:

Error code.

See also:

igraph_modularity_matrix()

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_modularity_matrix — Calculates the modu-
larity matrix.

igraph_error_t igraph_modularity_matrix(const igraph_t *graph,
 const igraph_vector_t *weights,
 const igraph_real_t resolution,
 igraph_matrix_t *modmat,
 igraph_bool_t directed);

This function returns the modularity matrix, which is defined as

B_ij = A_ij - # k_i k_j / (2m)

for undirected graphs, where A_ij is the adjacency matrix, # is the resolution parameter, k_i is the
degree of vertex i, and m is the number of edges in the graph. When there are no edges, or the weights
add up to zero, the result is undefined.

For directed graphs the modularity matrix is changed to

B_ij = A_ij - # k^out_i k^in_j / m

601

https://doi.org/10.1103/PhysRevLett.100.118703
https://doi.org/10.1103/PhysRevLett.100.118703
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110

Detecting community structure

where k^out_i is the out-degree of node i and k^in_j is the in-degree of node j.

Note that self-loops in undirected graphs are multiplied by 2 in this implementation. If weights are
specified, the weighted counterparts of the adjacency matrix and degrees are used.

Arguments:

graph: The input graph.

weights: Edge weights, pointer to a vector. If this is a null pointer then every edge is assumed
to have a weight of 1.

resolution: The resolution parameter #. Must not be negative. Default is 1. Lower values favor
fewer, larger communities; higher values favor more, smaller communities.

modmat: Pointer to an initialized matrix in which the modularity matrix is stored.

directed: For directed graphs: if the edges should be treated as undirected. For undirected
graphs this is ignored.

See also:

igraph_modularity()

igraph_community_optimal_modularity — Calcu-
late the community structure with the highest modu-
larity value.

igraph_error_t igraph_community_optimal_modularity(const igraph_t *graph,
 igraph_real_t *modularity,
 igraph_vector_int_t *membership,
 const igraph_vector_t *weights);

This function calculates the optimal community structure for a graph, in terms of maximal modularity
score.

The calculation is done by transforming the modularity maximization into an integer programming
problem, and then calling the GLPK library to solve that. Please see Ulrik Brandes et al.: On Modular-
ity Clustering, IEEE Transactions on Knowledge and Data Engineering 20(2):172-188, 2008 https://
doi.org/10.1109/TKDE.2007.190689.

Note that exact modularity optimization is an NP-complete problem, and all known algorithms for it
have exponential time complexity. This means that you probably don't want to run this function on
larger graphs. Graphs with up to fifty vertices should be fine, graphs with a couple of hundred vertices
might be possible.

Arguments:

graph: The input graph. It is always treated as undirected.

modularity: Pointer to a real number, or a null pointer. If it is not a null pointer, then a optimal
modularity value is returned here.

membership: Pointer to a vector, or a null pointer. If not a null pointer, then the membership
vector of the optimal community structure is stored here.

602

https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2007.190689

Detecting community structure

weights: Vector giving the weights of the edges. If it is NULL then each edge is supposed
to have the same weight.

Returns:

Error code. When GLPK is not available, IGRAPH_UNIMPLEMENTED is returned.

See also:

igraph_modularity(), igraph_community_fastgreedy() for an algorithm that
finds a local optimum in a greedy way.

Time complexity: exponential in the number of vertices.

Example 24.1. File examples/simple/
igraph_community_optimal_modularity.c

igraph_community_to_membership — Creates a
membership vector from a community structure den-
drogram.

igraph_error_t igraph_community_to_membership(const igraph_matrix_int_t *merges,
 igraph_integer_t nodes,
 igraph_integer_t steps,
 igraph_vector_int_t *membership,
 igraph_vector_int_t *csize);

This function creates a membership vector from a community structure dendrogram. A membership
vector contains for each vertex the id of its graph component, the graph components are numbered
from zero, see the same argument of igraph_connected_components() for an example of
a membership vector.

Many community detection algorithms return with a merges matrix, igraph_community_walk-
trap() and igraph_community_edge_betweenness() are two examples. The matrix con-
tains the merge operations performed while mapping the hierarchical structure of a network. If the
matrix has n-1 rows, where n is the number of vertices in the graph, then it contains the hierarchical
structure of the whole network and it is called a dendrogram.

This function performs steps merge operations as prescribed by the merges matrix and returns the
current state of the network.

If merges is not a complete dendrogram, it is possible to take steps steps if steps is not bigger
than the number lines in merges.

Arguments:

merges: The two-column matrix containing the merge operations. See igraph_commu-
nity_walktrap() for the detailed syntax.

nodes: The number of leaf nodes in the dendrogram.

steps: Integer constant, the number of steps to take.

membership: Pointer to an initialized vector, the membership results will be stored here, if not
NULL. The vector will be resized as needed.

603

Detecting community structure

csize: Pointer to an initialized vector, or NULL. If not NULL then the sizes of the com-
ponents will be stored here, the vector will be resized as needed.

See also:

igraph_community_walktrap(), igraph_community_edge_betweenness(),
igraph_community_fastgreedy() for community structure detection algorithms.

Time complexity: O(|V|), the number of vertices in the graph.

igraph_reindex_membership — Makes the IDs in a
membership vector contiguous.

igraph_error_t igraph_reindex_membership(igraph_vector_int_t *membership,
 igraph_vector_int_t *new_to_old,
 igraph_integer_t *nb_clusters);

This function reindexes component IDs in a membership vector in a way that the new IDs start from
zero and go up to C-1, where C is the number of unique component IDs in the original vector. The
supplied membership is expected to fall in the range 0, ..., n - 1.

Arguments:

membership: Numeric vector which gives the type of each vertex, i.e. the component to which
it belongs. The vector will be altered in-place.

new_to_old: Pointer to a vector which will contain the old component ID for each new one, or
NULL, in which case it is not returned. The vector will be resized as needed.

nb_clusters: Pointer to an integer for the number of distinct clusters. If not NULL, this will be
updated to reflect the number of distinct clusters found in membership.

Time complexity: should be O(n) for n elements.

igraph_compare_communities — Compares com-
munity structures using various metrics.

igraph_error_t igraph_compare_communities(const igraph_vector_int_t *comm1,
 const igraph_vector_int_t *comm2, igraph_real_t* result,
 igraph_community_comparison_t method);

This function assesses the distance between two community structures using the variation of informa-
tion (VI) metric of Meila (2003), the normalized mutual information (NMI) of Danon et al (2005), the
split-join distance of van Dongen (2000), the Rand index of Rand (1971) or the adjusted Rand index
of Hubert and Arabie (1985).

Some of these measures are defined based on the entropy of a discrete random variable associated
with a given clustering C of vertices. Let p_i be the probability that a randomly picked vertex would
be part of cluster i. Then the entropy of the clustering is

H(C) = - \sum_i p_i log p_i

Similarly, we can define the joint entropy of two clusterings C_1 and C_2 based on the probability
p_ij that a random vertex is part of cluster i in the first clustering and cluster j in the second one:

604

Detecting community structure

H(C_1, C_2) = - \sum_ii p_ij log p_ij

The mutual information of C_1 and C_2 is then MI(C_1, C_2) = H(C_1) + H(C_2) -
H(C_1, C_2) >= 0 . A large mutual information indicates a high overlap between the two
clusterings. The normalized mutual information, as computed by igraph, is

NMI(C_1, C_2) = 2 MI(C_1, C_2) / (H(C_1) + H(C_2)).

It takes its value from the interval (0, 1], with 1 achieved when the two clusterings coincide.

The variation of information is defined as VI(C_1, C_2) = [H(C_1) - MI(C_1, C_2)]
+ [H(C_2) - MI(C_1, C_2)]. Lower values of the variation of information indicate a smaller
difference between the two clusterings, with VI = 0 achieved precisely when they coincide. igraph
uses natural units for the variation of information, i.e. it uses the natural logarithm when computing
entropies.

The Rand index is defined as the probability that the two clusterings agree about the cluster member-
ships of a randomly chosen vertex pair. All vertex pairs are considered, and the two clusterings are
considered to be in agreement about the memberships of a vertex pair if either the two vertices are
in the same cluster in both clusterings, or they are in different clusters in both clusterings. The Rand
index is then the number of vertex pairs in agreement, divided by the total number of vertex pairs. A
Rand index of zero means that the two clusterings disagree about the membership of all vertex pairs,
while 1 means that the two clusterings are identical.

The adjusted Rand index is similar to the Rand index, but it takes into account that agreement be-
tween the two clusterings may also occur by chance even if the two clusterings are chosen completely
randomly. The adjusted Rand index therefore subtracts the expected fraction of agreements from the
value of the Rand index, and divides the result by one minus the expected fraction of agreements.
The maximum value of the adjusted Rand index is still 1 (similarly to the Rand index), indicating
maximum agreement, but the value may be less than zero if there is less agreement between the two
clusterings than what would be expected by chance.

For an explanation of the split-join distance, see igraph_split_join_distance().

References:

Meil# M: Comparing clusterings by the variation of information. In: Schölkopf B, Warmuth
MK (eds.). Learning Theory and Kernel Machines: 16th Annual Conference on Computational
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA. Lec-
ture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. https://
doi.org/10.1007/978-3-540-45167-9_14

Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat
Mech P09008, 2005. https://doi.org/10.1088/1742-5468/2005/09/P09008

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Technical
Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Nether-
lands, Amsterdam, May 2000. https://ir.cwi.nl/pub/4461

Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc
66(336):846-850, 1971. https://doi.org/10.2307/2284239

Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. https://
doi.org/10.1007/BF01908075

Arguments:

comm1: the membership vector of the first community structure

comm2: the membership vector of the second community structure

result: the result is stored here.

605

https://doi.org/10.1007/978-3-540-45167-9_14
https://doi.org/10.1007/978-3-540-45167-9_14
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://ir.cwi.nl/pub/4461
https://doi.org/10.2307/2284239
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075

Detecting community structure

method: the comparison method to use. IGRAPH_COMMCMP_VI selects the variation of infor-
mation (VI) metric of Meila (2003), IGRAPH_COMMCMP_NMI selects the normalized
mutual information measure proposed by Danon et al (2005), IGRAPH_COMMCMP_S-
PLIT_JOIN selects the split-join distance of van Dongen (2000), IGRAPH_COMMCM-
P_RAND selects the unadjusted Rand index (1971) and IGRAPH_COMMCMP_ADJUST-
ED_RAND selects the adjusted Rand index.

Returns:

Error code.

See also:

igraph_split_join_distance().

Time complexity: O(n log(n)).

igraph_split_join_distance — Calculates the
split-join distance of two community structures.

igraph_error_t igraph_split_join_distance(const igraph_vector_int_t *comm1,
 const igraph_vector_int_t *comm2, igraph_integer_t *distance12,
 igraph_integer_t *distance21);

The split-join distance between partitions A and B is the sum of the projection distance of A from
B and the projection distance of B from A. The projection distance is an asymmetric measure and it
is defined as follows:

First, each set in partition A is evaluated against all sets in partition B. For each set in partition A, the
best matching set in partition B is found and the overlap size is calculated. (Matching is quantified by
the size of the overlap between the two sets). Then, the maximal overlap sizes for each set in A are
summed together and subtracted from the number of elements in A.

The split-join distance will be returned in two arguments, distance12 will contain the projection
distance of the first partition from the second, while distance21 will be the projection distance of
the second partition from the first. This makes it easier to detect whether a partition is a subpartition
of the other, since in this case, the corresponding distance will be zero.

Reference:

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Technical
Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Nether-
lands, Amsterdam, May 2000.

Arguments:

comm1: the membership vector of the first community structure

comm2: the membership vector of the second community structure

distance12: pointer to an igraph_integer_t, the projection distance of the first commu-
nity structure from the second one will be returned here.

distance21: pointer to an igraph_integer_t, the projection distance of the second com-
munity structure from the first one will be returned here.

606

Detecting community structure

Returns:

Error code.

See also:

igraph_compare_communities() with the IGRAPH_COMMCMP_SPLIT_JOIN method if
you are not interested in the individual distances but only the sum of them.

Time complexity: O(n log(n)).

Community structure based on statistical me-
chanics

igraph_community_spinglass — Community detec-
tion based on statistical mechanics.

igraph_error_t igraph_community_spinglass(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_real_t *modularity,
 igraph_real_t *temperature,
 igraph_vector_int_t *membership,
 igraph_vector_int_t *csize,
 igraph_integer_t spins,
 igraph_bool_t parupdate,
 igraph_real_t starttemp,
 igraph_real_t stoptemp,
 igraph_real_t coolfact,
 igraph_spincomm_update_t update_rule,
 igraph_real_t gamma,
 igraph_spinglass_implementation_t implementation,
 igraph_real_t gamma_minus);

This function implements the community structure detection algorithm proposed by Joerg Reichardt
and Stefan Bornholdt. The algorithm is described in their paper: Statistical Mechanics of Community
Detection, http://arxiv.org/abs/cond-mat/0603718 .

From version 0.6, igraph also supports an extension to the algorithm that allows negative edge weights.
This is described in V. A. Traag and Jeroen Bruggeman: Community detection in networks with pos-
itive and negative links, http://arxiv.org/abs/0811.2329 .

Arguments:

graph: The input graph, it may be directed but the direction of the edges is ignored
by the algorithm.

weights: The vector giving the edge weights, it may be NULL, in which case all edges
are weighted equally. The edge weights must be positive unless using the
IGRAPH_SPINCOMM_IMP_NEG implementation.

modularity: Pointer to a real number, if not NULL then the modularity score of the solution
will be stored here. This is the gereralized modularity that simplifies to the
one defined in M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004), if the gamma parameter is one.

607

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/0811.2329

Detecting community structure

temperature: Pointer to a real number, if not NULL then the temperature at the end of the
algorithm will be stored here.

membership: Pointer to an initialized vector or NULL. If not NULL then the result of the
clustering will be stored here. For each vertex, the number of its cluster is
given, with the first cluster numbered zero. The vector will be resized as
needed.

csize: Pointer to an initialized vector or NULL. If not NULL then the sizes of the
clusters will stored here in cluster number order. The vector will be resized
as needed.

spins: Integer giving the number of spins, i.e. the maximum number of clusters.
Even if the number of spins is high the number of clusters in the result might
be small.

parupdate: A logical constant, whether to update all spins in parallel. It is not imple-
mented in the IGRAPH_SPINCOMM_INP_NEG implementation.

starttemp: Real number, the temperature at the start. A reasonable default is 1.0.

stoptemp: Real number, the algorithm stops at this temperature. A reasonable default
is 0.01.

coolfact: Real number, the cooling factor for the simulated annealing. A reasonable
default is 0.99.

update_rule: The type of the update rule. Possible values: IGRAPH_SPINCOMM_UP-
DATE_SIMPLE and IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically
this parameter defines the null model based on which the actual clustering is
done. If this is IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random
graph (i.e. G(n,p)), if it is IGRAPH_SPINCOMM_UPDATE then the configu-
ration model is used. The configuration means that the baseline for the clus-
tering is a random graph with the same degree distribution as the input graph.

gamma: Real number. The gamma parameter of the algorithm, acting as a resolution
parameter. Smaller values typically lead to larger clusters, larger values typ-
ically lead to smaller clusters.

implementation: Constant, chooses between the two implementations of the spin-glass algo-
rithm that are included in igraph. IGRAPH_SPINCOMM_IMP_ORIG selects
the original implementation, this is faster, IGRAPH_SPINCOMM_INP_NEG
selects an implementation that allows negative edge weights.

gamma_minus: Real number. Parameter for the IGRAPH_SPINCOMM_IMP_NEG imple-
mentation. This acts as a resolution parameter for the negative part of the
network. Smaller values of gamma_minus leads to fewer negative edges
within clusters. If this argument is set to zero, the algorithm reduces to a
graph coloring algorithm when all edges have negative weights, using the
number of spins as the number of colors.

Returns:

Error code.

See also:

igraph_community_spinglass_single() for calculating the community of a single vertex.

Time complexity: TODO.

608

Detecting community structure

igraph_community_spinglass_single — Commu-
nity of a single node based on statistical mechanics.

igraph_error_t igraph_community_spinglass_single(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_integer_t vertex,
 igraph_vector_int_t *community,
 igraph_real_t *cohesion,
 igraph_real_t *adhesion,
 igraph_integer_t *inner_links,
 igraph_integer_t *outer_links,
 igraph_integer_t spins,
 igraph_spincomm_update_t update_rule,
 igraph_real_t gamma);

This function implements the community structure detection algorithm proposed by Joerg Reichardt
and Stefan Bornholdt. It is described in their paper: Statistical Mechanics of Community Detection,
http://arxiv.org/abs/cond-mat/0603718 .

This function calculates the community of a single vertex without calculating all the communities in
the graph.

Arguments:

graph: The input graph, it may be directed but the direction of the edges is not used in
the algorithm.

weights: Pointer to a vector with the weights of the edges. Alternatively NULL can be
supplied to have the same weight for every edge.

vertex: The vertex ID of the vertex of which ths community is calculated.

community: Pointer to an initialized vector, the result, the IDs of the vertices in the community
of the input vertex will be stored here. The vector will be resized as needed.

cohesion: Pointer to a real variable, if not NULL the cohesion index of the community will
be stored here.

adhesion: Pointer to a real variable, if not NULL the adhesion index of the community will
be stored here.

inner_links: Pointer to an integer, if not NULL the number of edges within the community is
stored here.

outer_links: Pointer to an integer, if not NULL the number of edges between the community
and the rest of the graph will be stored here.

spins: The number of spins to use, this can be higher than the actual number of clusters
in the network, in which case some clusters will contain zero vertices.

update_rule: The type of the update rule. Possible values: IGRAPH_SPINCOMM_UP-
DATE_SIMPLE and IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically this
parameter defined the null model based on which the actual clustering is done.
If this is IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random graph (ie.
G(n,p)), if it is IGRAPH_SPINCOMM_UPDATE then the configuration model is
used. The configuration means that the baseline for the clustering is a random
graph with the same degree distribution as the input graph.

609

http://arxiv.org/abs/cond-mat/0603718

Detecting community structure

gamma: Real number. The gamma parameter of the algorithm. This defined the weight
of the missing and existing links in the quality function for the clustering. The
default value in the original code was 1.0, which is equal weight to missing and
existing edges. Smaller values make the existing links contibute more to the ener-
gy function which is minimized in the algorithm. Bigger values make the missing
links more important. (If my understanding is correct.)

Returns:

Error code.

See also:

igraph_community_spinglass() for the traditional version of the algorithm.

Time complexity: TODO.

Community structure based on eigenvectors
of matrices

The function documented in these section implements the “leading eigenvector” method developed by
Mark Newman and published in MEJ Newman: Finding community structure using the eigenvectors
of matrices, Phys Rev E 74:036104 (2006).

The heart of the method is the definition of the modularity matrix, B, which is B=A-P, A being the
adjacency matrix of the (undirected) network, and P contains the probability that certain edges are
present according to the “configuration model” In other words, a Pij element of P is the probability
that there is an edge between vertices i and j in a random network in which the degrees of all vertices
are the same as in the input graph.

The leading eigenvector method works by calculating the eigenvector of the modularity matrix for the
largest positive eigenvalue and then separating vertices into two community based on the sign of the
corresponding element in the eigenvector. If all elements in the eigenvector are of the same sign that
means that the network has no underlying community structure. Check Newman's paper to understand
why this is a good method for detecting community structure.

The leading eigenvector community structure detection method is implemented in igraph_commu-
nity_leading_eigenvector(). After the initial split, the following splits are done in a way to
optimize modularity regarding to the original network. Note that any further refinement, for example
using Kernighan-Lin, as proposed in Section V.A of Newman (2006), is not implemented here.

Example 24.2. File examples/simple/
igraph_community_leading_eigenvector.c

igraph_community_leading_eigenvector — Lead-
ing eigenvector community finding (proper version).

igraph_error_t igraph_community_leading_eigenvector(
 const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_matrix_int_t *merges,
 igraph_vector_int_t *membership,
 igraph_integer_t steps,

610

Detecting community structure

 igraph_arpack_options_t *options,
 igraph_real_t *modularity,
 igraph_bool_t start,
 igraph_vector_t *eigenvalues,
 igraph_vector_list_t *eigenvectors,
 igraph_vector_t *history,
 igraph_community_leading_eigenvector_callback_t *callback,
 void *callback_extra);

Newman's leading eigenvector method for detecting community structure. This is the proper imple-
mentation of the recursive, divisive algorithm: each split is done by maximizing the modularity regard-
ing the original network, see MEJ Newman: Finding community structure in networks using the eigen-
vectors of matrices, Phys Rev E 74:036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104

Arguments:

graph: The input graph. Edge directions will be ignored.

weights: The weights of the edges, or a null pointer for unweighted graphs.

merges: The result of the algorithm, a matrix containing the information about the
splits performed. The matrix is built in the opposite way however, it is like the
result of an agglomerative algorithm. Unlike with most other hierarchicaly
community detection functions in igraph, the integers in this matrix represent
community indices, not vertex indices. If at the end of the algorithm (after
steps steps was done) there are “p” communities, then these are numbered
from zero to “p-1”. The first line of the matrix contains the first “merge”
(which is in reality the last split) of two communities into community “p”,
the merge in the second line forms community “p+1”, etc. The matrix should
be initialized before calling and will be resized as needed. This argument is
ignored if it is NULL.

membership: The membership of the vertices after all the splits were performed will be
stored here. The vector must be initialized before calling and will be resized
as needed. This argument is ignored if it is NULL. This argument can also
be used to supply a starting configuration for the community finding, in the
format of a membership vector. In this case the start argument must be
set to 1.

steps: The maximum number of steps to perform. It might happen that some com-
ponent (or the whole network) has no underlying community structure and
no further steps can be done. If you want as many steps as possible then sup-
ply the number of vertices in the network here.

options: The options for ARPACK. Supply NULL here to use the defaults. n is always
overwritten. ncv is set to at least 4.

modularity: If not a null pointer, then it must be a pointer to a real number and the mod-
ularity score of the final division is stored here.

start: Boolean, whether to use the community structure given in the membership
argument as a starting point.

eigenvalues: Pointer to an initialized vector or a null pointer. If not a null pointer, then the
eigenvalues calculated along the community structure detection are stored
here. The non-positive eigenvalues, that do not result a split, are stored as
well.

eigenvectors: If not a null pointer, then the eigenvectors that are calculated in each step of
the algorithm are stored here, in a list of vectors. Each eigenvector is stored
in an igraph_vector_t object.

611

https://doi.org/10.1103/PhysRevE.74.036104

Detecting community structure

history: Pointer to an initialized vector or a null pointer. If not a null pointer, then
a trace of the algorithm is stored here, encoded numerically. The various
operations:

IGRAPH_LEVC_HIST_S-
TART_FULL

Start the algorithm from an initial
state where each connected compo-
nent is a separate community.

IGRAPH_LEVC_HIST_S-
TART_GIVEN

Start the algorithm from a given com-
munity structure. The next value in
the vector contains the initial number
of communities.

IGRAPH_LEVC_HIST_SPLIT Split a community into two commu-
nities. The id of the splitted commu-
nity is given in the next element of the
history vector. The id of the first new
community is the same as the id of the
splitted community. The id of the sec-
ond community equals to the number
of communities before the split.

IGRAPH_LEVC_HIST_FAILED Tried to split a community, but it was
not worth it, as it does not result in
a bigger modularity value. The id of
the community is given in the next el-
ement of the vector.

callback: A null pointer or a function of type igraph_community_lead-
ing_eigenvector_callback_t. If given, this callback function is
called after each eigenvector/eigenvalue calculation. If the callback re-
turns IGRAPH_STOP, then the community finding algorithm stops. If it re-
turns IGRAPH_SUCCESS, the algorithm continues normally. Any other re-
turn value is considered an igraph error code and will terminete the algo-
rithm with the same error code. See the arguments passed to the callback
at the documentation of igraph_community_leading_eigenvec-
tor_callback_t.

callback_extra: Extra argument to pass to the callback function.

Returns:

Error code.

See also:

igraph_community_walktrap() and igraph_community_spinglass() for other
community structure detection methods.

Time complexity: O(|E|+|V|^2*steps), |V| is the number of vertices, |E| the number of edges, “steps”
the number of splits performed.

igraph_community_leading_eigenvector_call-
back_t — Callback for the leading eigenvector com-
munity finding method.

612

Detecting community structure

typedef igraph_error_t igraph_community_leading_eigenvector_callback_t(
 const igraph_vector_int_t *membership,
 igraph_integer_t comm,
 igraph_real_t eigenvalue,
 const igraph_vector_t *eigenvector,
 igraph_arpack_function_t *arpack_multiplier,
 void *arpack_extra,
 void *extra);

The leading eigenvector community finding implementation in igraph is able to call a callback func-
tion, after each eigenvalue calculation. This callback function must be of igraph_communi-
ty_leading_eigenvector_callback_t type. The following arguments are passed to the
callback:

Arguments:

membership: The actual membership vector, before recording the potential change
implied by the newly found eigenvalue.

comm: The id of the community that the algorithm tried to split in the last iter-
ation. The community IDs are indexed from zero here!

eigenvalue: The eigenvalue the algorithm has just found.

eigenvector: The eigenvector corresponding to the eigenvalue the algorithm just
found.

arpack_multiplier: A function that was passed to igraph_arpack_rssolve() to
solve the last eigenproblem.

arpack_extra: The extra argument that was passed to the ARPACK solver.

extra: Extra argument that as passed to igraph_community_lead-
ing_eigenvector().

See also:

igraph_community_leading_eigenvector(), igraph_arpack_function_t,
igraph_arpack_rssolve().

igraph_le_community_to_membership — Vertex
membership from the leading eigenvector community
structure.

igraph_error_t igraph_le_community_to_membership(const igraph_matrix_int_t *merges,
 igraph_integer_t steps,
 igraph_vector_int_t *membership,
 igraph_vector_int_t *csize);

This function creates a membership vector from the result of igraph_community_lead-
ing_eigenvector(). It takes membership and performs steps merges, according to the sup-
plied merges matrix.

Arguments:

613

Detecting community structure

merges: The two-column matrix containing the merge operations. See igraph_commu-
nity_leading_eigenvector() for the detailed syntax. This is usually from
the output of the leading eigenvector community structure detection routines.

steps: The number of steps to make according to merges.

membership: Initially the starting membership vector, on output the resulting membership vector,
after performing steps merges.

csize: Optionally the sizes of the communities are stored here, if this is not a null pointer,
but an initialized vector.

Returns:

Error code.

Time complexity: O(|V|), the number of vertices.

Walktrap: Community structure based on
random walks

igraph_community_walktrap — Community finding
using a random walk based similarity measure.

igraph_error_t igraph_community_walktrap(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_integer_t steps,
 igraph_matrix_int_t *merges,
 igraph_vector_t *modularity,
 igraph_vector_int_t *membership);

This function is the implementation of the Walktrap community finding algorithm, see Pascal
Pons, Matthieu Latapy: Computing communities in large networks using random walks, https://arx-
iv.org/abs/physics/0512106

Currently the original C++ implementation is used in igraph, see https://www-complexnetwork-
s.lip6.fr/~latapy/PP/walktrap.html We are grateful to Matthieu Latapy and Pascal Pons for providing
this source code.

In contrast to the original implementation, isolated vertices are allowed in the graph and they are
assumed to have a single incident loop edge with weight 1.

Arguments:

graph: The input graph, edge directions are ignored.

weights: Numeric vector giving the weights of the edges. If it is a NULL pointer then all
edges will have equal weights. The weights are expected to be positive.

steps: Integer constant, the length of the random walks. Typically, good results are ob-
tained with values between 3-8 with 4-5 being a reasonable default.

merges: Pointer to a matrix, the merges performed by the algorithm will be stored here (if
not NULL). Each merge is a row in a two-column matrix and contains the IDs of the

614

https://arxiv.org/abs/physics/0512106
https://arxiv.org/abs/physics/0512106
https://www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html
https://www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html

Detecting community structure

merged clusters. Clusters are numbered from zero and cluster numbers smaller than
the number of nodes in the network belong to the individual vertices as singleton
clusters. In each step a new cluster is created from two other clusters and its id will
be one larger than the largest cluster id so far. This means that before the first merge
we have n clusters (the number of vertices in the graph) numbered from zero to
n-1. The first merge creates cluster n, the second cluster n+1, etc.

modularity: Pointer to a vector. If not NULL then the modularity score of the current clustering
is stored here after each merge operation.

membership: Pointer to a vector. If not a NULL pointer, then the membership vector correspond-
ing to the maximal modularity score is stored here.

Returns:

Error code.

See also:

igraph_community_spinglass(), igraph_community_edge_betweenness().

Time complexity: O(|E||V|^2) in the worst case, O(|V|^2 log|V|) typically, |V| is the number of vertices,
|E| is the number of edges.

Example 24.3. File examples/simple/walktrap.c

Edge betweenness based community detec-
tion

igraph_community_edge_betweenness — Commu-
nity finding based on edge betweenness.

igraph_error_t igraph_community_edge_betweenness(const igraph_t *graph,
 igraph_vector_int_t *removed_edges,
 igraph_vector_t *edge_betweenness,
 igraph_matrix_int_t *merges,
 igraph_vector_int_t *bridges,
 igraph_vector_t *modularity,
 igraph_vector_int_t *membership,
 igraph_bool_t directed,
 const igraph_vector_t *weights);

Community structure detection based on the betweenness of the edges in the network. The algorithm
was invented by M. Girvan and M. Newman, see: M. Girvan and M. E. J. Newman: Community
structure in social and biological networks, Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002). https://
doi.org/10.1073/pnas.122653799

The idea is that the betweenness of the edges connecting two communities is typically high, as many of
the shortest paths between nodes in separate communities go through them. So we gradually remove
the edge with highest betweenness from the network, and recalculate edge betweenness after every
removal. This way sooner or later the network splits into two components, then after a while one of

615

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799

Detecting community structure

these components splits again into two smaller components, and so on until all edges are removed.
This is a divisive hierarchical approach, the result of which is a dendrogram.

In directed graphs, when directed is set to true, the directed version of betweenness and modularity
are used, however, only splits into weakly connected components are detected.

Arguments:

graph: The input graph.

removed_edges: Pointer to an initialized vector, the result will be stored here, the IDs of the
removed edges in the order of their removal. It will be resized as needed.
It may be NULL if the edge IDs are not needed by the caller.

edge_betweenness: Pointer to an initialized vector or NULL. In the former case the edge be-
tweenness of the removed edge is stored here. The vector will be resized
as needed.

merges: Pointer to an initialized matrix or NULL. If not NULL then merges per-
formed by the algorithm are stored here. Even if this is a divisive al-
gorithm, we can replay it backwards and note which two clusters were
merged. Clusters are numbered from zero, see the merges argument of
igraph_community_walktrap() for details. The matrix will be
resized as needed.

bridges: Pointer to an initialized vector of NULL. If not NULL then the indices into
result of all edges which caused one of the merges will be put here.
This is equivalent to all edge removals which separated the network into
more components, in reverse order.

modularity: If not a null pointer, then the modularity values of the different divisions
are stored here, in the order corresponding to the merge matrix. The mod-
ularity values will take weights into account if weights is not null.

membership: If not a null pointer, then the membership vector, corresponding to the
highest modularity value, is stored here.

directed: Logical constant. Controls whether to calculate directed betweenness (i.e.
directed paths) for directed graphs, and whether to use the directed version
of modularity. It is ignored for undirected graphs.

weights: An optional vector containing edge weights. If null, the unweighted edge
betweenness scores will be calculated and used. If not null, the weighted
edge betweenness scores will be calculated and used.

Returns:

Error code.

See also:

igraph_community_eb_get_merges(), igraph_community_spinglass(),
igraph_community_walktrap().

Time complexity: O(|V||E|^2), as the betweenness calculation requires O(|V||E|) and we do it |E|-1
times.

Example 24.4. File examples/simple/
igraph_community_edge_betweenness.c

616

Detecting community structure

igraph_community_eb_get_merges — Calculating
the merges, i.e. the dendrogram for an edge between-
ness community structure.

igraph_error_t igraph_community_eb_get_merges(const igraph_t *graph,
 const igraph_bool_t directed,
 const igraph_vector_int_t *edges,
 const igraph_vector_t *weights,
 igraph_matrix_int_t *res,
 igraph_vector_int_t *bridges,
 igraph_vector_t *modularity,
 igraph_vector_int_t *membership);

This function is handy if you have a sequence of edges which are gradually removed from the network
and you would like to know how the network falls apart into separate components. The edge sequence
may come from the igraph_community_edge_betweenness() function, but this is not nec-
essary. Note that igraph_community_edge_betweenness() can also calculate the dendro-
gram, via its merges argument. Merges happen when the edge removal process is run backwards
and two components become connected.

Arguments:

graph: The input graph.

edges: Vector containing the edges to be removed from the network, all edges are expected
to appear exactly once in the vector.

directed: Whether to use the directed or undirected version of modularity. Will be ignored
for undirected graphs.

weights: An optional vector containing edge weights. If null, the unweighted modularity
scores will be calculated. If not null, the weighted modularity scores will be calcu-
lated. Ignored if both modularity and membership are NULL pointers.

res: Pointer to an initialized matrix, if not NULL then the dendrogram will be stored
here, in the same form as for the igraph_community_walktrap() func-
tion: the matrix has two columns and each line is a merge given by the IDs of the
merged components. The component IDs are numbered from zero and component
IDs smaller than the number of vertices in the graph belong to individual vertices.
The non-trivial components containing at least two vertices are numbered from n,
where n is the number of vertices in the graph. So if the first line contains a and b
that means that components a and b are merged into component n, the second line
creates component n+1, etc. The matrix will be resized as needed.

bridges: Pointer to an initialized vector of NULL. If not NULL then the indices into edges of
all edges which caused one of the merges will be put here. This is equal to all edge
removals which separated the network into more components, in reverse order.

modularity: If not a null pointer, then the modularity values for the different divisions, corre-
sponding to the merges matrix, will be stored here.

membership: If not a null pointer, then the membership vector for the best division (in terms of
modularity) will be stored here.

Returns:

617

Detecting community structure

Error code.

See also:

igraph_community_edge_betweenness().

Time complexity: O(|E|+|V|log|V|), |V| is the number of vertices, |E| is the number of edges.

Community structure based on the optimiza-
tion of modularity

igraph_community_fastgreedy — Finding commu-
nity structure by greedy optimization of modularity.

igraph_error_t igraph_community_fastgreedy(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_matrix_int_t *merges,
 igraph_vector_t *modularity,
 igraph_vector_int_t *membership);

This function implements the fast greedy modularity optimization algorithm for finding community
structure, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large net-
works, http://www.arxiv.org/abs/cond-mat/0408187 for the details.

Some improvements proposed in K Wakita, T Tsurumi: Finding community structure in mega-scale
social networks, http://www.arxiv.org/abs/cs.CY/0702048v1 have also been implemented.

Arguments:

graph: The input graph. It must be a graph without multiple edges. This is checked and an
error message is given for graphs with multiple edges.

weights: Potentially a numeric vector containing edge weights. Supply a null pointer here
for unweighted graphs. The weights are expected to be non-negative.

merges: Pointer to an initialized matrix or NULL, the result of the computation is stored
here. The matrix has two columns and each merge corresponds to one merge, the
IDs of the two merged components are stored. The component IDs are numbered
from zero and the first n components are the individual vertices, n is the number
of vertices in the graph. Component n is created in the first merge, component n
+1 in the second merge, etc. The matrix will be resized as needed. If this argument
is NULL then it is ignored completely.

modularity: Pointer to an initialized vector or NULL pointer, in the former case the modularity
scores along the stages of the computation are recorded here. The vector will be
resized as needed.

membership: Pointer to a vector. If not a null pointer, then the membership vector corresponding
to the best split (in terms of modularity) is stored here.

Returns:

Error code.

618

http://www.arxiv.org/abs/cond-mat/0408187
http://www.arxiv.org/abs/cs.CY/0702048v1

Detecting community structure

See also:

igraph_community_walktrap(), igraph_community_edge_betweenness() for
other community detection algorithms, igraph_community_to_membership() to convert
the dendrogram to a membership vector.

Time complexity: O(|E||V|log|V|) in the worst case, O(|E|+|V|log^2|V|) typically, |V| is the number of
vertices, |E| is the number of edges.

Example 24.5. File examples/simple/
igraph_community_fastgreedy.c

igraph_community_multilevel — Finding commu-
nity structure by multi-level optimization of modularity.

igraph_error_t igraph_community_multilevel(const igraph_t *graph,
 const igraph_vector_t *weights,
 const igraph_real_t resolution,
 igraph_vector_int_t *membership,
 igraph_matrix_int_t *memberships,
 igraph_vector_t *modularity);

This function implements the multi-level modularity optimization algorithm for finding communi-
ty structure, see Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast un-
folding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
10008(10), 6. https://doi.org/10.1088/1742-5468/2008/10/P10008 for the details (preprint: http://arx-
iv.org/abs/0803.0476). The algorithm is sometimes known as the "Louvain" algorithm.

The algorithm is based on the modularity measure and a hierarchical approach. Initially, each vertex is
assigned to a community on its own. In every step, vertices are re-assigned to communities in a local,
greedy way: in a random order, each vertex is moved to the community with which it achieves the
highest contribution to modularity. When no vertices can be reassigned, each community is considered
a vertex on its own, and the process starts again with the merged communities. The process stops when
there is only a single vertex left or when the modularity cannot be increased any more in a step.

The resolution parameter gamma allows finding communities at different resolutions. Higher values of
the resolution parameter typically result in more, smaller communities. Lower values typically result in
fewer, larger communities. The original definition of modularity is retrieved when setting gamma=1.
Note that the returned modularity value is calculated using the indicated resolution parameter. See
igraph_modularity() for more details.

The original version of this function was contributed by Tom Gregorovic.

Arguments:

graph: The input graph. It must be an undirected graph.

weights: Numeric vector containing edge weights. If NULL, every edge has equal weight.
The weights are expected to be non-negative.

resolution: Resolution parameter. Must be greater than or equal to 0. Lower values favor
fewer, larger communities; higher values favor more, smaller communities. Set
it to 1 to use the classical definition of modularity.

membership: The membership vector, the result is returned here. For each vertex it gives the ID
of its community. The vector must be initialized and it will be resized accordingly.

619

https://doi.org/10.1088/1742-5468/2008/10/P10008
http://arxiv.org/abs/0803.0476
http://arxiv.org/abs/0803.0476

Detecting community structure

memberships: Numeric matrix that will contain the membership vector after each level, if not
NULL. It must be initialized and it will be resized accordingly.

modularity: Numeric vector that will contain the modularity score after each level, if not
NULL. It must be initialized and it will be resized accordingly.

Returns:

Error code.

Time complexity: in average near linear on sparse graphs.

Example 24.6. File examples/simple/
igraph_community_multilevel.c

igraph_community_leiden — Finding community
structure using the Leiden algorithm.

igraph_error_t igraph_community_leiden(const igraph_t *graph,
 const igraph_vector_t *edge_weights, const igraph_vector_t *node_weights,
 const igraph_real_t resolution_parameter, const igraph_real_t beta, const igraph_bool_t start,
 const igraph_integer_t n_iterations,
 igraph_vector_int_t *membership, igraph_integer_t *nb_clusters, igraph_real_t *quality);

This function implements the Leiden algorithm for finding community structure, see Traag, V. A.,
Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected com-
munities. Scientific reports, 9(1), 5233. http://dx.doi.org/10.1038/s41598-019-41695-z

It is similar to the multilevel algorithm, often called the Louvain algorithm, but it is faster and yields
higher quality solutions. It can optimize both modularity and the Constant Potts Model, which does
not suffer from the resolution-limit (see preprint http://arxiv.org/abs/1104.3083).

The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the parti-
tion and (3) aggregation of the network based on the refined partition, using the non-refined partition
to create an initial partition for the aggregate network. In the local move procedure in the Leiden al-
gorithm, only nodes whose neighborhood has changed are visited. Only moves that strictly improve
the quality function are made. The refinement is done by restarting from a singleton partition within
each cluster and gradually merging the subclusters. When aggregating, a single cluster may then be
represented by several nodes (which are the subclusters identified in the refinement).

The Leiden algorithm provides several guarantees. The Leiden algorithm is typically iterated: the out-
put of one iteration is used as the input for the next iteration. At each iteration all clusters are guaran-
teed to be connected and well-separated. After an iteration in which nothing has changed, all nodes
and some parts are guaranteed to be locally optimally assigned. Note that even if a single iteration did
not result in any change, it is still possible that a subsequent iteration might find some improvement.
Each iteration explores different subsets of nodes to consider for moving from one cluster to another.
Finally, asymptotically, all subsets of all clusters are guaranteed to be locally optimally assigned. For
more details, please see Traag, Waltman & van Eck (2019).

The objective function being optimized is

1 / 2m sum_ij (A_ij - gamma n_i n_j)d(s_i, s_j)

where m is the total edge weight, A_ij is the weight of edge (i, j), gamma is the so-called resolution
parameter, n_i is the node weight of node i, s_i is the cluster of node i and d(x, y) = 1 if and only if

620

http://dx.doi.org/10.1038/s41598-019-41695-z
http://arxiv.org/abs/1104.3083

Detecting community structure

x = y and 0 otherwise. By setting n_i = k_i, the degree of node i, and dividing gamma by 2m, you
effectively obtain an expression for modularity. Hence, the standard modularity will be optimized
when you supply the degrees as node_weights and by supplying as a resolution parameter 1.0/
(2*m), with m the number of edges.

Arguments:

graph: The input graph. It must be an undirected graph.

edge_weights: Numeric vector containing edge weights. If NULL, every edge has
equal weight of 1. The weights need not be non-negative.

node_weights: Numeric vector containing node weights. If NULL, every node has
equal weight of 1.

resolution_parameter: The resolution parameter used, which is represented by gamma in
the objective function mentioned in the documentation.

beta: The randomness used in the refinement step when merging. A small
amount of randomness (beta = 0.01) typically works well.

start: Start from membership vector. If this is true, the optimization will
start from the provided membership vector. If this is false, the opti-
mization will start from a singleton partition.

n_iterations: Iterate the core Leiden algorithm for the indicated number of times.
If this is a negative number, it will continue iterating until an itera-
tion did not change the clustering.

membership: The membership vector. This is both used as the initial membership
from which optimisation starts and is updated in place. It must hence
be properly initialized. When finding clusters from scratch it is typ-
ically started using a singleton clustering. This can be achieved us-
ing igraph_vector_int_init_range().

nb_clusters: The number of clusters contained in membership. If NULL, the
number of clusters will not be returned.

quality: The quality of the partition, in terms of the objective function as
included in the documentation. If NULL the quality will not be cal-
culated.

Returns:

Error code.

Time complexity: near linear on sparse graphs.

Example 24.7. File examples/simple/igraph_community_leiden.c

Fluid communities

igraph_community_fluid_communities — Commu-
nity detection based on fluids interacting on the graph.

621

Detecting community structure

igraph_error_t igraph_community_fluid_communities(const igraph_t *graph,
 igraph_integer_t no_of_communities,
 igraph_vector_int_t *membership);

The algorithm is based on the simple idea of several fluids interacting in a non-homogeneous environ-
ment (the graph topology), expanding and contracting based on their interaction and density. Weight-
ed graphs are not supported.

This function implements the community detection method described in: Parés F, Gasulla DG, et. al.
(2018) Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm.
In: Complex Networks & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth
International Conference on Complex Networks and Their Applications), Springer, vol 689, p 229.
https://doi.org/10.1007/978-3-319-72150-7_19

Arguments:

graph: The input graph. The graph must be simple and connected. Edge direc-
tions will be ignored.

no_of_communities: The number of communities to be found. Must be greater than 0 and
fewer than number of vertices in the graph.

membership: The result vector mapping vertices to the communities they are assigned
to.

modularity: If not a null pointer, then it must be a pointer to a real number. The
modularity score of the detected community structure is stored here.

Returns:

Error code.

Time complexity: O(|E|)

Label propagation

igraph_community_label_propagation — Commu-
nity detection based on label propagation.

igraph_error_t igraph_community_label_propagation(const igraph_t *graph,
 igraph_vector_int_t *membership,
 igraph_neimode_t mode,
 const igraph_vector_t *weights,
 const igraph_vector_int_t *initial,
 const igraph_vector_bool_t *fixed);

This function implements the label propagation-based community detection algorithm described by
Raghavan, Albert and Kumara. This version extends the original method by the ability to take edge
weights into consideration and also by allowing some labels to be fixed.

Weights are taken into account as follows: when the new label of node i is determined, the algorithm
iterates over all edges incident on node i and calculate the total weight of edges leading to other nodes
with label 0, 1, 2, ..., k - 1 (where k is the number of possible labels). The new label of node i will
then be the label whose edges (among the ones incident on node i) have the highest total weight.

622

https://doi.org/10.1007/978-3-319-72150-7_19

Detecting community structure

For directed graphs, it is important to know that labels can circulate freely only within the strongly
connected components of the graph and may propagate in only one direction (or not at all) between
strongly connected components. You should treat directed edges as directed only if you are aware of
the consequences.

References:

Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to detect communi-
ty structures in large-scale networks. Phys Rev E 76, 036106 (2007). https://doi.org/10.1103/Phys-
RevE.76.036106

Šubelj, L.: Label propagation for clustering. Chapter in "Advances in Network Clustering and Block-
modeling" edited by P. Doreian, V. Batagelj & A. Ferligoj (Wiley, New York, 2018). https://
doi.org/10.1002/9781119483298.ch5 https://arxiv.org/abs/1709.05634

Arguments:

graph: The input graph. Note that the algorithm wsa originally defined for undirected
graphs. You are advised to set mode to IGRAPH_ALL if you pass a directed graph
here to treat it as undirected.

membership: The membership vector, the result is returned here. For each vertex it gives the ID
of its community (label).

mode: Whether to consider edge directions for the label propagation, and if so, which di-
rection the labels should propagate. Ignored for undirected graphs. IGRAPH_ALL
means to ignore edge directions (even in directed graphs). IGRAPH_OUT means
to propagate labels along the natural direction of the edges. IGRAPH_IN means
to propagate labels backwards (i.e. from head to tail). It is advised to set this to
IGRAPH_ALL unless you are specifically interested in the effect of edge direc-
tions.

weights: The weight vector, it should contain a positive weight for all the edges.

initial: The initial state. If NULL, every vertex will have a different label at the beginning.
Otherwise it must be a vector with an entry for each vertex. Non-negative values
denote different labels, negative entries denote vertices without labels. Unlabeled
vertices which are not reachable from any labeled ones will remain unlabeled at
the end of the label propagation process, and will be labeled in an additional step
to avoid returning negative values in membership. In undirected graphs, this
happens when entire connected components are unlabeled. Then, each unlabeled
component will receive its own separate label. In directed graphs, the outcome
of the additional labeling should be considered undefined and may change in the
future; please do not rely on it.

fixed: Boolean vector denoting which labels are fixed. Of course this makes sense only
if you provided an initial state, otherwise this element will be ignored. Note that
vertices without labels cannot be fixed. The fixed status will be ignored for these
with a warning. Also note that label numbers by themselves have no meaning, and
igraph may renumber labels. However, co-membership constraints will be respect-
ed: two vertices can be fixed to be in the same or in different communities.

modularity: If not a null pointer, then it must be a pointer to a real number. The modularity score
of the detected community structure is stored here. Note that igraph will calculate
the directed modularity if the input graph is directed, even if you set mode to
IGRAPH_ALL

Returns:

Error code.

623

https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1002/9781119483298.ch5
https://doi.org/10.1002/9781119483298.ch5
https://arxiv.org/abs/1709.05634

Detecting community structure

Time complexity: O(m+n)

Example 24.8. File examples/simple/
igraph_community_label_propagation.c

The InfoMAP algorithm

igraph_community_infomap — Find community
structure that minimizes the expected description
length of a random walker trajectory.

igraph_error_t igraph_community_infomap(const igraph_t * graph,
 const igraph_vector_t *e_weights,
 const igraph_vector_t *v_weights,
 igraph_integer_t nb_trials,
 igraph_vector_int_t *membership,
 igraph_real_t *codelength);

Implementation of the Infomap community detection algorithm of Martin Rosvall and Carl T.
Bergstrom. This algorithm takes edge directions into account.

For more details, see the visualization of the math and the map generator at https://www.mapequa-
tion.org . The original paper describing the algorithm is: M. Rosvall and C. T. Bergstrom, Maps
of information flow reveal community structure in complex networks, PNAS 105, 1118 (2008)
(http://dx.doi.org/10.1073/pnas.0706851105, http://arxiv.org/abs/0707.0609). A more detailed paper
about the algorithm is: M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map equation, Eur.
Phys. J. Special Topics 178, 13 (2009). (http://dx.doi.org/10.1140/epjst/e2010-01179-1, http://arx-
iv.org/abs/0906.1405)

The original C++ implementation of Martin Rosvall is used, see http://www.tp.umu.se/~rosvall/down-
loads/infomap_undir.tgz . Integration in igraph was done by Emmanuel Navarro (who is grateful to
Martin Rosvall and Carl T. Bergstrom for providing this source code).

Note that the graph must not contain isolated vertices.

If you want to specify a random seed (as in the original implementation) you can use
igraph_rng_seed().

Arguments:

graph: The input graph. Edge directions are taken into account.

e_weights: Numeric vector giving the weights of the edges. The random walker will favour
edges with high weights over edges with low weights; the probability of picking
a particular outbound edge from a node is directly proportional to its weight. If it
is NULL then all edges will have equal weights. The weights are expected to be
non-negative.

v_weights: Numeric vector giving the weights of the vertices. Vertices with higher weights
are favoured by the random walker when it needs to "teleport" to a new node after
getting stuck in a sink node (i.e. a node with no outbound edges). The probability
of picking a vertex when the random walker teleports is directly proportional to
the weight of the vertex. If this argument is NULL then all vertices will have equal
weights. Weights are expected to be positive.

624

https://www.mapequation.org
https://www.mapequation.org
http://dx.doi.org/10.1073/pnas.0706851105
http://arxiv.org/abs/0707.0609
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://arxiv.org/abs/0906.1405
http://arxiv.org/abs/0906.1405
http://www.tp.umu.se/~rosvall/downloads/infomap_undir.tgz
http://www.tp.umu.se/~rosvall/downloads/infomap_undir.tgz

Detecting community structure

nb_trials: The number of attempts to partition the network (can be any integer value equal
or larger than 1).

membership: Pointer to a vector. The membership vector is stored here.

codelength: Pointer to a real. If not NULL the code length of the partition is stored here.

Returns:

Error code.

See also:

igraph_community_spinglass(), igraph_community_edge_betweenness(),
igraph_community_walktrap().

Time complexity: TODO.

Voronoi communities

igraph_community_voronoi — Finds communities
using Voronoi partitioning.

igraph_error_t igraph_community_voronoi(
 const igraph_t *graph,
 igraph_vector_int_t *membership, igraph_vector_int_t *generators, igraph_real_t *modularity,
 const igraph_vector_t *lengths, const igraph_vector_t *weights,
 igraph_neimode_t mode, igraph_real_t r);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

This function finds communities using a Voronoi partitioning of vertices based on the given edge
lengths divided by the edge clustering coefficient (igraph_ecc()). The generator vertices are cho-
sen to be those with the largest local relative density within a radius r, with the local relative density
of a vertex defined as s m / (m + k), where s is the strength of the vertex, m is the number
of edges within the vertex's first order neighborhood, while k is the number of edges with only one
endpoint within this neighborhood.

References:

Deritei et al, Community detection by graph Voronoi diagrams, New Journal of Physics 16, 063007
(2014) https://doi.org/10.1088/1367-2630/16/6/063007

Molnár et al, Community Detection in Directed Weighted Networks using Voronoi Partitioning,
https://arxiv.org/abs/2304.12389

Arguments:

graph: The input graph. It must be simple.

625

https://doi.org/10.1088/1367-2630/16/6/063007
https://arxiv.org/abs/2304.12389

Detecting community structure

membership: If not NULL, the membership of each vertex is returned here.

generators: If not NULL, the generator points used for Voronoi partitioning are returned here.

modularity: If not NULL, the modularity score of the partitioning is returned here.

lengths: Edge lengths, or NULL to consider all edges as having unit length. Voronoi parti-
tioning will use edge lengths equal to lengths / ECC where ECC is the edge clus-
tering coefficient.

weights: Edge weights, or NULL to consider all edges as having unit weight. Weights are
used when selecting generator points, as well as for computing modularity.

mode: If IGRAPH_OUT, distances from generator points to all other nodes are considered.
If IGRAPH_IN, the reverse distances are used. If IGRAPH_ALL, edge directions
are ignored. This parameter is ignored for undirected graphs.

r: The radius/resolution to use when selecting generator points. The larger this value,
the fewer partitions there will be. Pass in a negative value to automatically select
the radius that maximizes modularity.

Returns:

Error code.

See also:

igraph_voronoi(), igraph_ecc().

Time complexity: TODO.

626

Chapter 25. Graphlets
Introduction

Graphlet decomposition models a weighted undirected graph via the union of potentially overlapping
dense social groups. This is done by a two-step algorithm. In the first step, a candidate set of groups
(a candidate basis) is created by finding cliques in the thresholded input graph. In the second step,
the graph is projected onto the candidate basis, resulting in a weight coefficient for each clique in the
candidate basis.

For more information on graphlet decomposition, see Hossein Azari Soufiani and Edoardo M Airoldi:
"Graphlet decomposition of a weighted network", https://arxiv.org/abs/1203.2821 and http://proceed-
ings.mlr.press/v22/azari12/azari12.pdf

igraph contains three functions for performing the graphlet decomponsition of a graph. The first
is igraph_graphlets(), which performs both steps of the method and returns a list of sub-
graphs with their corresponding weights. The other two functions correspond to the first and sec-
ond steps of the algorithm, and they are useful if the user wishes to perform them individually:
igraph_graphlets_candidate_basis() and igraph_graphlets_project().

Note: The term "graphlet" is used for several unrelated concepts in the literature. If you are look-
ing to count induced subgraphs, see igraph_motifs_randesu() and igraph_subisomor-
phic_lad().

Performing graphlet decomposition

igraph_graphlets — Calculate graphlets basis and
project the graph on it

igraph_error_t igraph_graphlets(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_int_list_t *cliques,
 igraph_vector_t *Mu, igraph_integer_t niter);

This function simply calls igraph_graphlets_candidate_basis() and
igraph_graphlets_project(), and then orders the graphlets according to decreasing weights.

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges, a vector.

cliques: An initialized list of integer vectors. The graphlet basis is stored here. Each element of
the list is an integer vector of vertex IDs, encoding a single basis subgraph.

Mu: An initialized vector, the weights of the graphlets will be stored here.

niter: Integer scalar, the number of iterations to perform for the projection step.

Returns:

Error code.

627

https://arxiv.org/abs/1203.2821
http://proceedings.mlr.press/v22/azari12/azari12.pdf
http://proceedings.mlr.press/v22/azari12/azari12.pdf

Graphlets

See also: igraph_graphlets_candidate_basis() and igraph_graphlet-
s_project().

igraph_graphlets_candidate_basis — Calculate a
candidate graphlets basis

igraph_error_t igraph_graphlets_candidate_basis(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_int_list_t *cliques,
 igraph_vector_t *thresholds);

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges, a vector.

cliques: An initialized list of integer vectors. The graphlet basis is stored here. Each element
of the list is an integer vector of vertex IDs, encoding a single basis subgraph.

thresholds: An initialized vector, the (highest possible) weight thresholds for finding the basis
subgraphs are stored here.

Returns:

Error code.

See also: igraph_graphlets() and igraph_graphlets_project().

igraph_graphlets_project — Project a graph on a
graphlets basis

igraph_error_t igraph_graphlets_project(const igraph_t *graph,
 const igraph_vector_t *weights,
 const igraph_vector_int_list_t *cliques,
 igraph_vector_t *Mu, igraph_bool_t startMu,
 igraph_integer_t niter);

Note that the graph projected does not have to be the same that was used to calculate the graphlet basis,
but it is assumed that it has the same number of vertices, and the vertex IDs of the two graphs match.

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges in the input graph, a vector.

cliques: An initialized list of integer vectors. The graphlet basis is stored here. Each element of
the list is an integer vector of vertex IDs, encoding a single basis subgraph.

Mu: An initialized vector, the weights of the graphlets will be stored here. This vector is
also used to initialize the the weight vector for the iterative algorithm, if the startMu
argument is true.

628

Graphlets

startMu: If true, then the supplied Mu vector is used as the starting point of the iteration. Other-
wise a constant 1 vector is used.

niter: Integer scalar, the number of iterations to perform.

Returns:

Error code.

See also: igraph_graphlets() and igraph_graphlets_candidate_basis().

629

Chapter 26. Hierarchical random
graphs
Introduction

A hierarchical random graph is an ensemble of undirected graphs with n vertices. It is defined via a
binary tree with n leaf and n-1 internal vertices, where the internal vertices are labeled with proba-
bilities. The probability that two vertices are connected in the random graph is given by the probability
label at their closest common ancestor.

Please read the following two articles for more about hierarchical random graphs: A. Clauset, C.
Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing links in networks.
Nature 453, 98 - 101 (2008); and A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of
Hierarchies in Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer
Science 4503, 1-13. Springer-Verlag, Berlin Heidelberg (2007).

igraph contains functions for fitting HRG models to a given network (igraph_hrg_fit), for gener-
ating networks from a given HRG ensemble (igraph_hrg_game, igraph_hrg_sample), con-
verting an igraph graph to a HRG and back (igraph_hrg_create, igraph_hrg_dendro-
gram), for calculating a consensus tree from a set of sampled HRGs (igraph_hrg_consensus)
and for predicting missing edges in a network based on its HRG models (igraph_hrg_predict).

The igraph HRG implementation is heavily based on the code published by Aaron Clauset, at his
website, http://tuvalu.santafe.edu/~aaronc/hierarchy/

Representing HRGs

igraph_hrg_t — Data structure to store a hierarchi-
cal random graph.

typedef struct igraph_hrg_t {
 igraph_vector_int_t left;
 igraph_vector_int_t right;
 igraph_vector_t prob;
 igraph_vector_int_t vertices;
 igraph_vector_int_t edges;
} igraph_hrg_t;

A hierarchical random graph (HRG) can be given as a binary tree, where the internal vertices are
labeled with real numbers.

Note that you don't necessarily have to know this internal representation for using the HRG functions,
just pass the HRG objects created by one igraph function, to another igraph function.

It has the following members:

Values:

left: Vector that contains the left children of the internal tree vertices. The first vertex is
always the root vertex, so the first element of the vector is the left child of the root
vertex. Internal vertices are denoted with negative numbers, starting from -1 and going

630

http://tuvalu.santafe.edu/~aaronc/hierarchy/

Hierarchical random graphs

down, i.e. the root vertex is -1. Leaf vertices are denoted by non-negative number,
starting from zero and up.

right: Vector that contains the right children of the vertices, with the same encoding as the
left vector.

prob: The connection probabilities attached to the internal vertices, the first number belongs
to the root vertex (i.e. internal vertex -1), the second to internal vertex -2, etc.

edges: The number of edges in the subtree below the given internal vertex.

vertices: The number of vertices in the subtree below the given internal vertex, including itself.

igraph_hrg_init — Allocate memory for a HRG.

igraph_error_t igraph_hrg_init(igraph_hrg_t *hrg, igraph_integer_t n);

This function must be called before passing an igraph_hrg_t to an igraph function.

Arguments:

hrg: Pointer to the HRG data structure to initialize.

n: The number of vertices in the graph that is modeled by this HRG. It can be zero, if this is
not yet known.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the graph.

igraph_hrg_destroy — Deallocate memory for an
HRG.

void igraph_hrg_destroy(igraph_hrg_t *hrg);

The HRG data structure can be reinitialized again with an igraph_hrg_destroy call.

Arguments:

hrg: Pointer to the HRG data structure to deallocate.

Time complexity: operating system dependent.

igraph_hrg_size — Returns the size of the HRG, the
number of leaf nodes.

igraph_integer_t igraph_hrg_size(const igraph_hrg_t *hrg);

631

Hierarchical random graphs

Arguments:

hrg: Pointer to the HRG.

Returns:

The number of leaf nodes in the HRG.

Time complexity: O(1).

igraph_hrg_resize — Resize a HRG.

igraph_error_t igraph_hrg_resize(igraph_hrg_t *hrg, igraph_integer_t newsize);

Arguments:

hrg: Pointer to an initialized (see igraph_hrg_init) HRG.

newsize: The new size, i.e. the number of leaf nodes.

Returns:

Error code.

Time complexity: O(n), n is the new size.

Fitting HRGs

igraph_hrg_fit — Fit a hierarchical random graph
model to a network.

igraph_error_t igraph_hrg_fit(const igraph_t *graph,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 igraph_integer_t steps);

Arguments:

graph: The igraph graph to fit the model to. Edge directions are ignored in directed graphs.

hrg: Pointer to an initialized HRG, the result of the fitting is stored here. It can also be used
to pass a HRG to the function, that can be used as the starting point of the Markov Chain
Monte Carlo fitting, if the start argument is true.

start: Logical, whether to start the fitting from the given HRG model.

steps: Integer, the number of MCMC steps to take in the fitting procedure. If this is zero, then
the fitting stops if a convergence criteria is fulfilled.

Returns:

632

Hierarchical random graphs

Error code.

Time complexity: TODO.

igraph_hrg_consensus — Calculate a consensus
tree for a HRG.

igraph_error_t igraph_hrg_consensus(const igraph_t *graph,
 igraph_vector_int_t *parents,
 igraph_vector_t *weights,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 igraph_integer_t num_samples);

The calculation can be started from the given HRG (hrg), or (if start is false), a HRG is first fitted
to the given graph.

Arguments:

graph: The input graph.

parents: An initialized vector, the results are stored here. For each vertex, the id of its
parent vertex is stored, or -1, if the vertex is the root vertex in the tree. The first n
vertex IDs (from 0) refer to the original vertices of the graph, the other IDs refer
to vertex groups.

weights: Numeric vector, counts the number of times a given tree split occured in the gen-
erated network samples, for each internal vertices. The order is the same as in
parents.

hrg: A hierarchical random graph. It is used as a starting point for the sampling, if the
start argument is true. It is modified along the MCMC.

start: Logical, whether to use the supplied HRG (in hrg) as a starting point for the
MCMC.

num_samples: The number of samples to generate for creating the consensus tree.

Returns:

Error code.

Time complexity: TODO.

HRG sampling

igraph_hrg_sample — Sample from a hierarchical
random graph model.

igraph_error_t igraph_hrg_sample(const igraph_hrg_t *hrg, igraph_t *sample);

This function draws a single sample from a hierarchical random graph model.

633

Hierarchical random graphs

Arguments:

hrg: A HRG model to sample from

sample: Pointer to an uninitialized graph; the sample is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_hrg_game — Generate a hierarchical random
graph.

igraph_error_t igraph_hrg_game(igraph_t *graph,
 const igraph_hrg_t *hrg);

This function is a simple shortcut to igraph_hrg_sample. It creates a single graph from the given
HRG.

Arguments:

graph: Pointer to an uninitialized graph, the new graph is created here.

hrg: The hierarchical random graph model to sample from.

Returns:

Error code.

Time complexity: TODO.

Conversion to and from igraph graphs

igraph_from_hrg_dendrogram — Create a graph
representation of the dendrogram of a hierarchical
random graph model.

igraph_error_t igraph_from_hrg_dendrogram(
 igraph_t *graph, const igraph_hrg_t *hrg, igraph_vector_t *prob
);

Creates the igraph graph equivalent of the dendrogram encoded in an igraph_hrg_t data structure.
The probabilities associated to the nodes are returned in a vector so this function works without an
attribute handler.

Arguments:

graph: Pointer to an uninitialized graph, the result is stored here.

hrg: The hierarchical random graph to convert.

634

Hierarchical random graphs

prob: Pointer to an initialized vector; the probabilities associated to the nodes of the dendrogram
will be stored here. Leaf nodes will have an associated probability of IGRAPH_NAN . You
may set this to NULL if you do not need the probabilities.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the graph.

igraph_hrg_create — Create a HRG from an igraph
graph.

igraph_error_t igraph_hrg_create(igraph_hrg_t *hrg,
 const igraph_t *graph,
 const igraph_vector_t *prob);

Arguments:

hrg: Pointer to an initialized igraph_hrg_t. The result is stored here.

graph: The igraph graph to convert. It must be a directed binary tree, with n-1 internal and n leaf
vertices. The root vertex must have in-degree zero.

prob: The vector of probabilities, this is used to label the internal nodes of the hierarchical ran-
dom graph.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the tree.

Predicting missing edges

igraph_hrg_predict — Predict missing edges in a
graph, based on HRG models.

igraph_error_t igraph_hrg_predict(const igraph_t *graph,
 igraph_vector_int_t *edges,
 igraph_vector_t *prob,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 igraph_integer_t num_samples,
 igraph_integer_t num_bins);

Samples HRG models for a network, and estimated the probability that an edge was falsely observed
as non-existent in the network.

Arguments:

635

Hierarchical random graphs

graph: The input graph.

edges: The list of missing edges is stored here, the first two elements are the first edge,
the next two the second edge, etc.

prob: Vector of probabilies for the existence of missing edges, in the order correspond-
ing to edges.

hrg: A HRG, it is used as a starting point if start is true. It is also modified during
the MCMC sampling.

start: Logical, whether to start the MCMC from the given HRG.

num_samples: The number of samples to generate.

num_bins: Controls the resolution of the edge probabilities. Higher numbers result higher
resolution.

Returns:

Error code.

Time complexity: TODO.

Deprecated functions

igraph_hrg_dendrogram — Create a dendrogram
from a hierarchical random graph.

igraph_error_t igraph_hrg_dendrogram(igraph_t *graph, const igraph_hrg_t *hrg);

Creates the igraph graph equivalent of an igraph_hrg_t data structure.

Arguments:

graph: Pointer to an uninitialized graph, the result is stored here.

hrg: The hierarchical random graph to convert.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the graph.

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_from_hrg_dendrogram() instead.

636

Chapter 27. Embedding of graphs

Spectral embedding

igraph_adjacency_spectral_embedding — Adja-
cency spectral embedding

igraph_error_t igraph_adjacency_spectral_embedding(const igraph_t *graph,
 igraph_integer_t n,
 const igraph_vector_t *weights,
 igraph_eigen_which_position_t which,
 igraph_bool_t scaled,
 igraph_matrix_t *X,
 igraph_matrix_t *Y,
 igraph_vector_t *D,
 const igraph_vector_t *cvec,
 igraph_arpack_options_t *options);

Spectral decomposition of the adjacency matrices of graphs. This function computes an n-dimensional
Euclidean representation of the graph based on its adjacency matrix, A. This representation is com-
puted via the singular value decomposition of the adjacency matrix, A=U D V^T. In the case, where
the graph is a random dot product graph generated using latent position vectors in R^n for each vertex,
the embedding will provide an estimate of these latent vectors.

For undirected graphs, the latent positions are calculated as X = U^n D^(1/2) where U^n equals to
the first no columns of U, and D^(1/2) is a diagonal matrix containing the square root of the selected
singular values on the diagonal.

For directed graphs, the embedding is defined as the pair X = U^n D^(1/2), Y = V^n D^(1/2). (For
undirected graphs U=V, so it is sufficient to keep one of them.)

Arguments:

graph: The input graph, can be directed or undirected.

n: An integer scalar. This value is the embedding dimension of the spectral embedding.
Should be smaller than the number of vertices. The largest n-dimensional non-zero
singular values are used for the spectral embedding.

weights: Optional edge weights. Supply a null pointer for unweighted graphs.

which: Which eigenvalues (or singular values, for directed graphs) to use, possible values:

IGRAPH_EIGEN_LM the ones with the largest magnitude

IGRAPH_EIGEN_LA the (algebraic) largest ones

IGRAPH_EIGEN_SA the (algebraic) smallest ones.
For directed graphs, IGRAPH_EIGEN_LM and IGRAPH_EIGEN_LA are the same be-
cause singular values are used for the ordering instead of eigenvalues.

scaled: Whether to return X and Y (if scaled is true), or U and V.

X: Initialized matrix, the estimated latent positions are stored here.

637

Embedding of graphs

Y: Initialized matrix or a null pointer. If not a null pointer, then the second half of the latent
positions are stored here. (For undirected graphs, this always equals X.)

D: Initialized vector or a null pointer. If not a null pointer, then the eigenvalues (for undi-
rected graphs) or the singular values (for directed graphs) are stored here.

cvec: A numeric vector, its length is the number vertices in the graph. This vector is added to
the diagonal of the adjacency matrix, before performing the SVD.

options: Options to ARPACK. See igraph_arpack_options_t for details. Supply NULL
to use the defaults. Note that the function overwrites the n (number of vertices), nev
and which parameters and it always starts the calculation from a random start vector.

Returns:

Error code.

igraph_laplacian_spectral_embedding — Spec-
tral embedding of the Laplacian of a graph

igraph_error_t igraph_laplacian_spectral_embedding(const igraph_t *graph,
 igraph_integer_t n,
 const igraph_vector_t *weights,
 igraph_eigen_which_position_t which,
 igraph_laplacian_spectral_embedding_type_t type,
 igraph_bool_t scaled,
 igraph_matrix_t *X,
 igraph_matrix_t *Y,
 igraph_vector_t *D,
 igraph_arpack_options_t *options);

This function essentially does the same as igraph_adjacency_spectral_embedding, but
works on the Laplacian of the graph, instead of the adjacency matrix.

Arguments:

graph: The input graph.

n: The number of eigenvectors (or singular vectors if the graph is directed) to use for the
embedding.

weights: Optional edge weights. Supply a null pointer for unweighted graphs.

which: Which eigenvalues (or singular values, for directed graphs) to use, possible values:

IGRAPH_EIGEN_LM the ones with the largest magnitude

IGRAPH_EIGEN_LA the (algebraic) largest ones

IGRAPH_EIGEN_SA the (algebraic) smallest ones.
For directed graphs, IGRAPH_EIGEN_LM and IGRAPH_EIGEN_LA are the same be-
cause singular values are used for the ordering instead of eigenvalues.

type: The type of the Laplacian to use. Various definitions exist for the Laplacian of a graph,
and one can choose between them with this argument. Possible values:

638

Embedding of graphs

IGRAPH_EMBEDDING_D_A means D - A where D is the degree matrix and A is
the adjacency matrix

IGRAPH_EMBEDDING_DAD means Di times A times Di, where Di is the inverse
of the square root of the degree matrix;

IGRAPH_EMBEDDING_I_DAD means I - Di A Di, where I is the identity matrix.

scaled: Whether to return X and Y (if scaled is true), or U and V.

X: Initialized matrix, the estimated latent positions are stored here.

Y: Initialized matrix or a null pointer. If not a null pointer, then the second half of the latent
positions are stored here. (For undirected graphs, this always equals X.)

D: Initialized vector or a null pointer. If not a null pointer, then the eigenvalues (for undi-
rected graphs) or the singular values (for directed graphs) are stored here.

options: Options to ARPACK. See igraph_arpack_options_t for details. Supply NULL
to use the defaults. Note that the function overwrites the n (number of vertices), nev
and which parameters and it always starts the calculation from a random start vector.

Returns:

Error code.

See also:

igraph_adjacency_spectral_embedding to embed the adjacency matrix.

igraph_dim_select — Dimensionality selection.

igraph_error_t igraph_dim_select(const igraph_vector_t *sv, igraph_integer_t *dim);

Dimensionality selection for singular values using profile likelihood.

The input of the function is a numeric vector which contains the measure of "importance" for each
dimension.

For spectral embedding, these are the singular values of the adjacency matrix. The singular values
are assumed to be generated from a Gaussian mixture distribution with two components that have
different means and same variance. The dimensionality d is chosen to maximize the likelihood when
the d largest singular values are assigned to one component of the mixture and the rest of the singular
values assigned to the other component.

This function can also be used for the general separation problem, where we assume that the left and
the right of the vector are coming from two normal distributions, with different means, and we want
to know their border.

Arguments:

sv: A numeric vector, the ordered singular values.

dim: The result is stored here.

639

Embedding of graphs

Returns:

Error code.

Time complexity: O(n), n is the number of values in sv.

See also:

igraph_adjacency_spectral_embedding().

640

Chapter 28. Graph operators
Union and intersection

igraph_disjoint_union — Creates the union of two
disjoint graphs.

igraph_error_t igraph_disjoint_union(igraph_t *res, const igraph_t *left,
 const igraph_t *right);

First the vertices of the second graph will be relabeled with new vertex IDs to have two disjoint sets
of vertex IDs, then the union of the two graphs will be formed. If the two graphs have |V1| and |V2|
vertices and |E1| and |E2| edges respectively then the new graph will have |V1|+|V2| vertices and |
E1|+|E2| edges.

The vertex and edge ordering of the graphs will be preserved. In other words, the vertex and edge IDs
of the first graph map to identical values in the new graph, while the vertex and edge IDs of the second
graph map to IDs incremented by the vertex and edge count of the first graph.

Both graphs need to have the same directedness, i.e. either both directed or both undirected.

The current version of this function cannot handle graph, vertex and edge attributes, they will be lost.

Arguments:

res: Pointer to an uninitialized graph object, the result will stored here.

left: The first graph.

right: The second graph.

Returns:

Error code.

See also:

igraph_disjoint_union_many() for creating the disjoint union of more than two graphs,
igraph_union() for non-disjoint union.

Time complexity: O(|V1|+|V2|+|E1|+|E2|).

Example 28.1. File examples/simple/igraph_disjoint_union.c

igraph_disjoint_union_many — The disjoint union
of many graphs.

igraph_error_t igraph_disjoint_union_many(igraph_t *res,
 const igraph_vector_ptr_t *graphs);

641

Graph operators

First the vertices in the graphs will be relabeled with new vertex IDs to have pairwise disjoint vertex
ID sets and then the union of the graphs is formed. The number of vertices and edges in the result is
the total number of vertices and edges in the graphs.

The vertex and edge ordering of the input graphs is preserved in the output graph.

All graphs need to have the same directedness, i.e. either all directed or all undirected. If the graph list
has length zero, the result will be a directed graph with no vertices.

The current version of this function cannot handle graph, vertex and edge attributes, they will be lost.

Arguments:

res: Pointer to an uninitialized graph object, the result of the operation will be stored here.

graphs: Pointer vector, contains pointers to initialized graph objects.

Returns:

Error code.

See also:

igraph_disjoint_union() for an easier syntax if you have only two graphs, igraph_u-
nion_many() for non-disjoint union.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the result.

igraph_join — Creates the join of two disjoint
graphs.

igraph_error_t igraph_join(igraph_t *res, const igraph_t *left,
 const igraph_t *right);

First the vertices of the second graph will be relabeled with new vertex IDs to have two disjoint sets
of vertex IDs, then the union of the two graphs will be formed. Finally, the vertces from the first graph
will have edges added to each vertex from the second. If the two graphs have |V1| and |V2| vertices
and |E1| and |E2| edges respectively then the new graph will have |V1|+|V2| vertices and |E1|+|E2|+|
V1|*|V2| edges.

The vertex ordering of the graphs will be preserved. In other words, the vertex IDs of the first graph
map to identical values in the new graph, while the vertex IDs of the second graph map to IDs incre-
mented by the vertex count of the first graph. The new edges will be grouped with the other edges
that share a from vertex.

Both graphs need to have the same directedness, i.e. either both directed or both undirected. If both
graphs are directed, then for each vertex v, u in graphs G1, G2 we add edges (v, u), (u, v) to maintain
completeness.

The current version of this function cannot handle graph, vertex and edge attributes, they will be lost.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

left: The first graph.

642

Graph operators

right: The second graph.

Returns:

Error code.

Time complexity: O(|V1|*|V2|+|E1|+|E2|).

igraph_union — Calculates the union of two graphs.

igraph_error_t igraph_union(igraph_t *res,
 const igraph_t *left, const igraph_t *right,
 igraph_vector_int_t *edge_map1, igraph_vector_int_t *edge_map2);

The number of vertices in the result is that of the larger graph from the two arguments. The result
graph contains edges which are present in at least one of the operand graphs.

The directedness of the operand graphs must be the same.

Edge multiplicities are handled by taking the larger of the two multiplicities in the input graphs. In
other words, if the first graph has N edges between a vertex pair (u, v) and the second graph has M
edges, the result graph will have max(N, M) edges between them.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

left: The first graph.

right: The second graph.

edge_map1: Pointer to an initialized vector or a null pointer. If not a null pointer, it will contain
a mapping from the edges of the first argument graph (left) to the edges of the
result graph.

edge_map2: The same as edge_map1, but for the second graph, right.

Returns:

Error code.

See also:

igraph_union_many() for the union of many graphs, igraph_intersection() and
igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the result graph.

Example 28.2. File examples/simple/igraph_union.c

igraph_union_many — Creates the union of many
graphs.

643

Graph operators

igraph_error_t igraph_union_many(
 igraph_t *res, const igraph_vector_ptr_t *graphs,
 igraph_vector_int_list_t *edgemaps
);

The result graph will contain as many vertices as the largest graph among the arguments does, and an
edge will be included in it if it is part of at least one operand graph.

The number of vertices in the result graph will be the maximum number of vertices in the argument
graphs.

The directedness of the argument graphs must be the same. If the graph list has length zero, the result
will be a directed graph with no vertices.

Edge multiplicities are handled by taking the maximum multiplicity of the all multiplicities for the
same vertex pair (u, v) in the input graphs; this will be the multiplicity of (u, v) in the result graph.

Arguments:

res: Pointer to an uninitialized graph object, this will contain the result.

graphs: Pointer vector, contains pointers to the operands of the union operator, graph objects
of course.

edgemaps: If not a null pointer, then it must be an initialized list of integer vectors, and the map-
pings of edges from the graphs to the result graph will be stored here, in the same
order as graphs. Each mapping is stored in a separate igraph_vector_int_t object.

Returns:

Error code.

See also:

igraph_union() for the union of two graphs, igraph_intersection_many(),
igraph_intersection() and igraph_difference for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices in largest graph and |E| is the number of
edges in the result graph.

igraph_intersection — Collect the common edges
from two graphs.

igraph_error_t igraph_intersection(igraph_t *res,
 const igraph_t *left, const igraph_t *right,
 igraph_vector_int_t *edge_map1,
 igraph_vector_int_t *edge_map2);

The result graph contains only edges present both in the first and the second graph. The number of
vertices in the result graph is the same as the larger from the two arguments.

The directedness of the operand graphs must be the same.

Edge multiplicities are handled by taking the smaller of the two multiplicities in the input graphs. In
other words, if the first graph has N edges between a vertex pair (u, v) and the second graph has M
edges, the result graph will have min(N, M) edges between them.

644

Graph operators

Arguments:

res: Pointer to an uninitialized graph object. This will contain the result of the operation.

left: The first operand, a graph object.

right: The second operand, a graph object.

edge_map1: Null pointer, or an initialized vector. If the latter, then a mapping from the edges of
the result graph, to the edges of the left input graph is stored here. For the edges
that are not in the intersection, -1 is stored.

edge_map2: Null pointer, or an initialized vector. The same as edge_map1, but for the right
input graph. For the edges that are not in the intersection, -1 is stored.

Returns:

Error code.

See also:

igraph_intersection_many() to calculate the intersection of many graphs at once,
igraph_union(), igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of nodes, |E| is the number of edges in the smaller
graph of the two. (The one containing less vertices is considered smaller.)

Example 28.3. File examples/simple/igraph_intersection.c

igraph_intersection_many — The intersection of
more than two graphs.

igraph_error_t igraph_intersection_many(
 igraph_t *res, const igraph_vector_ptr_t *graphs,
 igraph_vector_int_list_t *edgemaps
);

This function calculates the intersection of the graphs stored in the graphs argument. Only those
edges will be included in the result graph which are part of every graph in graphs.

The number of vertices in the result graph will be the maximum number of vertices in the argument
graphs.

The directedness of the argument graphs must be the same. If the graph list has length zero, the result
will be a directed graph with no vertices.

Edge multiplicities are handled by taking the minimum multiplicity of the all multiplicities for the
same vertex pair (u, v) in the input graphs; this will be the multiplicity of (u, v) in the result graph.

Arguments:

res: Pointer to an uninitialized graph object, the result of the operation will be stored here.

graphs: Pointer vector, contains pointers to graphs objects, the operands of the intersection
operator.

645

Graph operators

edgemaps: If not a null pointer, then it must be an initialized list of integer vectors, and the map-
pings of edges from the graphs to the result graph will be stored here, in the same
order as graphs. Each mapping is stored in a separate igraph_vector_int_t object.
For the edges that are not in the intersection, -1 is stored.

Returns:

Error code.

See also:

igraph_intersection() for the intersection of two graphs, igraph_union_many(),
igraph_union() and igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| is the number of edges in the smallest
graph (i.e. the graph having the less vertices).

Other set-like operators

igraph_difference — Calculates the difference of
two graphs.

igraph_error_t igraph_difference(igraph_t *res,
 const igraph_t *orig, const igraph_t *sub);

The number of vertices in the result is the number of vertices in the original graph, i.e. the left, first
operand. In the results graph only edges will be included from orig which are not present in sub.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

orig: The left operand of the operator, a graph object.

sub: The right operand of the operator, a graph object.

Returns:

Error code.

See also:

igraph_intersection() and igraph_union() for other operators.

Time complexity: O(|V|+|E|), |V| is the number vertices in the smaller graph, |E| is the number of edges
in the result graph.

Example 28.4. File examples/simple/igraph_difference.c

igraph_complementer — Creates the complementer
of a graph.

646

Graph operators

igraph_error_t igraph_complementer(igraph_t *res, const igraph_t *graph,
 igraph_bool_t loops);

The complementer graph means that all edges which are not part of the original graph will be included
in the result.

Arguments:

res: Pointer to an uninitialized graph object.

graph: The original graph.

loops: Whether to add loop edges to the complementer graph.

Returns:

Error code.

See also:

igraph_union(), igraph_intersection() and igraph_difference().

Time complexity: O(|V|+|E1|+|E2|), |V| is the number of vertices in the graph, |E1| is the number of
edges in the original and |E2| in the complementer graph.

Example 28.5. File examples/simple/igraph_complementer.c

igraph_compose — Calculates the composition of
two graphs.

igraph_error_t igraph_compose(igraph_t *res, const igraph_t *g1, const igraph_t *g2,
 igraph_vector_int_t *edge_map1, igraph_vector_int_t *edge_map2);

The composition of graphs contains the same number of vertices as the bigger graph of the two
operands. It contains an (i,j) edge if and only if there is a k vertex, such that the first graph contains
an (i,k) edge and the second graph a (k,j) edge.

This is of course exactly the composition of two binary relations.

The two graphs must have the same directedness, otherwise the function returns with an error. Note
that for undirected graphs the two relations are by definition symmetric.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

g1: The firs operand, a graph object.

g2: The second operand, another graph object.

edge_map1: If not a null pointer, then it must be a pointer to an initialized vector, and a mapping
from the edges of the result graph to the edges of the first graph is stored here.

edge_map1: If not a null pointer, then it must be a pointer to an initialized vector, and a mapping
from the edges of the result graph to the edges of the second graph is stored here.

647

Graph operators

Returns:

Error code.

Time complexity: O(|V|*d1*d2), |V| is the number of vertices in the first graph, d1 and d2 the average
degree in the first and second graphs.

Example 28.6. File examples/simple/igraph_compose.c

Miscellaneous operators

igraph_connect_neighborhood — Connects each
vertex to its neighborhood.

igraph_error_t igraph_connect_neighborhood(igraph_t *graph, igraph_integer_t order,
 igraph_neimode_t mode);

This function adds new edges to the input graph. Each vertex is connected to all vertices reachable by
at most order steps from it (unless a connection already existed).

Note that the input graph is modified in place, no new graph is created. Call igraph_copy() if
you want to keep the original graph as well.

For undirected graphs reachability is always symmetric: if vertex A can be reached from vertex B in
at most order steps, then the opposite is also true. Only one undirected (A,B) edge will be added
in this case.

Arguments:

graph: The input graph. It will be modified in-place.

order: Integer constant, it gives the distance within which the vertices will be connected to the
source vertex.

mode: Constant, it specifies how the neighborhood search is performed for directed graphs.
If IGRAPH_OUT then vertices reachable from the source vertex will be connected,
IGRAPH_IN is the opposite. If IGRAPH_ALL then the directed graph is considered as
an undirected one.

Returns:

Error code.

See also:

igraph_graph_power() to compute the kth power of a graph; igraph_square_lat-
tice() uses this function to connect the neighborhood of the vertices.

Time complexity: O(|V|*d^k), |V| is the number of vertices in the graph, d is the average degree and
k is the order argument.

igraph_contract_vertices — Replace multiple ver-
tices with a single one.

648

Graph operators

igraph_error_t igraph_contract_vertices(igraph_t *graph,
 const igraph_vector_int_t *mapping,
 const igraph_attribute_combination_t *vertex_comb);

This function modifies the graph by merging several vertices into one. The vertices in the modified
graph correspond to groups of vertices in the input graph. No edges are removed, thus the modified
graph will typically have self-loops (corresponding to in-group edges) and multi-edges (corresponding
to multiple connections between two groups). Use igraph_simplify() to eliminate self-loops
and merge multi-edges.

Arguments:

graph: The input graph. It will be modified in-place.

mapping: A vector giving the mapping. For each vertex in the original graph, it should
contain its desired ID in the result graph. In order not to create "orphan vertices"
that have no corresponding vertices in the original graph, ensure that the IDs are
consecutive integers starting from zero.

vertex_comb: What to do with the vertex attributes. NULL means that vertex attributes are not
kept after the contraction (not even for unaffected vertices). See the igraph manual
section about attributes for details.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number or vertices plus edges.

igraph_graph_power — The kth power of a graph.

igraph_error_t igraph_graph_power(const igraph_t *graph, igraph_t *res,
 igraph_integer_t order, igraph_bool_t directed);

Warning

This function is experimental and its signature is not considered final yet. We reserve the
right to change the function signature without changing the major version of igraph. Use it
at your own risk.

The kth power of a graph G is a simple graph where vertex u is connected to v by a single edge if
v is reachable from u in G within at most k steps. By convention, the zeroth power of a graph has
no edges. The first power is identical to the original graph, except that multiple edges and self-loops
are removed.

Graph power is usually defined only for undirected graphs. igraph extends the concept to directed
graphs. To ignore edge directions in the input, set the directed parameter to false. In this case,
the result will be an undirected graph.

Graph and vertex attributes are preserved, but edge attributes are discarded.

Arguments:

graph: The input graph.

res: The graph power of the given order.

649

Graph operators

order: Non-negative integer, the power to raise the graph to. In other words, vertices within
a distance order will be connected.

directed: Logical, whether to take edge directions into account.

Returns:

Error code.

See also:

igraph_connect_neighborhood() to connect each vertex to its neighborhood, modifying
a graph in-place.

Time complexity: O(|V|*d^k), |V| is the number of vertices in the graph, d is the average degree and
k is the order argument.

igraph_induced_subgraph — Creates a subgraph
induced by the specified vertices.

igraph_error_t igraph_induced_subgraph(const igraph_t *graph, igraph_t *res,
 const igraph_vs_t vids, igraph_subgraph_implementation_t impl);

This function collects the specified vertices and all edges between them to a new graph. As the vertex
IDs in a graph always start with zero, this function very likely needs to reassign IDs to the vertices.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this object before
calling this function, and call igraph_destroy() on it if you don't need it any more.

vids: A vertex selector describing which vertices to keep. A vertex may appear more than once
in the selector, but it will be considered only once (i.e. it is not possible to duplicate a vertex
by adding its ID more than once to the selector). The order in which the vertices appear
in the vertex selector is ignored; the returned subgraph will always contain the vertices of
the original graph in increasing order of vertex IDs.

impl: This parameter selects which implementation should we use when constructing the new
graph. Basically there are two possibilities: IGRAPH_SUBGRAPH_COPY_AND_DELETE
copies the existing graph and deletes the vertices that are not needed in the new graph,
while IGRAPH_SUBGRAPH_CREATE_FROM_SCRATCH constructs the new graph from
scratch without copying the old one. The latter is more efficient if you are extracting a
relatively small subpart of a very large graph, while the former is better if you want to
extract a subgraph whose size is comparable to the size of the whole graph. There is a third
possibility: IGRAPH_SUBGRAPH_AUTO will select one of the two methods automatically
based on the ratio of the number of vertices in the new and the old graph.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID in vids.

650

Graph operators

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

igraph_delete_vertices() to delete the specified set of vertices from a graph, the opposite
of this function.

igraph_induced_subgraph_map — Creates an in-
duced subraph and returns the mapping from the orig-
inal.

igraph_error_t igraph_induced_subgraph_map(const igraph_t *graph, igraph_t *res,
 const igraph_vs_t vids,
 igraph_subgraph_implementation_t impl,
 igraph_vector_int_t *map,
 igraph_vector_int_t *invmap);

This function collects the specified vertices and all edges between them to a new graph. As the vertex
IDs in a graph always start with zero, this function very likely needs to reassign IDs to the vertices.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this object before
calling this function, and call igraph_destroy() on it if you don't need it any more.

vids: A vertex selector describing which vertices to keep.

impl: This parameter selects which implementation should be used when construct-
ing the new graph. Basically there are two possibilities: IGRAPH_SUB-
GRAPH_COPY_AND_DELETE copies the existing graph and deletes the vertices that are
not needed in the new graph, while IGRAPH_SUBGRAPH_CREATE_FROM_SCRATCH
constructs the new graph from scratch without copying the old one. The latter is more
efficient if you are extracting a relatively small subpart of a very large graph, while the
former is better if you want to extract a subgraph whose size is comparable to the size
of the whole graph. There is a third possibility: IGRAPH_SUBGRAPH_AUTO will select
one of the two methods automatically based on the ratio of the number of vertices in the
new and the old graph.

map: Returns a map of the vertices in graph to the vertices in res. A 0 indicates a vertex
is not mapped. An i + 1 at position j indicates the vertex j in graph is mapped to
vertex i in res.

invmap: Returns a map of the vertices in res to the vertices in graph. An i at position j indicates
the vertex i in graph is mapped to vertex j in res.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, in-
valid vertex ID in vids.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

651

Graph operators

igraph_delete_vertices() to delete the specified set of vertices from a graph, the opposite
of this function.

igraph_linegraph — Create the line graph of a
graph.

igraph_error_t igraph_linegraph(const igraph_t *graph, igraph_t *linegraph);

The line graph L(G) of a G undirected graph is defined as follows. L(G) has one vertex for each edge
in G and two different vertices in L(G) are connected by an edge if their corresponding edges share
an end point. In a multigraph, if two end points are shared, two edges are created. The single vertex
of an undirected self-loop is counted as two end points.

The line graph L(G) of a G directed graph is slightly different: L(G) has one vertex for each edge in G
and two vertices in L(G) are connected by a directed edge if the target of the first vertex's corresponding
edge is the same as the source of the second vertex's corresponding edge.

Self-loops are considered self-adjacent, thus their corresponding vertex in the line graph will also a
have a single self-loop, in both undirected and directed graphs.

Edge i in the original graph will correspond to vertex i in the line graph.

The first version of this function was contributed by Vincent Matossian, thanks.

Arguments:

graph: The input graph, may be directed or undirected.

linegraph: Pointer to an uninitialized graph object, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of edges plus the number of vertices.

igraph_simplify — Removes loop and/or multiple
edges from the graph.

igraph_error_t igraph_simplify(igraph_t *graph,
 igraph_bool_t multiple, igraph_bool_t loops,
 const igraph_attribute_combination_t *edge_comb);

This function merges parallel edges and removes self-loops, according to the multiple and loops
parameters. Note that this function may change the edge order, even if the input was already a simple
graph.

Arguments:

graph: The graph object.

multiple: Logical, if true, multiple edges will be removed.

loops: Logical, if true, loops (self edges) will be removed.

652

Graph operators

edge_comb: What to do with the edge attributes. NULL means to discard the edge attributes after
the operation, even for edges that were unaffected. See the igraph manual section
about attributes for details.

Returns:

Error code: IGRAPH_ENOMEM if we are out of memory.

Time complexity: O(|V|+|E|).

Example 28.7. File examples/simple/igraph_simplify.c

igraph_subgraph_from_edges — Creates a sub-
graph with the specified edges and their endpoints.

igraph_error_t igraph_subgraph_from_edges(
 const igraph_t *graph, igraph_t *res, const igraph_es_t eids,
 igraph_bool_t delete_vertices
);

This function collects the specified edges and their endpoints to a new graph. As the edge IDs in a
graph always start with zero, this function very likely needs to reassign IDs to the edges. Vertex IDs
may also be reassigned if delete_vertices is set to true . Attributes are preserved.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this
object before calling this function, and call igraph_destroy() on it if
you don't need it any more.

eids: An edge selector describing which edges to keep.

delete_vertices: Whether to delete the vertices not incident on any of the specified edges as
well. If false, the number of vertices in the result graph will always be
equal to the number of vertices in the input graph.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVEID, in-
valid edge ID in eids.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

igraph_delete_edges() to delete the specified set of edges from a graph, the opposite of
this function.

igraph_reverse_edges — Reverses some edges of
a directed graph.

653

Graph operators

igraph_error_t igraph_reverse_edges(igraph_t *graph, const igraph_es_t eids);

This function reverses some edges of a directed graph. The modification is done in place. All attributes,
as well as the ordering of edges and vertices are preserved.

Note that is rarely necessary to reverse all edges, as almost all functions that handle directed graphs
take a mode argument that can be set to IGRAPH_IN to effectively treat edges as reversed.

Arguments:

graph: The graph whose edges will be reversed.

es: The edges to be reversed. Pass igraph_ess_all(IGRAPH_EDGEORDER_ID) to re-
verse all edges.

Returns:

Error code.

Time complexity: O(1) if all edges are reversed, otherwise O(|E|) where |E| is the number of edges
in the graph.

Deprecated functions

igraph_subgraph_edges — Creates a subgraph with
the specified edges and their endpoints (deprecated
alias).

igraph_error_t igraph_subgraph_edges(
 const igraph_t *graph, igraph_t *res, const igraph_es_t eids,
 igraph_bool_t delete_vertices
);

Warning

Deprecated since version 0.10.3. Please do not use this function in new code; use
igraph_subgraph_from_edges() instead.

654

Chapter 29. Using BLAS, LAPACK
and ARPACK for igraph matrices and
graphs
BLAS interface in igraph

BLAS is a highly optimized library for basic linear algebra operations such as vector-vector, ma-
trix-vector and matrix-matrix product. Please see http://www.netlib.org/blas/ for details and a refer-
ence implementation in Fortran. igraph contains some wrapper functions that can be used to call BLAS
routines in a somewhat more user-friendly way. Not all BLAS routines are included in igraph, and
even those which are included might not have wrappers; the extension of the set of wrapped functions
will probably be driven by igraph's internal requirements. The wrapper functions usually substitute
double-precision floating point arrays used by BLAS with igraph_vector_t and igraph_matrix_t in-
stances and also remove those parameters (such as the number of rows/columns) that can be inferred
from the passed arguments directly.

igraph_blas_ddot — Dot product of two vectors.

igraph_error_t igraph_blas_ddot(const igraph_vector_t *v1, const igraph_vector_t *v2,
 igraph_real_t *res);

Arguments:

v1: The first vector.

v2: The second vector.

res: Pointer to a real, the result will be stored here.

Time complexity: O(n) where n is the length of the vectors.

Example 29.1. File examples/simple/blas.c

igraph_blas_dnrm2 — Euclidean norm of a vector.

igraph_real_t igraph_blas_dnrm2(const igraph_vector_t *v);

Arguments:

v: The vector.

Returns:

Real value, the norm of v.

Time complexity: O(n) where n is the length of the vector.

655

http://www.netlib.org/blas/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

igraph_blas_dgemv — Matrix-vector multiplication
using BLAS, vector version.

igraph_error_t igraph_blas_dgemv(igraph_bool_t transpose, igraph_real_t alpha,
 const igraph_matrix_t *a, const igraph_vector_t *x,
 igraph_real_t beta, igraph_vector_t *y);

This function is a somewhat more user-friendly interface to the dgemv function in BLAS. dgemv
performs the operation y = alpha*A*x + beta*y, where x and y are vectors and A is an appropriately
sized matrix (symmetric or non-symmetric).

Arguments:

transpose: whether to transpose the matrix A

alpha: the constant alpha

a: the matrix A

x: the vector x

beta: the constant beta

y: the vector y (which will be modified in-place)

Time complexity: O(nk) if the matrix is of size n x k

Returns:

IGRAPH_EOVERFLOW if the matrix is too large for BLAS, IGRAPH_SUCCESS otherwise.

See also:

igraph_blas_dgemv_array if you have arrays instead of vectors.

Example 29.2. File examples/simple/blas.c

igraph_blas_dgemm — Matrix-matrix multiplication
using BLAS.

igraph_error_t igraph_blas_dgemm(igraph_bool_t transpose_a, igraph_bool_t transpose_b,
 igraph_real_t alpha, const igraph_matrix_t *a, const igraph_matrix_t *b,
 igraph_real_t beta, igraph_matrix_t *c);

This function is a somewhat more user-friendly interface to the dgemm function in BLAS. dgemm
calculates alpha*a*b + beta*c, where a, b and c are matrices, of which a and b can be transposed.

Arguments:

transpose_a: whether to transpose the matrix a

transpose_b: whether to transpose the matrix b

656

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
alpha: the constant alpha

a: the matrix a

b: the matrix b

beta: the constant beta

c: the matrix c. The result will also be stored here. If beta is zero, c will be resized
to fit the result.

Time complexity: O(n m k) where matrix a is of size n × k, and matrix b is of size k × m.

Returns:

IGRAPH_EOVERFLOW if the matrix is too large for BLAS, IGRAPH_EINVAL if the matrices have
incompatible sizes, IGRAPH_SUCCESS otherwise.

Example 29.3. File examples/simple/blas_dgemm.c

igraph_blas_dgemv_array — Matrix-vector multipli-
cation using BLAS, array version.

igraph_error_t igraph_blas_dgemv_array(igraph_bool_t transpose, igraph_real_t alpha,
 const igraph_matrix_t* a, const igraph_real_t* x,
 igraph_real_t beta, igraph_real_t* y);

This function is a somewhat more user-friendly interface to the dgemv function in BLAS. dgemv
performs the operation y = alpha*A*x + beta*y, where x and y are vectors and A is an appropriately
sized matrix (symmetric or non-symmetric).

Arguments:

transpose: whether to transpose the matrix A

alpha: the constant alpha

a: the matrix A

x: the vector x as a regular C array

beta: the constant beta

y: the vector y as a regular C array (which will be modified in-place)

Time complexity: O(nk) if the matrix is of size n x k

Returns:

IGRAPH_EOVERFLOW if the matrix is too large for BLAS, IGRAPH_SUCCESS otherwise.

See also:

igraph_blas_dgemv if you have vectors instead of arrays.

657

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

LAPACK interface in igraph
LAPACK is written in Fortran90 and provides routines for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular
value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized
Schur) are also provided, as are related computations such as reordering of the Schur factorizations
and estimating condition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex matrices, in both single
and double precision.

igraph provides an interface to a very limited set of LAPACK functions, using the regular igraph data
structures.

See more about LAPACK at http://www.netlib.org/lapack/

Matrix factorization, solving linear systems

igraph_lapack_dgetrf — LU factorization of a general M-by-N
matrix.

igraph_error_t igraph_lapack_dgetrf(igraph_matrix_t *a, igraph_vector_int_t *ipiv,
 int *info);

The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular
with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal
if m < n).

Arguments:

a: The input/output matrix. On entry, the M-by-N matrix to be factored. On exit, the factors L
and U from the factorization A = P * L * U; the unit diagonal elements of L are not stored.

ipiv: An integer vector, the pivot indices are stored here, unless it is a null pointer. Row i of the
matrix was interchanged with row ipiv[i].

info: LAPACK error code. Zero on successful exit. If its value is a positive number i, it indicates
that U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used to solve a system of equations. If
LAPACK returns an error, i.e. a negative info value, then an igraph error is generated as well.

Returns:

Error code.

Time complexity: TODO.

igraph_lapack_dgetrs — Solve general system of linear equa-
tions using LU factorization.

igraph_error_t igraph_lapack_dgetrs(igraph_bool_t transpose, const igraph_matrix_t *a,
 const igraph_vector_int_t *ipiv, igraph_matrix_t *b);

This function calls LAPACK to solve a system of linear equations A * X = B or A' * X = B with a
general N-by-N matrix A using the LU factorization computed by igraph_lapack_dgetrf.

658

http://www.netlib.org/lapack/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
Arguments:

transpose: Logical scalar, whether to transpose the input matrix.

a: A matrix containing the L and U factors from the factorization A = P*L*U. L is
expected to be unitriangular, diagonal entries are those of U. If A is singular, no
warning or error wil be given and random output will be returned.

ipiv: An integer vector, the pivot indices from igraph_lapack_dgetrf() must be
given here. Row i of A was interchanged with row ipiv[i].

b: The right hand side matrix must be given here. The solution will also be placed here.

Returns:

Error code.

Time complexity: TODO.

igraph_lapack_dgesv — Solve system of linear equations with
LU factorization.

igraph_error_t igraph_lapack_dgesv(igraph_matrix_t *a, igraph_vector_int_t *ipiv,
 igraph_matrix_t *b, int *info);

This function computes the solution to a real system of linear equations A * X = B, where A is an N-
by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L *
U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations A * X = B.

Arguments:

a: Matrix. On entry the N-by-N coefficient matrix, on exit, the factors L and U from the fac-
torization A=P*L*U; the unit diagonal elements of L are not stored.

ipiv: An integer vector or a null pointer. If not a null pointer, then the pivot indices that define
the permutation matrix P, are stored here. Row i of the matrix was interchanged with row
IPIV(i).

b: Matrix, on entry the right hand side matrix should be stored here. On exit, if there was no
error, and the info argument is zero, then it contains the solution matrix X.

info: The LAPACK info code. If it is positive, then U(info,info) is exactly zero. In this case the
factorization has been completed, but the factor U is exactly singular, so the solution could
not be computed.

Returns:

Error code.

Time complexity: TODO.

Example 29.4. File examples/simple/igraph_lapack_dgesv.c

659

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

Eigenvalues and eigenvectors of matrices

igraph_lapack_dsyevr — Selected eigenvalues and optionally
eigenvectors of a symmetric matrix.

igraph_error_t igraph_lapack_dsyevr(const igraph_matrix_t *A,
 igraph_lapack_dsyev_which_t which,
 igraph_real_t vl, igraph_real_t vu, int vestimate,
 int il, int iu, igraph_real_t abstol,
 igraph_vector_t *values, igraph_matrix_t *vectors,
 igraph_vector_int_t *support);

Calls the DSYEVR LAPACK function to compute selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.

See more in the LAPACK documentation.

Arguments:

A: Matrix, on entry it contains the symmetric input matrix. Only the leading N-by-N
upper triangular part is used for the computation.

which: Constant that gives which eigenvalues (and possibly the corresponding eigenvectors)
to calculate. Possible values are IGRAPH_LAPACK_DSYEV_ALL, all eigenvalues;
IGRAPH_LAPACK_DSYEV_INTERVAL, all eigenvalues in the half-open interval
(vl,vu]; IGRAPH_LAPACK_DSYEV_SELECT, the il-th through iu-th eigenvalues.

vl: If which is IGRAPH_LAPACK_DSYEV_INTERVAL, then this is the lower bound
of the interval to be searched for eigenvalues. See also the vestimate argument.

vu: If which is IGRAPH_LAPACK_DSYEV_INTERVAL, then this is the upper bound
of the interval to be searched for eigenvalues. See also the vestimate argument.

vestimate: An upper bound for the number of eigenvalues in the (vl,vu] interval, if which is
IGRAPH_LAPACK_DSYEV_INTERVAL. Memory is allocated only for the given
number of eigenvalues (and eigenvectors), so this upper bound must be correct.

il: The index of the smallest eigenvalue to return, if which is IGRAPH_LA-
PACK_DSYEV_SELECT.

iu: The index of the largets eigenvalue to return, if which is IGRAPH_LA-
PACK_DSYEV_SELECT.

abstol: The absolute error tolerance for the eigevalues. An approximate eigenvalue is ac-
cepted as converged when it is determined to lie in an interval [a,b] of width less
than or equal to abstol + EPS * max(|a|,|b|), where EPS is the machine precision.

values: An initialized vector, the eigenvalues are stored here, unless it is a null pointer. It
will be resized as needed.

vectors: An initialized matrix, the eigenvectors are stored in its columns, unless it is a null
pointer. It will be resized as needed.

support: An integer vector. If not a null pointer, then it will be resized to (2*max(1,M)) (M
is a the total number of eigenvalues found). Then the support of the eigenvectors in
vectors is stored here, i.e., the indices indicating the nonzero elements in vec-

660

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
tors. The i-th eigenvector is nonzero only in elements support(2*i-1) through sup-
port(2*i).

Returns:

Error code.

Time complexity: TODO.

Example 29.5. File examples/simple/igraph_lapack_dsyevr.c

igraph_lapack_dgeev — Eigenvalues and optionally eigenvec-
tors of a non-symmetric matrix.

igraph_error_t igraph_lapack_dgeev(const igraph_matrix_t *A,
 igraph_vector_t *valuesreal,
 igraph_vector_t *valuesimag,
 igraph_matrix_t *vectorsleft,
 igraph_matrix_t *vectorsright,
 int *info);

This function calls LAPACK to compute, for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors.

The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies u(j)^H * A = lambda(j) * u(j)^H where u(j)^H denotes the
conjugate transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component
real.

Arguments:

A: matrix. On entry it contains the N-by-N input matrix.

valuesreal: Pointer to an initialized vector, or a null pointer. If not a null pointer, then the real
parts of the eigenvalues are stored here. The vector will be resized as needed.

valuesimag: Pointer to an initialized vector, or a null pointer. If not a null pointer, then the
imaginary parts of the eigenvalues are stored here. The vector will be resized
as needed.

vectorsleft: Pointer to an initialized matrix, or a null pointer. If not a null pointer, then the
left eigenvectors are stored in the columns of the matrix. The matrix will be
resized as needed.

vectorsright: Pointer to an initialized matrix, or a null pointer. If not a null pointer, then the
right eigenvectors are stored in the columns of the matrix. The matrix will be
resized as needed.

info: This argument is used for two purposes. As an input argument it gives whether
an igraph error should be generated if the QR algorithm fails to compute all
eigenvalues. If info is non-zero, then an error is generated, otherwise only a
warning is given. On exit it contains the LAPACK error code. Zero means suc-
cessful exit. A negative values means that some of the arguments had an illegal

661

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
value, this always triggers an igraph error. An i positive value means that the
QR algorithm failed to compute all the eigenvalues, and no eigenvectors have
been computed; element i+1:N of valuesreal and valuesimag contain
eigenvalues which have converged. This case only generates an igraph error, if
info was non-zero on entry.

Returns:

Error code.

Time complexity: TODO.

Example 29.6. File examples/simple/igraph_lapack_dgeev.c

igraph_lapack_dgeevx — Eigenvalues/vectors of nonsymmet-
ric matrices, expert mode.

igraph_error_t igraph_lapack_dgeevx(igraph_lapack_dgeevx_balance_t balance,
 const igraph_matrix_t *A,
 igraph_vector_t *valuesreal,
 igraph_vector_t *valuesimag,
 igraph_matrix_t *vectorsleft,
 igraph_matrix_t *vectorsright,
 int *ilo, int *ihi, igraph_vector_t *scale,
 igraph_real_t *abnrm,
 igraph_vector_t *rconde,
 igraph_vector_t *rcondv,
 int *info);

This function calculates the eigenvalues and optionally the left and/or right eigenvectors of a nonsym-
metric N-by-N real matrix.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues
(rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies u(j)^H * A = lambda(j) * u(j)^H where u(j)^H denotes the
conjugate transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component
real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular,
and applying a diagonal similarity transformation D * A * D^(-1), where D is a diagonal matrix, to
make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigen-
vectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Per-
muting rows and columns will not change the condition numbers (in exact arithmetic) but diagonal
scaling will. For further explanation of balancing, see section 4.10.2 of the LAPACK Users' Guide.
Note that the eigenvectors obtained for the balanced matrix are backtransformed to those of A.

Arguments:

balance: Scalar that indicated, whether the input matrix should be balanced. Possible val-
ues:

662

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
IGRAPH_LA-
PACK_DGEEVX_BALANCE_NONE

no not diagonally scale or permute.

IGRAPH_LA-
PACK_DGEEVX_BALANCE_PERM

perform permutations to make the matrix
more nearly upper triangular. Do not di-
agonally scale.

IGRAPH_LA-
PACK_DGEEVX_BALANCE_S-
CALE

diagonally scale the matrix, i.e. replace
A by D*A*D^(-1), where D is a diago-
nal matrix, chosen to make the rows and
columns of A more equal in norm. Do
not permute.

IGRAPH_LA-
PACK_DGEEVX_BALANCE_BOTH

both diagonally scale and permute A.

A: The input matrix, must be square.

valuesreal: An initialized vector, or a NULL pointer. If not a NULL pointer, then the real
parts of the eigenvalues are stored here. The vector will be resized, as needed.

valuesimag: An initialized vector, or a NULL pointer. If not a NULL pointer, then the imag-
inary parts of the eigenvalues are stored here. The vector will be resized, as
needed.

vectorsleft: An initialized matrix or a NULL pointer. If not a null pointer, then the left eigen-
vectors are stored here. The order corresponds to the eigenvalues and the eigen-
vectors are stored in a compressed form. If the j-th eigenvalue is real then col-
umn j contains the corresponding eigenvector. If the j-th and (j+1)-th eigenval-
ues form a complex conjugate pair, then the j-th and (j+1)-th columns contain
the real and imaginary parts of the corresponding eigenvectors.

vectorsright: An initialized matrix or a NULL pointer. If not a null pointer, then the right
eigenvectors are stored here. The format is the same, as for the vectorsleft
argument.

ilo:

ihi: if not NULL, ilo and ihi point to integer values determined when A was
balanced. The balanced A(i,j) = 0 if I>J and J=1,...,ilo-1 or I=ihi+1,...,N.

scale: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer, then
details of the permutations and scaling factors applied when balancing A, are
stored here. If P(j) is the index of the row and column interchanged with row
and column j, and D(j) is the scaling factor applied to row and column j, then

scale(J) = P(J), for J =
1,...,ilo-1

scale(J) = D(J), for J =
ilo,...,ihi

scale(J) = P(J) for J =
ihi+1,...,N.
The order in which the interchanges are made is N to ihi+1, then 1 to ilo-1.

abnrm: Pointer to a real variable, the one-norm of the balanced matrix is stored here.
(The one-norm is the maximum of the sum of absolute values of elements in
any column.)

663

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
rconde: An initialized vector or a NULL pointer. If not a null pointer, then the reciprocal

condition numbers of the eigenvalues are stored here.

rcondv: An initialized vector or a NULL pointer. If not a null pointer, then the reciprocal
condition numbers of the right eigenvectors are stored here.

info: This argument is used for two purposes. As an input argument it gives whether
an igraph error should be generated if the QR algorithm fails to compute all
eigenvalues. If info is non-zero, then an error is generated, otherwise only a
warning is given. On exit it contains the LAPACK error code. Zero means suc-
cessful exit. A negative values means that some of the arguments had an illegal
value, this always triggers an igraph error. An i positive value means that the
QR algorithm failed to compute all the eigenvalues, and no eigenvectors have
been computed; element i+1:N of valuesreal and valuesimag contain
eigenvalues which have converged. This case only generated an igraph error, if
info was non-zero on entry.

Returns:

Error code.

Time complexity: TODO

Example 29.7. File examples/simple/igraph_lapack_dgeevx.c

ARPACK interface in igraph
ARPACK is a library for solving large scale eigenvalue problems. The package is designed to compute
a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropri-
ate for large sparse or structured matrices A where structured means that a matrix-vector product w
<- Av requires order n rather than the usual order n^2 floating point operations. Please see http://
www.caam.rice.edu/software/ARPACK/ for details.

The eigenvalue calculation in ARPACK (in the simplest case) involves the calculation of the Av
product where A is the matrix we work with and v is an arbitrary vector. A user-defined function of
type igraph_arpack_function_t is expected to perform this product. If the product can be
done efficiently, e.g. if the matrix is sparse, then ARPACK is usually able to calculate the eigenvalues
very quickly.

In igraph, eigenvalue/eigenvector calculations usually involve the following steps:

1. Initialization of an igraph_arpack_options_t data structure using
igraph_arpack_options_init.

2. Setting some options in the initialized igraph_arpack_options_t object.

3. Defining a function of type igraph_arpack_function_t. The input of this function is a
vector, and the output should be the output matrix multiplied by the input vector.

4. Calling igraph_arpack_rssolve() (is the matrix is symmetric), or
igraph_arpack_rnsolve().

The igraph_arpack_options_t object can be used multiple times.

If we have many eigenvalue problems to solve, then it might worth to create an igraph_arpack_s-
torage_t object, and initialize it via igraph_arpack_storage_init(). This structure con-
tains all memory needed for ARPACK (with the given upper limit regerding to the size of the eigen-
value problem). Then many problems can be solved using the same igraph_arpack_storage_t

664

http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
object, without always reallocating the required memory. The igraph_arpack_storage_t ob-
ject needs to be destroyed by calling igraph_arpack_storage_destroy() on it, when it is
not needed any more.

igraph does not contain all ARPACK routines, only the ones dealing with symmetric and non-sym-
metric eigenvalue problems using double precision real numbers.

Data structures

igraph_arpack_options_t — Options for ARPACK.

typedef struct igraph_arpack_options_t {
 /* INPUT */
 char bmat[1]; /* I-standard problem, G-generalized */
 int n; /* Dimension of the eigenproblem */
 char which[2]; /* LA, SA, LM, SM, BE */
 int nev; /* Number of eigenvalues to be computed */
 igraph_real_t tol; /* Stopping criterion */
 int ncv; /* Number of columns in V */
 int ldv; /* Leading dimension of V */
 int ishift; /* 0-reverse comm., 1-exact with tridiagonal */
 int mxiter; /* Maximum number of update iterations to take */
 int nb; /* Block size on the recurrence, only 1 works */
 int mode; /* The kind of problem to be solved (1-5)
 1: A*x=l*x, A symmetric
 2: A*x=l*M*x, A symm. M pos. def.
 3: K*x = l*M*x, K symm., M pos. semidef.
 4: K*x = l*KG*x, K s. pos. semidef. KG s. indef.
 5: A*x = l*M*x, A symm., M symm. pos. semidef. */
 int start; /* 0: random, 1: use the supplied vector */
 int lworkl; /* Size of temporary storage, default is fine */
 igraph_real_t sigma; /* The shift for modes 3,4,5 */
 igraph_real_t sigmai; /* The imaginary part of shift for rnsolve */
 /* OUTPUT */
 int info; /* What happened, see docs */
 int ierr; /* What happened in the dseupd call */
 int noiter; /* The number of iterations taken */
 int nconv;
 int numop; /* Number of OP*x operations */
 int numopb; /* Number of B*x operations if BMAT='G' */
 int numreo; /* Number of steps of re-orthogonalizations */
 /* INTERNAL */
 int iparam[11];
 int ipntr[14];
} igraph_arpack_options_t;

This data structure contains the options of the ARPACK eigenvalue solver routines. It must be ini-
tialized by calling igraph_arpack_options_init() on it. Then it can be used for multiple
ARPACK calls, as the ARPACK solvers do not modify it. Input options:

Values:

bmat: Character. Whether to solve a standard ('I') ot a generalized problem ('B').

n: Dimension of the eigenproblem.

665

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
which: Specifies which eigenvalues/vectors to compute. Possible values for symmetric matrices:

LA Compute nev largest (algebraic) eigenvalues.

SA Compute nev smallest (algebraic) eigenvalues.

LM Compute nev largest (in magnitude) eigenvalues.

SM Compute nev smallest (in magnitude) eigenvalues.

BE Compute nev eigenvalues, half from each end of the spectrum. When nev is odd,
compute one more from the high en than from the low end.

Possible values for non-symmetric matrices:

LM Compute nev largest (in magnitude) eigenvalues.

SM Compute nev smallest (in magnitude) eigenvalues.

LR Compute nev eigenvalues of largest real part.

SR Compute nev eigenvalues of smallest real part.

LI Compute nev eigenvalues of largest imaginary part.

SI Compute nev eigenvalues of smallest imaginary part.

nev: The number of eigenvalues to be computed.

tol: Stopping criterion: the relative accuracy of the Ritz value is considered acceptable if
its error is less than tol times its estimated value. If this is set to zero then machine
precision is used.

ncv: Number of Lanczos vectors to be generated. Setting this to zero means that
igraph_arpack_rssolve and igraph_arpack_rnsolve will determine a
suitable value for ncv automatically.

ldv: Numberic scalar. It should be set to zero in the current igraph implementation.

ishift: Either zero or one. If zero then the shifts are provided by the user via reverse communi-
cation. If one then exact shifts with respect to the reduced tridiagonal matrix T. Please
always set this to one.

mxiter: Maximum number of Arnoldi update iterations allowed.

nb: Blocksize to be used in the recurrence. Please always leave this on the default value, one.

mode: The type of the eigenproblem to be solved. Possible values if the input matrix is sym-
metric:

1. A*x=lambda*x, A is symmetric.

2. A*x=lambda*M*x, A is symmetric, M is symmetric positive definite.

3. K*x=lambda*M*x, K is symmetric, M is symmetric positive semi-definite.

4. K*x=lambda*KG*x, K is symmetric positive semi-definite, KG is symmetric indef-
inite.

5. A*x=lambda*M*x, A is symmetric, M is symmetric positive semi-definite. (Cayley
transformed mode.)

Please note that only mode ==1 was tested and other values might not work properly.
Possible values if the input matrix is not symmetric:

666

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
1. A*x=lambda*x.

2. A*x=lambda*M*x, M is symmetric positive definite.

3. A*x=lambda*M*x, M is symmetric semi-definite.

4. A*x=lambda*M*x, M is symmetric semi-definite.
Please note that only mode == 1 was tested and other values might not work properly.

start: Whether to use the supplied starting vector (1), or use a random starting vector (0). The
starting vector must be supplied in the first column of the vectors argument of the
igraph_arpack_rssolve() of igraph_arpack_rnsolve() call.

Output options:

Values:

info: Error flag of ARPACK. Possible values:

0 Normal exit.

1 Maximum number of iterations taken.

3 No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration.
One possibility is to increase the size of ncv relative to nev.

ARPACK can return other error flags as well, but these are converted to igraph errors,
see igraph_error_type_t.

ierr: Error flag of the second ARPACK call (one eigenvalue computation usually involves
two calls to ARPACK). This is always zero, as other error codes are converted to igraph
errors.

noiter: Number of Arnoldi iterations taken.

nconv: Number of converged Ritz values. This represents the number of Ritz values that satisfy
the convergence critetion.

numop: Total number of matrix-vector multiplications.

numopb: Not used currently.

numreo: Total number of steps of re-orthogonalization.

Internal options:

Values:

lworkl: Do not modify this option.

sigma: The shift for the shift-invert mode.

sigmai: The imaginary part of the shift, for the non-symmetric or complex shift-invert mode.

iparam: Do not modify this option.

ipntr: Do not modify this option.

igraph_arpack_storage_t — Storage for ARPACK.

667

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

typedef struct igraph_arpack_storage_t {
 int maxn, maxncv, maxldv;
 igraph_real_t *v;
 igraph_real_t *workl;
 igraph_real_t *workd;
 igraph_real_t *d;
 igraph_real_t *resid;
 igraph_real_t *ax;
 int *select;
 /* The following two are only used for non-symmetric problems: */
 igraph_real_t *di;
 igraph_real_t *workev;
} igraph_arpack_storage_t;

Public members, do not modify them directly, these are considered to be read-only.

Values:

maxn: Maximum rank of matrix.

maxncv: Maximum NCV.

maxldv: Maximum LDV.

These members are considered to be private:

Values:

workl: Working memory.

workd: Working memory.

d: Memory for eigenvalues.

resid: Memory for residuals.

ax: Working memory.

select: Working memory.

di: Memory for eigenvalues, non-symmetric case only.

workev: Working memory, non-symmetric case only.

igraph_arpack_function_t — Type of the ARPACK callback
function.

typedef igraph_error_t igraph_arpack_function_t(igraph_real_t *to, const igraph_real_t *from,
 int n, void *extra);

Arguments:

to: Pointer to an igraph_real_t, the result of the matrix-vector product is expected to be
stored here.

668

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
from: Pointer to an igraph_real_t, the input matrix should be multiplied by the vector stored

here.

n: The length of the vector (which is the same as the order of the input matrix).

extra: Extra argument to the matrix-vector calculation function. This is coming from the
igraph_arpack_rssolve() or igraph_arpack_rnsolve() function.

Returns:

Error code. If not IGRAPH_SUCCESS, then the ARPACK solver considers this as an error, stops
and calls the igraph error handler.

igraph_arpack_options_init — Initialize ARPACK options.

void igraph_arpack_options_init(igraph_arpack_options_t *o);

Initializes ARPACK options, set them to default values. You can always pass the initialized
igraph_arpack_options_t object to built-in igraph functions without any modification. The
built-in igraph functions modify the options to perform their calculation, e.g. igraph_pagerank()
always searches for the eigenvalue with the largest magnitude, regardless of the supplied value.

If you want to implement your own function involving eigenvalue calculation using ARPACK, how-
ever, you will likely need to set up the fields for yourself.

Arguments:

o: The igraph_arpack_options_t object to initialize.

Time complexity: O(1).

igraph_arpack_storage_init — Initialize ARPACK storage.

igraph_error_t igraph_arpack_storage_init(igraph_arpack_storage_t *s, igraph_integer_t maxn,
 igraph_integer_t maxncv, igraph_integer_t maxldv,
 igraph_bool_t symm);

You only need this function if you want to run multiple eigenvalue calculations using ARPACK,
and want to spare the memory allocation/deallocation between each two runs. Otherwise it is safe
to supply a null pointer as the storage argument of both igraph_arpack_rssolve() and
igraph_arpack_rnsolve() to make memory allocated and deallocated automatically.

Don't forget to call the igraph_arpack_storage_destroy() function on the storage object
if you don't need it any more.

Arguments:

s: The igraph_arpack_storage_t object to initialize.

maxn: The maximum order of the matrices.

maxncv: The maximum NCV parameter intended to use.

maxldv: The maximum LDV parameter intended to use.

669

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
symm: Whether symmetric or non-symmetric problems will be solved using this

igraph_arpack_storage_t. (You cannot use the same storage both with symmet-
ric and non-symmetric solvers.)

Returns:

Error code.

Time complexity: O(maxncv*(maxldv+maxn)).

igraph_arpack_storage_destroy — Deallocate ARPACK stor-
age.

void igraph_arpack_storage_destroy(igraph_arpack_storage_t *s);

Arguments:

s: The igraph_arpack_storage_t object for which the memory will be deallocated.

Time complexity: operating system dependent.

ARPACK solvers

igraph_arpack_rssolve — ARPACK solver for symmetric ma-
trices.

igraph_error_t igraph_arpack_rssolve(igraph_arpack_function_t *fun, void *extra,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_vector_t *values, igraph_matrix_t *vectors);

This is the ARPACK solver for symmetric matrices. Please use igraph_arpack_rnsolve() for
non-symmetric matrices.

Arguments:

fun: Pointer to an igraph_arpack_function_t object, the function that performs the
matrix-vector multiplication.

extra: An extra argument to be passed to fun.

options: An igraph_arpack_options_t object.

storage: An igraph_arpack_storage_t object, or a null pointer. In the latter case mem-
ory allocation and deallocation is performed automatically. Either this or the vectors
argument must be non-null if the ARPACK iteration is started from a given starting
vector. If both are given vectors take precedence.

values: If not a null pointer, then it should be a pointer to an initialized vector. The eigenvalues
will be stored here. The vector will be resized as needed.

vectors: If not a null pointer, then it must be a pointer to an initialized matrix. The eigenvectors
will be stored in the columns of the matrix. The matrix will be resized as needed. Either

670

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
this or the storage argument must be non-null if the ARPACK iteration is started
from a given starting vector. If both are given vectors take precedence.

Returns:

Error code.

Time complexity: depends on the matrix-vector multiplication. Usually a small number of iterations
is enough, so if the matrix is sparse and the matrix-vector multiplication can be done in O(n) time (the
number of vertices), then the eigenvalues are found in O(n) time as well.

igraph_arpack_rnsolve — ARPACK solver for non-symmetric
matrices.

igraph_error_t igraph_arpack_rnsolve(igraph_arpack_function_t *fun, void *extra,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_matrix_t *values, igraph_matrix_t *vectors);

Please always consider calling igraph_arpack_rssolve() if your matrix is symmetric, it is
much faster. igraph_arpack_rnsolve() for non-symmetric matrices.

Note that ARPACK is not called for 2x2 matrices as an exact algebraic solution exists in these cases.

Arguments:

fun: Pointer to an igraph_arpack_function_t object, the function that performs the
matrix-vector multiplication.

extra: An extra argument to be passed to fun.

options: An igraph_arpack_options_t object.

storage: An igraph_arpack_storage_t object, or a null pointer. In the latter case mem-
ory allocation and deallocation is performed automatically.

values: If not a null pointer, then it should be a pointer to an initialized matrix. The (possibly
complex) eigenvalues will be stored here. The matrix will have two columns, the first
column contains the real, the second the imaginary parts of the eigenvalues. The matrix
will be resized as needed.

vectors: If not a null pointer, then it must be a pointer to an initialized matrix. The eigenvectors
will be stored in the columns of the matrix. The matrix will be resized as needed. Note
that real eigenvalues will have real eigenvectors in a single column in this matrix; how-
ever, complex eigenvalues come in conjugate pairs and the result matrix will store the
eigenvector corresponding to the eigenvalue with positive imaginary part only. Since in
this case the eigenvector is also complex, it will occupy two columns in the eigenvector
matrix (the real and the imaginary parts, in this order). Caveat: if the eigenvalue vector
returns only the eigenvalue with the negative imaginary part for a complex conjugate
eigenvalue pair, the result vector will still store the eigenvector corresponding to the
eigenvalue with the positive imaginary part (since this is how ARPACK works).

Returns:

Error code.

671

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs
Time complexity: depends on the matrix-vector multiplication. Usually a small number of iterations
is enough, so if the matrix is sparse and the matrix-vector multiplication can be done in O(n) time (the
number of vertices), then the eigenvalues are found in O(n) time as well.

igraph_arpack_unpack_complex — Makes the result of the
non-symmetric ARPACK solver more readable.

igraph_error_t igraph_arpack_unpack_complex(igraph_matrix_t *vectors, igraph_matrix_t *values,
 igraph_integer_t nev);

This function works on the output of igraph_arpack_rnsolve and brushes it up a bit: it only
keeps nev eigenvalues/vectors and every eigenvector is stored in two columns of the vectors ma-
trix.

The output of the non-symmetric ARPACK solver is somewhat hard to parse, as real eigenvectors
occupy only one column in the matrix, and the complex conjugate eigenvectors are not stored at all
(usually). The other problem is that the solver might return more eigenvalues than requested. The
common use of this function is to call it directly after igraph_arpack_rnsolve with its vec-
tors and values argument and options->nev as nev. This will add the vectors for eigenvalues
with a negative imaginary part and return all vectors as 2 columns, a real and imaginary part.

Arguments:

vectors: The eigenvector matrix, as returned by igraph_arpack_rnsolve. It will be re-
sized, typically it will be larger.

values: The eigenvalue matrix, as returned by igraph_arpack_rnsolve. It will be re-
sized, typically extra, unneeded rows (=eigenvalues) will be removed.

nev: The number of eigenvalues/vectors to keep. Can be less or equal than the number orig-
inally requested from ARPACK.

Returns:

Error code.

Time complexity: linear in the number of elements in the vectors matrix.

672

Chapter 30. Bipartite, i.e. two-mode
graphs

Bipartite networks in igraph
A bipartite network contains two kinds of vertices and connections are only possible between two
vertices of different kinds. There are many natural examples, e.g. movies and actors as vertices and
a movie is connected to all participating actors, etc.

igraph does not have direct support for bipartite networks, at least not at the C language level. In other
words the igraph_t structure does not contain information about the vertex types. The C functions
for bipartite networks usually have an additional input argument to graph, called types, a boolean
vector giving the vertex types.

Most functions creating bipartite networks are able to create this extra vector, you just need to supply
an initialized boolean vector to them.

Create two-mode networks

igraph_create_bipartite — Create a bipartite
graph.

igraph_error_t igraph_create_bipartite(igraph_t *graph, const igraph_vector_bool_t *types,
 const igraph_vector_int_t *edges,
 igraph_bool_t directed);

This is a simple wrapper function to create a bipartite graph. It does a little more than igraph_cre-
ate(), e.g. it checks that the graph is indeed bipartite with respect to the given types vector. If
there is an edge connecting two vertices of the same kind, then an error is reported.

Arguments:

graph: Pointer to an uninitialized graph object, the result is created here.

types: Boolean vector giving the vertex types. The length of the vector defines the number
of vertices in the graph.

edges: Vector giving the edges of the graph. The highest vertex ID in this vector must be
smaller than the length of the types vector.

directed: Boolean scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 30.1. File examples/simple/igraph_bipartite_create.c

673

Bipartite, i.e. two-mode graphs

igraph_full_bipartite — Create a full bipartite
network.

igraph_error_t igraph_full_bipartite(igraph_t *graph,
 igraph_vector_bool_t *types,
 igraph_integer_t n1, igraph_integer_t n2,
 igraph_bool_t directed,
 igraph_neimode_t mode);

A bipartite network contains two kinds of vertices and connections are only possible between two
vertices of different kind. There are many natural examples, e.g. movies and actors as vertices and a
movie is connected to all participating actors, etc.

igraph does not have direct support for bipartite networks, at least not at the C language level. In other
words the igraph_t structure does not contain information about the vertex types. The C functions
for bipartite networks usually have an additional input argument to graph, called types, a boolean
vector giving the vertex types.

Most functions creating bipartite networks are able to create this extra vector, you just need to supply
an initialized boolean vector to them.

Arguments:

graph: Pointer to an igraph_t object, the graph will be created here.

types: Pointer to a boolean vector. If not a null pointer, then the vertex types will be stored
here.

n1: Integer, the number of vertices of the first kind.

n2: Integer, the number of vertices of the second kind.

directed: Boolean, whether to create a directed graph.

mode: A constant that gives the type of connections for directed graphs. If IGRAPH_OUT,
then edges point from vertices of the first kind to vertices of the second kind; if
IGRAPH_IN, then the opposite direction is realized; if IGRAPH_ALL, then mutual
edges will be created.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_full() for non-bipartite full graphs.

igraph_bipartite_game_gnm — Generate a random
bipartite graph with a fixed number of edges.

igraph_error_t igraph_bipartite_game_gnm(igraph_t *graph, igraph_vector_bool_t *types,

674

Bipartite, i.e. two-mode graphs

 igraph_integer_t n1, igraph_integer_t n2,
 igraph_integer_t m, igraph_bool_t directed,
 igraph_neimode_t mode);

In the G(n1, n2, m) model we uniformly choose m edges to realize between the n1 bottom vertices
and n2 top vertices.

Arguments:

graph: Pointer to an uninitialized igraph graph, the result is stored here.

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer, then
the vertex types are stored here. Bottom vertices come first, n1 of them, then n2 top
vertices.

n1: The number of bottom vertices.

n2: The number of top vertices.

m: The number of edges.

directed: Boolean, whether to generate a directed graph. See also the mode argument.

mode: Specifies how to direct the edges in directed graphs. If it is IGRAPH_OUT, then di-
rected edges point from bottom vertices to top vertices. If it is IGRAPH_IN, edges
point from top vertices to bottom vertices. IGRAPH_OUT and IGRAPH_IN do not
generate mutual edges. If this argument is IGRAPH_ALL, then each edge direction
is considered independently and mutual edges might be generated. This argument is
ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_erdos_renyi_game_gnm() for the unipartite version, igraph_bipar-
tite_game_gnp() for the G(n1, n2, p) model.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_bipartite_game_gnp — Generates a ran-
dom bipartite graph with a fixed connection probabili-
ty.

igraph_error_t igraph_bipartite_game_gnp(igraph_t *graph, igraph_vector_bool_t *types,
 igraph_integer_t n1, igraph_integer_t n2,
 igraph_real_t p, igraph_bool_t directed,
 igraph_neimode_t mode);

In the G(n1, n2, p) model, every possible edge between the n1 bottom vertices and n2 top vertices
is realized with probability p.

Arguments:

graph: Pointer to an uninitialized igraph graph, the result is stored here.

675

Bipartite, i.e. two-mode graphs

types: Pointer to an initialized boolean vector, or a null pointer. If not NULL, then the vertex
types are stored here. Bottom vertices come first, n1 of them, then n2 top vertices.

n1: The number of bottom vertices.

n2: The number of top vertices.

p: The connection probability.

directed: Boolean, whether to generate a directed graph. See also the mode argument.

mode: Specifies how to direct the edges in directed graphs. If it is IGRAPH_OUT, then di-
rected edges point from bottom vertices to top vertices. If it is IGRAPH_IN, edges
point from top vertices to bottom vertices. IGRAPH_OUT and IGRAPH_IN do not
generate mutual edges. If this argument is IGRAPH_ALL, then each edge direction
is considered independently and mutual edges might be generated. This argument is
ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_erdos_renyi_game_gnp() for the unipartite version, igraph_bipar-
tite_game_gnm() for the G(n1, n2, m) model.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Bipartite adjacency matrices

igraph_biadjacency — Creates a bipartite graph
from a bipartite adjacency matrix.

igraph_error_t igraph_biadjacency(
 igraph_t *graph, igraph_vector_bool_t *types,
 const igraph_matrix_t *input, igraph_bool_t directed,
 igraph_neimode_t mode, igraph_bool_t multiple
);

A bipartite (or two-mode) graph contains two types of vertices and edges always connect vertices of
different types. A bipartite adjacency matrix is an n x m matrix, n and m are the number of vertices of the
two types, respectively. Nonzero elements in the matrix denote edges between the two corresponding
vertices.

Note that this function can operate in two modes, depending on the multiple argument. If it is
false, then a single edge is created for every non-zero element in the bipartite adjacency matrix. If
multiple is true, then the matrix elements are rounded up to the closest non-negative integer to
get the number of edges to create between a pair of vertices.

This function does not create multiple edges if multiple is false, but might create some if it is
true.

Arguments:

graph: Pointer to an uninitialized graph object.

676

Bipartite, i.e. two-mode graphs

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer, then the
vertex types are stored here. It is resized as needed.

input: The bipartite adjacency matrix that serves as an input to this function.

directed: Specifies whether to create an undirected or a directed graph.

mode: Specifies the direction of the edges in a directed graph. If IGRAPH_OUT, then edges
point from vertices of the first kind (corresponding to rows) to vertices of the second
kind (corresponding to columns); if IGRAPH_IN, then the opposite direction is real-
ized; if IGRAPH_ALL, then mutual edges will be created.

multiple: How to interpret the matrix elements. See details above.

Returns:

Error code.

Time complexity: O(n*m), the size of the bipartite adjacency matrix.

igraph_get_biadjacency — Convert a bipartite
graph into a bipartite adjacency matrix.

igraph_error_t igraph_get_biadjacency(
 const igraph_t *graph, const igraph_vector_bool_t *types,
 igraph_matrix_t *res, igraph_vector_int_t *row_ids,
 igraph_vector_int_t *col_ids
);

Arguments:

graph: The input graph, edge directions are ignored.

types: Boolean vector containing the vertex types. All vertices in one part of the graph should
have type 0, the others type 1.

res: Pointer to an initialized matrix, the result is stored here. An element of the matrix gives
the number of edges (irrespectively of their direction) between the two corresponding
vertices. The rows will correspond to vertices with type 0, the columns correspond to
vertices with type 1.

row_ids: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex IDs
(in the graph) corresponding to the rows of the result matrix are stored here.

col_ids: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex IDs
corresponding to the columns of the result matrix are stored here.

Returns:

Error code.

Time complexity: O(n*m), n and m are number of vertices of the two different kind.

See also:

igraph_biadjacency() for the opposite operation.

677

Bipartite, i.e. two-mode graphs

Project two-mode graphs

igraph_bipartite_projection_size — Calculate
the number of vertices and edges in the bipartite pro-
jections.

igraph_error_t igraph_bipartite_projection_size(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_integer_t *vcount1,
 igraph_integer_t *ecount1,
 igraph_integer_t *vcount2,
 igraph_integer_t *ecount2);

This function calculates the number of vertices and edges in the two projections of a bipartite network.
This is useful if you have a big bipartite network and you want to estimate the amount of memory you
would need to calculate the projections themselves.

Arguments:

graph: The input graph.

types: Boolean vector giving the vertex types of the graph.

vcount1: Pointer to an igraph_integer_t, the number of vertices in the first projection is
stored here. May be NULL if not needed.

ecount1: Pointer to an igraph_integer_t, the number of edges in the first projection is
stored here. May be NULL if not needed.

vcount2: Pointer to an igraph_integer_t, the number of vertices in the second projection
is stored here. May be NULL if not needed.

ecount2: Pointer to an igraph_integer_t, the number of edges in the second projection is
stored here. May be NULL if not needed.

Returns:

Error code.

See also:

igraph_bipartite_projection() to calculate the actual projection.

Time complexity: O(|V|*d^2+|E|), |V| is the number of vertices, |E| is the number of edges, d is the
average (total) degree of the graphs.

igraph_bipartite_projection — Create one or
both projections of a bipartite (two-mode) network.

igraph_error_t igraph_bipartite_projection(const igraph_t *graph,

678

Bipartite, i.e. two-mode graphs

 const igraph_vector_bool_t *types,
 igraph_t *proj1,
 igraph_t *proj2,
 igraph_vector_int_t *multiplicity1,
 igraph_vector_int_t *multiplicity2,
 igraph_integer_t probe1);

Creates one or both projections of a bipartite graph.

A graph is called bipartite if its vertices can be partitioned into two sets, V1 and V2, so that connections
only run between V1 and V2, but not within V1 or within V2. The types parameter specifies which
vertex should be considered a member of one or the other partition. The projection to V1 has vertex
set V1, and two vertices are connected if they have at least one common neighbour in V2. The number
of common neighbours is returned in multiplicity1, if requested.

Arguments:

graph: The bipartite input graph. Directedness of the edges is ignored.

types: Boolean vector giving the vertex types of the graph.

proj1: Pointer to an uninitialized graph object, the first projection will be created here.
It a null pointer, then it is ignored, see also the probe1 argument.

proj2: Pointer to an uninitialized graph object, the second projection is created here,
if it is not a null pointer. See also the probe1 argument.

multiplicity1: Pointer to a vector, or a null pointer. If not the latter, then the multiplicity of
the edges is stored here. E.g. if there is an A-C-B and also an A-D-B triple in
the bipartite graph (but no more X, such that A-X-B is also in the graph), then
the multiplicity of the A-B edge in the projection will be 2.

multiplicity2: The same as multiplicity1, but for the other projection.

probe1: This argument can be used to specify the order of the projections in the re-
sulting list. When it is non-negative, then it is considered as a vertex ID and
the projection containing this vertex will be the first one in the result. Setting
this argument to a non-negative value implies that proj1 must be a non-null
pointer. If you don't care about the ordering of the projections, pass -1 here.

Returns:

Error code.

See also:

igraph_bipartite_projection_size() to calculate the number of vertices and edges in
the projections, without creating the projection graphs themselves.

Time complexity: O(|V|*d^2+|E|), |V| is the number of vertices, |E| is the number of edges, d is the
average (total) degree of the graphs.

Other operations on bipartite graphs

igraph_is_bipartite — Check whether a graph is
bipartite.

679

Bipartite, i.e. two-mode graphs

igraph_error_t igraph_is_bipartite(const igraph_t *graph,
 igraph_bool_t *res,
 igraph_vector_bool_t *types);

This function checks whether a graph is bipartite. It tries to find a mapping that gives a possible division
of the vertices into two classes, such that no two vertices of the same class are connected by an edge.

The existence of such a mapping is equivalent of having no circuits of odd length in the graph. A
graph with loop edges cannot be bipartite.

Note that the mapping is not necessarily unique, e.g. if the graph has at least two components, then
the vertices in the separate components can be mapped independently.

Arguments:

graph: The input graph.

res: Pointer to a boolean, the result is stored here.

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer and a mapping
was found, then it is stored here. If not a null pointer, but no mapping was found, the
contents of this vector is invalid.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Deprecated functions

igraph_bipartite_game — Generate a bipartite ran-
dom graph (similar to Erd#s-Rényi).

igraph_error_t igraph_bipartite_game(igraph_t *graph, igraph_vector_bool_t *types,
 igraph_erdos_renyi_t type,
 igraph_integer_t n1, igraph_integer_t n2,
 igraph_real_t p, igraph_integer_t m,
 igraph_bool_t directed, igraph_neimode_t mode);

This function is deprecated; use igraph_bipartite_game_gnm() or igraph_bipar-
tite_game_gnp() instead.

Arguments:

graph: Pointer to an uninitialized igraph graph, the result is stored here.

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer, then
the vertex types are stored here. Bottom vertices come first, n1 of them, then n2 top
vertices.

type: The type of the random graph, possible values:

IGRAPH_ERDOS_RENYI_GNM G(n,m) graph, m edges are selected uniformly ran-
domly in a graph with n vertices.

680

Bipartite, i.e. two-mode graphs

IGRAPH_ERDOS_RENYI_GNP G(n,p) graph, every possible edge is included in
the graph with probability p.

n1: The number of bottom vertices.

n2: The number of top vertices.

p: The connection probability for G(n,p) graphs. It is ignored for G(n,m) graphs.

m: The number of edges for G(n,m) graphs. It is ignored for G(n,p) graphs.

directed: Boolean, whether to generate a directed graph. See also the mode argument.

mode: Specifies how to direct the edges in directed graphs. If it is IGRAPH_OUT, then di-
rected edges point from bottom vertices to top vertices. If it is IGRAPH_IN, edges
point from top vertices to bottom vertices. IGRAPH_OUT and IGRAPH_IN do not
generate mutual edges. If this argument is IGRAPH_ALL, then each edge direction
is considered independently and mutual edges might be generated. This argument is
ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_bipartite_game_gnm(), igraph_bipartite_game_gnp().

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_incidence — Creates a bipartite graph from
a bipartite adjacency matrix (deprecated alias).

igraph_error_t igraph_incidence(
 igraph_t *graph, igraph_vector_bool_t *types,
 const igraph_matrix_t *incidence, igraph_bool_t directed,
 igraph_neimode_t mode, igraph_bool_t multiple
);

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_biadjacency() instead.

igraph_get_incidence — Convert a bipartite graph
into a bipartite adjacency matrix (deprecated alias).

igraph_error_t igraph_get_incidence(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_matrix_t *res,

681

Bipartite, i.e. two-mode graphs

 igraph_vector_int_t *row_ids,
 igraph_vector_int_t *col_ids);

Warning

Deprecated since version 0.10.5. Please do not use this function in new code; use
igraph_get_biadjacency() instead.

682

Chapter 31. Advanced igraph
programming

Using igraph in multi-threaded programs
The igraph library is considered thread-safe if it has been compiled with thread-local storage enabled,
i.e. the IGRAPH_ENABLE_TLS setting was toggled to ON and the current platform supports this
feature. To check whether an igraph build is thread-safe, use the IGRAPH_THREAD_SAFE macro.
When linking to external versions of igraph's dependencies, it is the responsibility of the user to check
that these dependencies were also compiled to be thread-safe.

IGRAPH_THREAD_SAFE — Specifies whether igraph
was built in thread-safe mode.

#define IGRAPH_THREAD_SAFE

This macro is defined to 1 if the current build of the igraph library is built in thread-safe mode, and 0
if it is not. A thread-safe igraph library attempts to use thread-local data structures instead of global
ones, but note that this is not (and can not) be guaranteed for third-party libraries that igraph links to.

Thread-safe ARPACK library

Note that igraph is only thread-safe if it was built with the internal ARPACK library, i.e. the one that
comes with igraph. The standard ARPACK library is not thread-safe.

Thread-safety of random number generators

The default random number generator that igraph uses is not guaranteed to be thread-safe. You need
to set a different random number generator instance for every thread that you want to use igraph from.
This is especially important if you set the seed of the random number generator to ensure reproducibil-
ity; sharing a random number generator between threads would break reproducibility as the order in
which the various threads are scheduled is random, and therefore they would still receive random
numbers in an unpredictable order from the shared random number generator.

Progress handlers

About progress handlers

It is often useful to report the progress of some long calculation, to allow the user to follow the com-
putation and guess the total running time. A couple of igraph functions support this at the time of
writing, hopefully more will support it in the future.

To see the progress of a computation, the user has to install a progress handler, as there is none installed
by default. If an igraph function supports progress reporting, then it calls the installed progress handler
periodically, and passes a percentage value to it, the percentage of computation already performed.
To install a progress handler, you need to call igraph_set_progress_handler(). Currently
there is a single pre-defined progress handler, called igraph_progress_handler_stderr().

683

Advanced igraph programming

Setting up progress handlers

igraph_progress_handler_t — Type of progress handler func-
tions

typedef igraph_error_t igraph_progress_handler_t(const char *message, igraph_real_t percent,
 void *data);

This is the type of the igraph progress handler functions. There is currently one such predefined func-
tion, igraph_progress_handler_stderr(), but the user can write and set up more sophis-
ticated ones.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current
igraph functions always use the name message argument if reporting from the same
function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and
then pass some meaningfull context here.

Returns:

If the return value of the progress handler is not IGRAPH_SUCCESS, then
igraph_progress() returns the error code IGRAPH_INTERRUPTED. The IGRAPH_PRO-
GRESS() macro frees all memory and finishes the igraph function with error code IGRAPH_IN-
TERRUPTED in this case.

igraph_set_progress_handler — Install a progress handler,
or remove the current handler.

igraph_progress_handler_t *
igraph_set_progress_handler(igraph_progress_handler_t new_handler);

There is a single simple predefined progress handler: igraph_progress_handler_stderr().

Arguments:

new_handler: Pointer to a function of type igraph_progress_handler_t, the progress
handler function to install. To uninstall the current progress handler, this argument
can be a null pointer.

Returns:

Pointer to the previously installed progress handler function.

Time complexity: O(1).

684

Advanced igraph programming

igraph_progress_handler_stderr — A simple predefined
progress handler.

igraph_error_t igraph_progress_handler_stderr(const char *message, igraph_real_t percent,
 void* data);

This simple progress handler first prints message, and then the percentage complete value in a short
message to standard error.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current
igraph functions always use the same message argument if reporting from the same
function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and
then pass some meaningfull context here.

Returns:

This function always returns with IGRAPH_SUCCESS.

Time complexity: O(1).

Invoking the progress handler

IGRAPH_PROGRESS — Report progress.

#define IGRAPH_PROGRESS(message, percent, data)

The standard way to report progress from an igraph function

Arguments:

message: A string, a textual message that references the calculation under progress.

percent: Numeric scalar, the percentage that is complete.

data: User-defined data, this can be used in user-defined progress handler functions, from
user-written igraph functions.

Returns:

If the progress handler returns with IGRAPH_INTERRUPTED, then this macro frees up the igraph
allocated memory for temporary data and returns to the caller with IGRAPH_INTERRUPTED.

igraph_progress — Report progress

igraph_error_t igraph_progress(const char *message, igraph_real_t percent, void *data);

685

Advanced igraph programming

Note that the usual way to report progress is the IGRAPH_PROGRESS macro, as that takes care of
the return value of the progress handler.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current
igraph functions always use the name message argument if reporting from the same
function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and
then pass some meaningfull context here.

Returns:

If there is a progress handler installed and it does not return IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned.

Time complexity: O(1).

igraph_progressf — Report progress, printf-like version

igraph_error_t igraph_progressf(const char *message, igraph_real_t percent, void *data,
 ...);

This is a more flexible version of igraph_progress(), with a printf-like template string. First
the template string is filled with the additional arguments and then igraph_progress() is called.

Note that there is an upper limit for the length of the message string, currently 1000 characters.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. For this
function this is a template string, using the same syntax as the standard libc printf
function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and
then pass some meaningfull context here.

...: Additional argument that were specified in the message argument.

Returns:

If there is a progress handler installed and it does not return IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned. \return

Writing progress handlers
To write a new progress handler, one needs to create a function of type igraph_progress_han-
dler_t. The new progress handler can then be installed with the igraph_set_progress_han-
dler() function.

686

Advanced igraph programming

One can assume that the first progress handler call from a calculation will be call with zero as the
percentage argument, and the last call from a function will have 100 as the percentage argu-
ment. Note, however, that if an error happens in the middle of a computation, then the 100 percent
call might be omitted.

Writing igraph functions with progress reporting
If you want to write a function that uses igraph and supports progress reporting, you need to include
igraph_progress() calls in your function, usually via the IGRAPH_PROGRESS() macro.

It is good practice to always include a call to igraph_progress() with a zero percentage
argument, before the computation; and another call with 100 percentage value after the computa-
tion is completed.

It is also good practice not to call igraph_progress() too often, as this would slow down the
computation. It might not be worth to support progress reporting in functions with linear or log-lin-
ear time complexity, as these are fast, even with a large amount of data. For functions with quadrat-
ic or higher time complexity make sure that the time complexity of the progress reporting is con-
stant or at least linear. In practice this means having at most O(n) progress checks and at most 100
igraph_progress() calls.

Multi-threaded programs
In multi-threaded programs, each thread has its own progress handler, if thread-local storage is sup-
ported and igraph is thread-safe. See the IGRAPH_THREAD_SAFE macro for checking whether an
igraph build is thread-safe.

Status handlers

Status reporting
In addition to the possibility of reporting the progress of an igraph computation via
igraph_progress(), it is also possible to report simple status messages from within igraph func-
tions, without having to judge how much of the computation was performed already. For this one
needs to install a status handler function.

Status handler functions must be of type igraph_status_handler_t and they can be install by
a call to igraph_set_status_handler(). Currently there is a simple predefined status handler
function, called igraph_status_handler_stderr(), but the user can define new ones.

igraph functions report their status via a call to the IGRAPH_STATUS() or the IGRAPH_S-
TATUSF() macro.

Setting up status handlers

igraph_status_handler_t — The type of the igraph status
handler functions

typedef igraph_error_t igraph_status_handler_t(const char *message, void *data);

Arguments:

message: The status message.

687

Advanced igraph programming

data: Additional context, with user-defined semantics. Existing igraph functions pass a null
pointer here.

Returns:

Error code. The current calculation will abort if you return anything else than IGRAPH_SUCCESS
here.

igraph_set_status_handler — Install of uninstall a status
handler function.

igraph_status_handler_t *
igraph_set_status_handler(igraph_status_handler_t new_handler);

To uninstall the currently installed status handler, call this function with a null pointer.

Arguments:

new_handler: The status handler function to install.

Returns:

The previously installed status handler function.

Time complexity: O(1).

igraph_status_handler_stderr — A simple predefined status
handler function.

igraph_error_t igraph_status_handler_stderr(const char *message, void *data);

A simple status handler function that writes the status message to the standard error.

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null
pointer here.

Returns:

Error code.

Time complexity: O(1).

Invoking the status handler

IGRAPH_STATUS — Report the status of an igraph function.

688

Advanced igraph programming

#define IGRAPH_STATUS(message, data)

Typically this function is called only a handful of times from an igraph function. E.g. if an algorithm
has three major steps, then it is logical to call it three times, to signal the three major steps.

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null
pointer here.

Returns:

If the status handler returns with a value other than IGRAPH_SUCCESS, then the function that
called this macro returns as well, with error code IGRAPH_INTERRUPTED.

IGRAPH_STATUSF — Report the status from an igraph function

#define IGRAPH_STATUSF(args)

This is the more flexible version of IGRAPH_STATUS(), having a printf-like syntax. As this macro
takes variable number of arguments, they must be all supplied as a single argument, enclosed in paren-
theses. Then igraph_statusf() is called with the given arguments.

Arguments:

args: The arguments to pass to igraph_statusf().

Returns:

If the status handler returns with a value other than IGRAPH_SUCCESS, then the function that
called this macro returns as well, with error code IGRAPH_INTERRUPTED.

igraph_status — Reports status from an igraph function.

igraph_error_t igraph_status(const char *message, void *data);

It calls the installed status handler function, if there is one. Otherwise it does nothing. Note that the
standard way to report the status from an igraph function is the IGRAPH_STATUS or IGRAPH_S-
TATUSF macro, as these take care of the termination of the calling function if the status handler re-
turns with IGRAPH_INTERRUPTED.

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null
pointer here.

Returns:

Error code. If a status handler function was called and it did not return with IGRAPH_SUCCESS,
then IGRAPH_INTERRUPTED is returned by igraph_status().

689

Advanced igraph programming

Time complexity: O(1).

igraph_statusf — Report status, more flexible printf-like ver-
sion.

igraph_error_t igraph_statusf(const char *message, void *data, ...);

This is the more flexible version of igraph_status(), that has a syntax similar to the printf
standard C library function. It substitutes the values of the additional arguments into the message
template string and calls igraph_status().

Arguments:

message: Status message template string, the syntax is the same as for the printf function.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null
pointer here.

...: The additional arguments to fill the template given in the message argument.

Returns:

Error code. If a status handler function was called and it did not return with IGRAPH_SUCCESS,
then IGRAPH_INTERRUPTED is returned by igraph_status().

690

Chapter 32. Non-graph related
functions
igraph version number

igraph_version — The version of the igraph C li-
brary.

void igraph_version(const char **version_string,
 int *major,
 int *minor,
 int *subminor);

Arguments:

version_string: Pointer to a string pointer. If not null, it is set to the igraph version string, e.g.
"0.9.11" or "0.10.0". This string must not be modified or deallocated.

major: If not a null pointer, then it is set to the major igraph version. E.g. for version
"0.9.11" this is 0.

minor: If not a null pointer, then it is set to the minor igraph version. E.g. for version
"0.9.11" this is 11.

subminor: If not a null pointer, then it is set to the subminor igraph version. E.g. for
version "0.9.11" this is 11.

Example 32.1. File examples/simple/igraph_version.c

Running mean of a time series

igraph_running_mean — Calculates the running
mean of a vector.

igraph_error_t igraph_running_mean(const igraph_vector_t *data, igraph_vector_t *res,
 igraph_integer_t binwidth);

The running mean is defined by the mean of the previous binwidth values.

Arguments:

data: The vector containing the data.

res: The vector containing the result. This should be initialized before calling this function
and will be resized.

binwidth: Integer giving the width of the bin for the running mean calculation.

691

Non-graph related functions

Returns:

Error code.

Time complexity: O(n), n is the length of the data vector.

Random sampling from very long sequences

igraph_random_sample — Generates an increasing
random sequence of integers.

igraph_error_t igraph_random_sample(igraph_vector_int_t *res, igraph_integer_t l, igraph_integer_t h,
 igraph_integer_t length);

This function generates an increasing sequence of random integer numbers from a given interval. The
algorithm is taken literally from (Vitter 1987). This method can be used for generating numbers from
a very large interval. It is primarily created for randomly selecting some edges from the sometimes
huge set of possible edges in a large graph.

Reference:

J. S. Vitter. An efficient algorithm for sequential random sampling. ACM Transactions on Mathemat-
ical Software, 13(1):58--67, 1987. https://doi.org/10.1145/23002.23003

Arguments:

res: Pointer to an initialized vector. This will hold the result. It will be resized to the proper
size.

l: The lower limit of the generation interval (inclusive). This must be less than or equal to
the upper limit, and it must be integral.

h: The upper limit of the generation interval (inclusive). This must be greater than or equal
to the lower limit, and it must be integral.

length: The number of random integers to generate.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) The given lower
limit is greater than the given upper limit, i.e. l > h. (2) Assuming that l < h and N is the sample
size, the above error code is returned if N > |h - l|, i.e. the sample size exceeds the size of the
candidate pool.

Time complexity: according to (Vitter 1987), the expected running time is O(length).

Example 32.2. File examples/simple/igraph_random_sample.c

Random sampling of spatial points

igraph_sample_sphere_surface — Sample points
uniformly from the surface of a sphere.

692

https://doi.org/10.1145/23002.23003

Non-graph related functions

igraph_error_t igraph_sample_sphere_surface(igraph_integer_t dim, igraph_integer_t n,
 igraph_real_t radius,
 igraph_bool_t positive,
 igraph_matrix_t *res);

The center of the sphere is at the origin.

Arguments:

dim: The dimension of the random vectors.

n: The number of vectors to sample.

radius: Radius of the sphere, it must be positive.

positive: Whether to restrict sampling to the positive orthant.

res: Pointer to an initialized matrix, the result is stored here, each column will be a sampled
vector. The matrix is resized, as needed.

Returns:

Error code.

Time complexity: O(n*dim*g), where g is the time complexity of generating a standard normal random
number.

See also:

igraph_sample_sphere_volume(), igraph_sample_dirichlet() for other similar
samplers.

igraph_sample_sphere_volume — Sample points
uniformly from the volume of a sphere.

igraph_error_t igraph_sample_sphere_volume(igraph_integer_t dim, igraph_integer_t n,
 igraph_real_t radius,
 igraph_bool_t positive,
 igraph_matrix_t *res);

The center of the sphere is at the origin.

Arguments:

dim: The dimension of the random vectors.

n: The number of vectors to sample.

radius: Radius of the sphere, it must be positive.

positive: Whether to restrict sampling to the positive orthant.

res: Pointer to an initialized matrix, the result is stored here, each column will be a sampled
vector. The matrix is resized, as needed.

Returns:

693

Non-graph related functions

Error code.

Time complexity: O(n*dim*g), where g is the time complexity of generating a standard normal random
number.

See also:

igraph_sample_sphere_surface(), igraph_sample_dirichlet() for other sim-
ilar samplers.

igraph_sample_dirichlet — Sample points from a
Dirichlet distribution.

igraph_error_t igraph_sample_dirichlet(igraph_integer_t n, const igraph_vector_t *alpha,
 igraph_matrix_t *res);

Arguments:

n: The number of vectors to sample.

alpha: The parameters of the Dirichlet distribution. They must be positive. The length of this
vector gives the dimension of the generated samples.

res: Pointer to an initialized matrix, the result is stored here, one sample in each column. It will
be resized, as needed.

Returns:

Error code.

Time complexity: O(n * dim * g), where dim is the dimension of the sample vectors, set by the length
of alpha, and g is the time complexity of sampling from a Gamma distribution.

See also:

igraph_sample_sphere_surface() and igraph_sample_sphere_volume() for
other methods to sample latent vectors.

Convex hull of a set of points on a plane

igraph_convex_hull — Determines the convex hull
of a given set of points in the 2D plane.

igraph_error_t igraph_convex_hull(
 const igraph_matrix_t *data, igraph_vector_int_t *resverts,
 igraph_matrix_t *rescoords
);

The convex hull is determined by the Graham scan algorithm. See the following reference for details:

694

Non-graph related functions

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Al-
gorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0262032937. Pages 949-955 of
section 33.3: Finding the convex hull.

Arguments:

data: vector containing the coordinates. The length of the vector must be even, since it
contains X-Y coordinate pairs.

resverts: the vector containing the result, e.g. the vector of vertex indices used as the corners
of the convex hull. Supply NULL here if you are only interested in the coordinates
of the convex hull corners.

rescoords: the matrix containing the coordinates of the selected corner vertices. Supply NULL
here if you are only interested in the vertex indices.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory

Time complexity: O(n log(n)) where n is the number of vertices.

Fitting power-law distributions to empirical
data

igraph_plfit_result_t — Result of fitting a pow-
er-law distribution to a vector.

typedef struct igraph_plfit_result_t {
 igraph_bool_t continuous;
 igraph_real_t alpha;
 igraph_real_t xmin;
 igraph_real_t L;
 igraph_real_t D;
 const igraph_vector_t* data;
} igraph_plfit_result_t;

This data structure contains the result of igraph_power_law_fit(), which tries to fit a pow-
er-law distribution to a vector of numbers. The structure contains the following members:

Values:

continuous: Whether the fitted power-law distribution was continuous or discrete.

alpha: The exponent of the fitted power-law distribution.

xmin: The minimum value from which the power-law distribution was fitted. In other
words, only the values larger than xmin were used from the input vector.

L: The log-likelihood of the fitted parameters; in other words, the probability of ob-
serving the input vector given the parameters.

D: The test statistic of a Kolmogorov-Smirnov test that compares the fitted distribution
with the input vector. Smaller scores denote better fit.

695

Non-graph related functions

p: The p-value of the Kolmogorov-Smirnov test; NaN if it has not been calculated yet.
Small p-values (less than 0.05) indicate that the test rejected the hypothesis that the
original data could have been drawn from the fitted power-law distribution.

data: The vector containing the original input data. May not be valid any more if the
caller already destroyed the vector.

igraph_power_law_fit — Fits a power-law distribu-
tion to a vector of numbers.

igraph_error_t igraph_power_law_fit(
 const igraph_vector_t* data, igraph_plfit_result_t* result,
 igraph_real_t xmin, igraph_bool_t force_continuous
);

This function fits a power-law distribution to a vector containing samples from a distribution (that is
assumed to follow a power-law of course). In a power-law distribution, it is generally assumed that
P(X=x) is proportional to x-alpha, where x is a positive number and alpha is greater than 1. In many
real-world cases, the power-law behaviour kicks in only above a threshold value xmin. The goal of
this functions is to determine alpha if xmin is given, or to determine xmin and the corresponding value
of alpha.

The function uses the maximum likelihood principle to determine alpha for a given xmin; in other
words, the function will return the alpha value for which the probability of drawing the given sample
is the highest. When xmin is not given in advance, the algorithm will attempt to find the optimal
xmin value for which the p-value of a Kolmogorov-Smirnov test between the fitted distribution and
the original sample is the largest. The function uses the method of Clauset, Shalizi and Newman to
calculate the parameters of the fitted distribution. See the following reference for details:

Aaron Clauset, Cosma R. Shalizi and Mark E.J. Newman: Power-law distributions in empirical data.
SIAM Review 51(4):661-703, 2009. https://doi.org/10.1137/070710111

Arguments:

data: vector containing the samples for which a power-law distribution is to be
fitted. Note that you have to provide the samples, not the probability den-
sity function or the cumulative distribution function. For example, if you
wish to fit a power-law to the degrees of a graph, you can use the output
of igraph_degree directly as an input argument to igraph_pow-
er_law_fit

result: the result of the fitting algorithm. See igraph_plfit_result_t for
more details. Note that the p-value of the fit is not calculated by de-
fault as it is time-consuming; you need to call igraph_plfit_re-
sult_calculate_p_value() to calculate the p-value itself

xmin: the minimum value in the sample vector where the power-law behaviour
is expected to kick in. Samples smaller than xmin will be ignored by
the algorithm. Pass zero here if you want to include all the samples. If
xmin is negative, the algorithm will attempt to determine its best value
automatically.

force_continuous: assume that the samples in the data argument come from a continuous
distribution even if the sample vector contains integer values only (by
chance). If this argument is false, igraph will assume a continuous distri-

696

https://doi.org/10.1137/070710111

Non-graph related functions

bution if at least one sample is non-integer and assume a discrete distrib-
ution otherwise.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory IGRAPH_EINVAL: one of the arguments is
invalid IGRAPH_EOVERFLOW: overflow during the fitting process IGRAPH_EUNDERFLOW: un-
derflow during the fitting process IGRAPH_FAILURE: the underlying algorithm signaled a failure
without returning a more specific error code

Time complexity: in the continuous case, O(n log(n)) if xmin is given. In the discrete case, the time
complexity is dominated by the complexity of the underlying L-BFGS algorithm that is used to opti-
mize alpha. If xmin is not given, the time complexity is multiplied by the number of unique samples
in the input vector (although it should be faster in practice).

Example 32.3. File examples/simple/igraph_power_law_fit.c

igraph_plfit_result_calculate_p_value — Cal-
culates the p-value of a fitted power-law model.

igraph_error_t igraph_plfit_result_calculate_p_value(
 const igraph_plfit_result_t* model, igraph_real_t* result, igraph_real_t precision
);

The p-value is calculated by resampling the input data many times in a way that the part below the
fitted x_min threshold is resampled from the input data itself, while the part above the fitted x_min
threshold is drawn from the fitted power-law function. A Kolmogorov-Smirnov test is then performed
for each resampled dataset and its test statistic is compared with the observed test statistic from the
original dataset. The fraction of resampled datasets that have a higher test statistic is the returned p-
value.

Note that the precision of the returned p-value depends on the number of resampling attempts. The
number of resampling trials is determined by 0.25 divided by the square of the required precision. For
instance, a required precision of 0.01 means that 2500 samples will be drawn.

If igraph is compiled with OpenMP support, this function will use parallel OpenMP threads for the
resampling. Each OpenMP thread gets its own instance of a random number generator. However, since
the scheduling of OpenMP threads is outside our control, we cannot guarantee how many resampling
instances the threads are asked to execute, thus it may happen that the random number generators are
used differently between runs. If you want to obtain reproducible results, seed igraph's master RNG
appropriately, and force the number of OpenMP threads to 1 early in your program, either by calling
omp_set_num_threads(1) or by setting the value of the OMP_NUM_THREADS environment
variable to 1.

Arguments:

model: The fitted power-law model from the igraph_power_law_fit() function

result: The calculated p-value is returned here

precision: The desired precision of the p-value. Higher values correspond to longer calculation
time. @return igraph_error_t

697

Non-graph related functions

Comparing floats with a tolerance

igraph_cmp_epsilon — Compare two double-preci-
sion floats with a tolerance.

int igraph_cmp_epsilon(double a, double b, double eps);

Determines whether two double-precision floats are "almost equal" to each other with a given level
of tolerance on the relative error.

The function supports infinities and NaN values. NaN values are considered not equal to any other
value (even another NaN), but the ordering is arbitrary; in other words, we only guarantee that com-
paring a NaN with any other value will not return zero. Positive infinity is considered to be greater than
any finite value with any tolerance. Negative infinity is considered to be smaller than any finite value
with any tolerance. Positive infinity is considered to be equal to another positive infinity with any
tolerance. Negative infinity is considered to be equal to another negative infinity with any tolerance.

Arguments:

a: The first float.

b: The second float.

eps: The level of tolerance on the relative error. The relative error is defined as abs(a-b) /
(abs(a) + abs(b)). The two numbers are considered equal if this is less than eps.
Negative epsilon values are not allowed; the returned value will be undefined in this case.
Zero means to do an exact comparison without tolerance.

Returns:

Zero if the two floats are nearly equal to each other within the given level of tolerance, positive
number if the first float is larger, negative number if the second float is larger.

igraph_almost_equals — Compare two double-pre-
cision floats with a tolerance.

igraph_bool_t igraph_almost_equals(double a, double b, double eps);

Determines whether two double-precision floats are "almost equal" to each other with a given level
of tolerance on the relative error.

Arguments:

a: The first float.

b: The second float.

eps: The level of tolerance on the relative error. The relative error is defined as abs(a-b) /
(abs(a) + abs(b)). The two numbers are considered equal if this is less than eps.

Returns:

698

Non-graph related functions

True if the two floats are nearly equal to each other within the given level of tolerance, false oth-
erwise.

igraph_complex_almost_equals — Compare two
complex numbers with a tolerance.

igraph_bool_t igraph_complex_almost_equals(igraph_complex_t a,
 igraph_complex_t b,
 igraph_real_t eps);

Determines whether two complex numbers are "almost equal" to each other with a given level of
tolerance on the relative error.

Arguments:

a: The first complex number.

b: The second complex number.

eps: The level of tolerance on the relative error. The relative error is defined as abs(a-b) /
(abs(a) + abs(b)). The two numbers are considered equal if this is less than eps.

Returns:

True if the two complex numbers are nearly equal to each other within the given level of tolerance,
false otherwise.

699

Chapter 33. Licenses for igraph and
this manual
THE GNU GENERAL PUBLIC LICENSE

Copyright © 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's
free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", be-
low, refers to any such program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, trans-
lation is included without limitation in the term "modification".) Each licensee is addressed as "you".

700

Licenses for igraph and this manual

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and a notice that there is no warranty (or else, saying
that you provide a warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

701

Licenses for igraph and this manual

c. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Pro-
gram (or any work based on the Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automat-
ically receives a license from the original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further restrictions on the recipients' exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may

702

Licenses for igraph and this manual

add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRAN-
TY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTH-
ER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by

703

Licenses for igraph and this manual

 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

The GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

704

Licenses for igraph and this manual

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-con-
forming simple HTML, PostScript or PDF designed for human modification. Examples of transpar-
ent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most prominent
appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ

705

Licenses for igraph and this manual

stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Docu-
ment means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of
the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section

706

Licenses for igraph and this manual

of the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)

707

Licenses for igraph and this manual

any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original doc-
uments, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-
edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorse-
ments".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the Doc-
ument.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in

708

Licenses for igraph and this manual

addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

G.1.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts."
line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these ex-
amples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.

709

Index
A
add_edge, 27
add_edges, 27
add_vertices, 28
adhesion, 593
adjacency, 213
adjacency_spectral_embedding, 637
adjacent_triangles, 531
adjlist, 216
adjlist_clear, 189
adjlist_destroy, 188
adjlist_get, 189
adjlist_init, 187
adjlist_init_complementer, 188
adjlist_init_empty, 187
adjlist_simplify, 190
adjlist_size, 189
adjlist_sort, 190
all_minimal_st_separators, 597
all_st_cuts, 585
all_st_mincuts, 586
almost_equals, 698
are_adjacent, 340
are_connected, 472
arpack_function_t, 668
arpack_options_init, 669
arpack_options_t, 665
arpack_rnsolve, 671
arpack_rssolve, 670
arpack_storage_destroy, 670
arpack_storage_init, 669
arpack_storage_t, 667
arpack_unpack_complex, 672
articulation_points, 393
ASSERT, 47
assortativity, 448
assortativity_degree, 450
assortativity_nominal, 447
astar_heuristic_func_t, 357
asymmetric_preference_game, 253
atlas, 234
attribute_combination, 309
attribute_combination_add, 307
attribute_combination_destroy, 308
attribute_combination_init, 306
attribute_combination_remove, 307
attribute_combination_type_t, 308
attribute_table_t, 302
attribute_type_t, 305
authority_score, 477
automorphisms, 510
automorphism_group, 509
average_local_efficiency, 380
average_path_length, 362

average_path_length_dijkstra, 363
avg_nearest_neighbor_degree, 465

B
barabasi_aging_game, 255
barabasi_game, 238
betweenness, 399
betweenness_cutoff, 413
betweenness_subset, 414
bfs, 483
bfshandler_t, 485
bfs_simple, 484
biadjacency, 676
bibcoupling, 424
biconnected_components, 392
bipartite_game, 680
bipartite_game_gnm, 674
bipartite_game_gnp, 675
bipartite_projection, 678
bipartite_projection_size, 678
blas_ddot, 655
blas_dgemm, 656
blas_dgemv, 656
blas_dgemv_array, 657
blas_dnrm2, 655
bliss_info_t, 506
bliss_sh_t, 506
bridges, 393

C
callaway_traits_game, 251
calloc, 49
canonical_permutation, 507
cattribute_EAB, 320
cattribute_EABV, 321
cattribute_EAB_set, 329
cattribute_EAB_setv, 334
cattribute_EAN, 318
cattribute_EANV, 319
cattribute_EAN_set, 328
cattribute_EAN_setv, 333
cattribute_EAS, 321
cattribute_EASV, 322
cattribute_EAS_set, 330
cattribute_EAS_setv, 335
cattribute_GAB, 312
cattribute_GAB_set, 324
cattribute_GAN, 311
cattribute_GAN_set, 323
cattribute_GAS, 313
cattribute_GAS_set, 324
cattribute_has_attr, 311
cattribute_list, 310
cattribute_remove_all, 337
cattribute_remove_e, 336
cattribute_remove_g, 335
cattribute_remove_v, 336

710

Index

cattribute_VAB, 315
cattribute_VABV, 316
cattribute_VAB_set, 326
cattribute_VAB_setv, 331
cattribute_VAN, 313
cattribute_VANV, 314
cattribute_VAN_set, 325
cattribute_VAN_setv, 331
cattribute_VAS, 317
cattribute_VASV, 317
cattribute_VAS_set, 327
cattribute_VAS_setv, 332
centralization, 416
centralization_betweenness, 418
centralization_betweenness_tmax, 421
centralization_closeness, 419
centralization_closeness_tmax, 422
centralization_degree, 417
centralization_degree_tmax, 420
centralization_eigenvector_centrality, 419
centralization_eigenvector_centrality_tmax, 423
CHECK, 43
CHECK_CALLBACK, 44
circulant, 236
cited_type_game, 258
citing_cited_type_game, 259
cliques, 490
cliques_callback, 492
clique_handler_t, 492
clique_number, 498
clique_size_hist, 491
closeness, 397
closeness_cutoff, 411
clusters, 390
cmp_epsilon, 698
cocitation, 424
cohesion, 594
cohesive_blocks, 595
coloring_greedy_t, 527
community_eb_get_merges, 617
community_edge_betweenness, 615
community_fastgreedy, 618
community_fluid_communities, 621
community_infomap, 624
community_label_propagation, 622
community_leading_eigenvector, 610
community_leading_eigenvector_callback_t, 612
community_leiden, 620
community_multilevel, 619
community_optimal_modularity, 602
community_spinglass, 607
community_spinglass_single, 609
community_to_membership, 603
community_voronoi, 625
community_walktrap, 614
compare_communities, 604
complementer, 646
complex_almost_equals, 699

compose, 647
connected_components, 389
connect_neighborhood, 648
constraint, 405
contract_vertices, 648
convergence_degree, 410
convex_hull, 694
copy, 18
coreness, 455
correlated_game, 263
correlated_pair_game, 264
count_automorphisms, 508
count_isomorphisms_vf2, 511
count_multiple, 446
count_multiple_1, 447
count_subisomorphisms_vf2, 517
create, 212
create_bipartite, 673

D
decompose, 391
decompose_destroy, 391
degree, 25
degree_1, 26
degree_correlation_vector, 467
degree_sequence_game, 244
DELALL, 338
DELEA, 337
DELEAS, 338
delete_edges, 28
delete_vertices, 29
delete_vertices_idx, 29
DELGA, 336
DELGAS, 337
DELVA, 336
DELVAS, 338
density, 463
destroy, 19
deterministic_optimal_imitation, 268
de_bruijn, 235
dfs, 486
dfshandler_t, 487
diameter, 364
diameter_dijkstra, 365
difference, 646
dim_select, 639
disjoint_union, 641
disjoint_union_many, 641
distances, 341
distances_bellman_ford, 345
distances_cutoff, 342
distances_dijkstra, 343
distances_dijkstra_cutoff, 344
distances_floyd_warshall, 347
distances_johnson, 346
diversity, 464
dominator_tree, 582
dot_product_game, 262

711

Index

dqueue_back, 159
dqueue_clear, 158
dqueue_destroy, 157
dqueue_empty, 157
dqueue_full, 158
dqueue_get, 159
dqueue_head, 159
dqueue_init, 157
dqueue_pop, 160
dqueue_pop_back, 160
dqueue_push, 160
dqueue_size, 158
dyad_census, 529

E
EAB, 320
EABV, 321
EAN, 319
EANV, 319
EAS, 322
EASV, 323
ecc, 439
eccentricity, 367
eccentricity_dijkstra, 367
ecount, 19
ECOUNT_MAX, 30
edge, 20
edges, 20
edge_betweenness, 400
edge_betweenness_cutoff, 414
edge_betweenness_subset, 415
edge_connectivity, 590
edge_disjoint_paths, 592
eigenvector_centrality, 407
eit_create, 296
eit_destroy, 297
EIT_END, 297
EIT_GET, 298
EIT_NEXT, 297
EIT_RESET, 298
EIT_SIZE, 298
empty, 17
empty_attrs, 17
enter_safelocale, 577
erdos_renyi_game, 265
erdos_renyi_game_gnm, 240
erdos_renyi_game_gnp, 241
ERROR, 42
error, 42
ERRORF, 42
errorf, 43
error_handler_abort, 34
error_handler_ignore, 34
error_handler_printignore, 34
error_handler_t, 33
error_t, 34
error_type_t, 34
ess_1, 293

ess_all, 292
ess_none, 293
ess_range, 294
ess_seq, 299
ess_vector, 294
establishment_game, 252
es_1, 289
es_all, 287
es_as_vector, 294
es_copy, 295
es_destroy, 295
es_incident, 288
es_is_all, 295
es_none, 288
es_pairs, 290
es_pairs_small, 291
es_path, 291
es_range, 290
es_seq, 299
es_size, 296
es_type, 296
es_vector, 289
es_vector_copy, 292
eulerian_cycle, 479
eulerian_path, 480
even_tarjan_reduction, 598
exit_safelocale, 578
expand_path_to_pairs, 31
extended_chordal_ring, 237

F
famous, 230
FATAL, 46
fatal, 47
FATALF, 47
fatalf, 48
fatal_handler_abort, 46
fatal_handler_t, 46
feedback_arc_set, 457
FINALLY, 44
FINALLY_CLEAN, 45
FINALLY_FREE, 45
forest_fire_game, 248
free, 50
FROM, 21
from_hrg_dendrogram, 634
from_prufer, 233
full, 224
full_bipartite, 674
full_citation, 225
full_multipartite, 225
fundamental_cycles, 480

G
GAB, 312
GAN, 312
GAS, 313

712

Index

generalized_petersen, 236
get_adjacency, 468
get_adjacency_sparse, 469
get_all_eids_between, 24
get_all_shortest_paths, 357
get_all_shortest_paths_dijkstra, 359
get_all_simple_paths, 361
get_biadjacency, 677
get_edgelist, 471
get_eid, 22
get_eids, 23
get_incidence, 681
get_isomorphisms_vf2, 512
get_isomorphisms_vf2_callback, 513
get_k_shortest_paths, 360
get_laplacian, 442
get_laplacian_sparse, 443
get_shortest_path, 350
get_shortest_paths, 348
get_shortest_paths_bellman_ford, 353
get_shortest_paths_dijkstra, 351
get_shortest_path_astar, 356
get_shortest_path_bellman_ford, 355
get_shortest_path_dijkstra, 352
get_sparsemat, 475
get_stochastic, 470
get_stochastic_sparse, 471
get_stochastic_sparsemat, 474
get_subisomorphisms_vf2, 518
get_subisomorphisms_vf2_callback, 519
get_widest_path, 375
get_widest_paths, 375
girth, 366
global_efficiency, 379
gomory_hu_tree, 588
graphlets, 627
graphlets_candidate_basis, 628
graphlets_project, 628
graph_center, 369
graph_center_dijkstra, 370
graph_count, 524
graph_power, 649
grg_game, 238
growing_random_game, 250

H
harmonic_centrality, 398
harmonic_centrality_cutoff, 412
has_multiple, 445
heap_clear, 162
heap_delete_top, 163
heap_destroy, 161
heap_empty, 162
heap_init, 161
heap_init_array, 161
heap_push, 162
heap_reserve, 164
heap_size, 163

heap_top, 163
hexagonal_lattice, 220
hrg_consensus, 633
hrg_create, 635
hrg_dendrogram, 636
hrg_destroy, 631
hrg_fit, 632
hrg_game, 634
hrg_init, 631
hrg_predict, 635
hrg_resize, 632
hrg_sample, 633
hrg_size, 631
hrg_t, 630
hsbm_game, 261
hsbm_list_game, 261
hub_and_authority_scores, 409
hub_score, 476

I
igraph_bool_t, 16
IGRAPH_INTEGER_MAX, 16
IGRAPH_INTEGER_MIN, 16
igraph_integer_t, 16
igraph_real_t, 16
IGRAPH_UINT_MAX, 16
IGRAPH_UINT_MIN, 16
igraph_uint_t, 16
incidence, 681
incident, 25
inclist_clear, 192
inclist_destroy, 191
inclist_get, 191
inclist_init, 190
inclist_size, 192
independence_number, 503
independent_vertex_sets, 501
induced_subgraph, 650
induced_subgraph_map, 651
intersection, 644
intersection_many, 645
invalidate_cache, 31
isoclass, 522
isoclass_create, 523
isoclass_subgraph, 523
isocompat_t, 515
isohandler_t, 515
isomorphic, 504
isomorphic_34, 526
isomorphic_bliss, 507
isomorphic_function_vf2, 520
isomorphic_vf2, 510
is_acyclic, 472
is_biconnected, 394
is_bigraphical, 396
is_bipartite, 679
is_chordal, 459
is_complete, 490

713

Index

is_connected, 390
is_dag, 456
is_directed, 19
is_eulerian, 479
is_forest, 435
is_graphical, 394
is_loop, 444
is_matching, 460
is_maximal_matching, 460
is_minimal_separator, 596
is_multiple, 445
is_mutual, 465
is_perfect, 528
is_same_graph, 31
is_separator, 596
is_simple, 444
is_tree, 434

J
join, 642
joint_degree_distribution, 452
joint_degree_matrix, 453
joint_type_distribution, 450

K
kary_tree, 222
kautz, 235
k_regular_game, 246

L
lapack_dgeev, 661
lapack_dgeevx, 662
lapack_dgesv, 659
lapack_dgetrf, 658
lapack_dgetrs, 658
lapack_dsyevr, 660
laplacian, 475
laplacian_normalization_t, 443
laplacian_spectral_embedding, 638
largest_cliques, 493
largest_independent_vertex_sets, 501
largest_weighted_cliques, 499
lastcit_game, 257
lattice, 266
layout_bipartite, 540
layout_circle, 537
layout_davidson_harel, 548
layout_drl, 543
layout_drl_3d, 544
layout_drl_default_t, 542
layout_drl_options_init, 543
layout_drl_options_t, 541
layout_fruchterman_reingold, 544
layout_fruchterman_reingold_3d, 558
layout_gem, 547
layout_graphopt, 539
layout_grid, 538

layout_grid_3d, 558
layout_kamada_kawai, 546
layout_kamada_kawai_3d, 559
layout_lgl, 549
layout_mds, 549
layout_merge_dla, 561
layout_random, 537
layout_random_3d, 557
layout_reingold_tilford, 550
layout_reingold_tilford_circular, 551
layout_sphere, 557
layout_star, 538
layout_sugiyama, 553
layout_umap, 554
layout_umap_3d, 560
layout_umap_compute_weights, 556
lazy_adjlist_clear, 194
lazy_adjlist_destroy, 193
lazy_adjlist_get, 193
lazy_adjlist_has, 194
lazy_adjlist_init, 192
lazy_adjlist_size, 194
lazy_inclist_clear, 197
lazy_inclist_destroy, 195
lazy_inclist_get, 196
lazy_inclist_has, 196
lazy_inclist_init, 195
lazy_inclist_size, 196
lcf, 232
lcf_vector, 233
le_community_to_membership, 613
linegraph, 652
list_triangles, 531
local_efficiency, 379
local_scan_0, 384
local_scan_0_them, 385
local_scan_1_ecount, 384
local_scan_1_ecount_them, 386
local_scan_k_ecount, 385
local_scan_k_ecount_them, 386
local_scan_neighborhood_ecount, 387
local_scan_subset_ecount, 388

M
malloc, 49
MATRIX, 97
matrix_add, 105
matrix_add_cols, 118
matrix_add_constant, 104
matrix_add_rows, 118
matrix_all_almost_e, 108
matrix_all_e, 108
matrix_all_g, 109
matrix_all_ge, 110
matrix_all_l, 109
matrix_all_le, 110
matrix_as_sparsemat, 151
matrix_capacity, 115

714

Index

matrix_cbind, 111
matrix_colsum, 107
matrix_complex_all_almost_e, 121
matrix_complex_create, 121
matrix_complex_create_polar, 121
matrix_complex_imag, 120
matrix_complex_real, 119
matrix_complex_realimag, 120
matrix_complex_zapsmall, 122
matrix_contains, 116
matrix_copy, 122
matrix_copy_to, 99
matrix_destroy, 96
matrix_div_elements, 106
matrix_e, 123
matrix_empty, 114
matrix_e_ptr, 123
matrix_fill, 96
matrix_get, 97
matrix_get_col, 101
matrix_get_ptr, 97
matrix_get_row, 100
matrix_init, 94
matrix_init_array, 95
matrix_init_copy, 95
matrix_isnull, 114
matrix_is_symmetric, 116
matrix_max, 112
matrix_maxdifference, 116
matrix_min, 112
matrix_minmax, 113
matrix_mul_elements, 106
matrix_ncol, 115
matrix_nrow, 115
matrix_null, 96
matrix_prod, 107
matrix_rbind, 111
matrix_remove_col, 119
matrix_remove_row, 119
matrix_resize, 117
matrix_resize_min, 118
matrix_rowsum, 107
matrix_scale, 105
matrix_search, 117
matrix_select_cols, 103
matrix_select_rows, 103
matrix_select_rows_cols, 104
matrix_set, 98
matrix_set_col, 102
matrix_set_row, 101
matrix_size, 114
matrix_sub, 105
matrix_sum, 106
matrix_swap, 100
matrix_swap_cols, 102
matrix_swap_rows, 102
matrix_transpose, 108
matrix_update, 100

matrix_view, 98
matrix_view_from_vector, 99
matrix_which_max, 113
matrix_which_min, 112
matrix_which_minmax, 113
matrix_zapsmall, 110
maxdegree, 406
maxflow, 580
maxflow_stats_t, 583
maxflow_value, 581
maximal_cliques, 493
maximal_cliques_callback, 497
maximal_cliques_count, 494
maximal_cliques_file, 495
maximal_cliques_hist, 496
maximal_cliques_subset, 496
maximal_independent_vertex_sets, 502
maximum_bipartite_matching, 461
maximum_cardinality_search, 458
mincut, 586
mincut_value, 587
minimum_cycle_basis, 481
minimum_size_separators, 597
minimum_spanning_tree, 431
minimum_spanning_tree_prim, 433
minimum_spanning_tree_unweighted, 432
modularity, 600
modularity_matrix, 601
moran_process, 269
motifs_handler_t, 535
motifs_randesu, 532
motifs_randesu_callback, 534
motifs_randesu_estimate, 533
motifs_randesu_no, 533

N
neighborhood, 382
neighborhood_graphs, 383
neighborhood_size, 381
neighbors, 24

O
OTHER, 22

P
pagerank, 401
pagerank_algo_t, 401
path_length_hist, 363
permute_vertices, 524
personalized_pagerank, 403
personalized_pagerank_vs, 404
plfit_result_calculate_p_value, 697
plfit_result_t, 695
power_law_fit, 696
preference_game, 252
PROGRESS, 685
progress, 685

715

Index

progressf, 686
progress_handler_stderr, 685
progress_handler_t, 684
pseudo_diameter, 371
pseudo_diameter_dijkstra, 372
psumtree_destroy, 198
psumtree_get, 198
psumtree_init, 197
psumtree_search, 199
psumtree_size, 198
psumtree_sum, 199
psumtree_update, 200

R
radius, 368
radius_dijkstra, 369
random_edge_walk, 489
random_sample, 692
random_spanning_tree, 433
random_walk, 488
read_graph_dimacs, 579
read_graph_dimacs_flow, 567
read_graph_dl, 576
read_graph_edgelist, 563
read_graph_gml, 571
read_graph_graphdb, 569
read_graph_graphml, 570
read_graph_lgl, 566
read_graph_ncol, 564
read_graph_pajek, 573
realize_bipartite_degree_sequence, 229
realize_degree_sequence, 226
realloc, 50
recent_degree_aging_game, 256
recent_degree_game, 254
reciprocity, 463
regular_tree, 223
reindex_membership, 604
reverse_edges, 653
rewire, 249
rewire_directed_edges, 243
rewire_edges, 243
ring, 221
rngtype_glibc2, 208
rngtype_mt19937, 208
rngtype_pcg32, 209
rngtype_pcg64, 209
rng_bits, 203
rng_default, 201
rng_destroy, 202
rng_get_binom, 206
rng_get_exp, 205
rng_get_gamma, 206
rng_get_geom, 207
rng_get_integer, 204
rng_get_normal, 205
rng_get_pois, 207
rng_get_unif, 204

rng_get_unif01, 204
rng_init, 202
rng_max, 203
rng_name, 203
rng_seed, 202
rng_set_default, 201
roots_for_tree_layout, 552
roulette_wheel_imitation, 271
running_mean, 691

S
sample_dirichlet, 694
sample_sphere_surface, 692
sample_sphere_volume, 693
sbm_game, 260
SETEAB, 329
SETEABV, 334
SETEAN, 328
SETEANV, 334
SETEAS, 330
SETEASV, 335
SETGAB, 324
SETGAN, 323
SETGAS, 325
SETVAB, 327
SETVABV, 332
SETVAN, 326
SETVANV, 331
SETVAS, 327
SETVASV, 333
set_attribute_table, 305
set_error_handler, 41
set_fatal_handler, 46
set_progress_handler, 684
set_status_handler, 688
set_warning_handler, 38
shortest_paths, 473
shortest_paths_bellman_ford, 473
shortest_paths_dijkstra, 473
shortest_paths_johnson, 474
similarity_dice, 428
similarity_dice_es, 429
similarity_dice_pairs, 428
similarity_inverse_log_weighted, 430
similarity_jaccard, 425
similarity_jaccard_es, 427
similarity_jaccard_pairs, 426
simple_interconnected_islands_game, 265
simplify, 652
simplify_and_colorize, 525
sir, 274
sir_destroy, 275
sir_t, 274
small, 212
spanner, 340
sparsemat, 151
sparsemat_add, 137
sparsemat_add_cols, 139

716

Index

sparsemat_add_rows, 138
sparsemat_arpack_rnsolve, 150
sparsemat_arpack_rssolve, 150
sparsemat_as_matrix, 152
sparsemat_cholsol, 146
sparsemat_colsums, 133
sparsemat_compress, 143
sparsemat_copy, 153
sparsemat_count_nonzero, 132
sparsemat_count_nonzerotol, 133
sparsemat_destroy, 126
sparsemat_diag, 153
sparsemat_droptol, 136
sparsemat_dropzeros, 135
sparsemat_dupl, 143
sparsemat_entry, 134
sparsemat_eye, 153
sparsemat_fkeep, 135
sparsemat_gaxpy, 138
sparsemat_get, 130
sparsemat_getelements, 130
sparsemat_getelements_sorted, 131
sparsemat_index, 127
sparsemat_init, 124
sparsemat_init_copy, 124
sparsemat_init_diag, 125
sparsemat_init_eye, 125
sparsemat_is_cc, 129
sparsemat_is_symmetric, 130
sparsemat_is_triplet, 129
sparsemat_iterator_col, 141
sparsemat_iterator_end, 141
sparsemat_iterator_get, 142
sparsemat_iterator_idx, 142
sparsemat_iterator_init, 140
sparsemat_iterator_next, 142
sparsemat_iterator_reset, 140
sparsemat_iterator_row, 141
sparsemat_lsolve, 144
sparsemat_ltsolve, 145
sparsemat_lu, 147
sparsemat_luresol, 148
sparsemat_lusol, 147
sparsemat_max, 132
sparsemat_min, 131
sparsemat_minmax, 132
sparsemat_multiply, 138
sparsemat_ncol, 128
sparsemat_nonzero_storage, 134
sparsemat_nrow, 128
sparsemat_numeric_destroy, 149
sparsemat_permute, 136
sparsemat_print, 152
sparsemat_qr, 148
sparsemat_qrresol, 149
sparsemat_realloc, 126
sparsemat_resize, 139
sparsemat_rowsums, 133

sparsemat_scale, 136
sparsemat_sort, 140
sparsemat_symblu, 143
sparsemat_symbolic_destroy, 149
sparsemat_symbqr, 144
sparsemat_transpose, 137
sparsemat_type, 129
sparsemat_usolve, 145
sparsemat_utsolve, 146
sparsemat_view, 126
sparse_adjacency, 215
sparse_weighted_adjacency, 216
split_join_distance, 606
square_lattice, 218
stack_clear, 155
stack_destroy, 154
stack_empty, 155
stack_init, 154
stack_pop, 156
stack_push, 156
stack_reserve, 154
stack_size, 155
stack_top, 156
star, 216
static_fitness_game, 246
static_power_law_game, 247
STATUS, 688
status, 689
STATUSF, 689
statusf, 690
status_handler_stderr, 688
status_handler_t, 687
stochastic_imitation, 272
STR, 165
strength, 407
strerror, 38
strvector_add, 172
strvector_append, 168
strvector_capacity, 171
strvector_clear, 169
strvector_copy, 172
strvector_destroy, 165
strvector_get, 166
strvector_init, 164
strvector_init_copy, 165
strvector_merge, 169
strvector_push_back, 167
strvector_push_back_len, 167
strvector_remove, 168
strvector_remove_section, 168
strvector_reserve, 170
strvector_resize, 170
strvector_resize_min, 171
strvector_set, 166
strvector_set2, 172
strvector_set_len, 167
strvector_size, 171
st_edge_connectivity, 589

717

Index

st_mincut, 583
st_mincut_value, 584
st_vertex_connectivity, 590
subcomponent, 388
subgraph_edges, 654
subgraph_from_edges, 653
subisomorphic, 505
subisomorphic_function_vf2, 520
subisomorphic_lad, 521
subisomorphic_vf2, 516
symmetric_tree, 222

T
THREAD_SAFE, 683
TO, 21
topological_sorting, 456
to_directed, 440
to_prufer, 435
to_undirected, 441
transitivity_avglocal_undirected, 438
transitivity_barrat, 438
transitivity_local_undirected, 437
transitivity_undirected, 436
tree, 266
tree_game, 263
triad_census, 529
triangular_lattice, 219
trussness, 455
turan, 226

U
unfold_tree, 462
union, 643
union_many, 643

V
VAB, 315
VABV, 316
VAN, 314
VANV, 315
VAS, 317
VASV, 318
vcount, 19
VCOUNT_MAX, 30
VECTOR, 56
vector_add, 62
vector_add_constant, 61
vector_all_almost_e, 64
vector_all_e, 64
vector_all_g, 65
vector_all_ge, 66
vector_all_l, 65
vector_all_le, 65
vector_append, 59
vector_binsearch, 75
vector_binsearch2, 76
vector_binsearch_slice, 76

vector_capacity, 72
vector_clear, 77
vector_colex_cmp, 68
vector_colex_cmp_untyped, 68
vector_complex_all_almost_e, 82
vector_complex_create, 81
vector_complex_create_polar, 82
vector_complex_imag, 80
vector_complex_real, 80
vector_complex_realimag, 81
vector_complex_zapsmall, 82
vector_contains, 74
vector_copy, 92
vector_copy_to, 58
vector_destroy, 54
vector_difference_sorted, 85
vector_div, 63
vector_e, 93
vector_empty, 71
vector_e_ptr, 93
vector_fill, 55
vector_floor, 64
vector_get, 56
vector_get_ptr, 57
vector_init, 53
vector_init_array, 53
vector_init_copy, 54
vector_init_range, 54
vector_init_seq, 93
vector_insert, 79
vector_intersect_sorted, 84
vector_isininterval, 73
vector_is_any_nan, 74
vector_is_nan, 74
vector_lex_cmp, 67
vector_lex_cmp_untyped, 67
vector_list_capacity, 177
vector_list_clear, 177
vector_list_destroy, 174
vector_list_discard, 183
vector_list_discard_back, 183
vector_list_discard_fast, 184
vector_list_empty, 176
vector_list_get_ptr, 175
vector_list_init, 174
vector_list_insert, 180
vector_list_insert_copy, 181
vector_list_insert_new, 181
vector_list_permute, 184
vector_list_pop_back, 180
vector_list_push_back, 179
vector_list_push_back_copy, 179
vector_list_push_back_new, 180
vector_list_remove, 182
vector_list_remove_fast, 182
vector_list_replace, 176
vector_list_reserve, 178
vector_list_resize, 178

718

Index

vector_list_set, 175
vector_list_size, 177
vector_list_sort, 184
vector_list_sort_ind, 185
vector_list_swap, 185
vector_list_swap_elements, 186
vector_list_tail_ptr, 175
vector_max, 69
vector_maxdifference, 73
vector_min, 69
vector_minmax, 70
vector_mul, 63
vector_null, 55
vector_permute, 61
vector_pop_back, 79
vector_prod, 72
vector_ptr_clear, 87
vector_ptr_copy, 94
vector_ptr_destroy, 86
vector_ptr_destroy_all, 87
vector_ptr_e, 94
vector_ptr_free_all, 86
vector_ptr_get, 89
vector_ptr_get_item_destructor, 91
vector_ptr_init, 85
vector_ptr_init_copy, 86
vector_ptr_insert, 89
vector_ptr_permute, 91
vector_ptr_pop_back, 88
vector_ptr_push_back, 88
vector_ptr_resize, 90
vector_ptr_set, 89
vector_ptr_set_item_destructor, 92
VECTOR_PTR_SET_ITEM_DESTRUCTOR, 92
vector_ptr_size, 87
vector_ptr_sort, 90
vector_ptr_sort_ind, 90
vector_push_back, 78
vector_qsort_ind, 84
vector_range, 55
vector_remove, 79
vector_remove_section, 80
vector_reserve, 77
vector_resize, 77
vector_resize_min, 78
vector_reverse, 60
vector_reverse_sort, 83
vector_scale, 62
vector_search, 75
vector_set, 57
vector_shuffle, 60
vector_size, 71
vector_sort, 83
vector_sub, 62
vector_sum, 72
vector_swap, 59
vector_swap_elements, 60
vector_tail, 57

vector_update, 58
vector_view, 58
vector_which_max, 70
vector_which_min, 70
vector_which_minmax, 71
vector_zapsmall, 66
version, 691
vertex_coloring_greedy, 527
vertex_connectivity, 591
vertex_disjoint_paths, 593
vertex_path_from_edge_path, 374
vit_create, 284
vit_destroy, 285
VIT_END, 286
VIT_GET, 287
VIT_NEXT, 286
VIT_RESET, 287
VIT_SIZE, 286
voronoi, 373
vss_1, 283
vss_all, 282
vss_none, 283
vss_range, 284
vss_seq, 300
vss_vector, 284
vs_1, 278
vs_adj, 277
vs_all, 276
vs_copy, 281
vs_destroy, 281
vs_is_all, 282
vs_nonadj, 277
vs_none, 278
vs_range, 280
vs_seq, 300
vs_size, 282
vs_type, 282
vs_vector, 279
vs_vector_copy, 280
vs_vector_small, 279

W
WARNING, 39
warning, 39
WARNINGF, 39
warningf, 40
warning_handler_ignore, 40
warning_handler_print, 40
warning_handler_t, 38
watts_strogatz_game, 242
weighted_adjacency, 214
weighted_cliques, 498
weighted_clique_number, 500
wheel, 217
widest_path_widths_dijkstra, 377
widest_path_widths_floyd_warshall, 378
write_graph_dimacs, 579
write_graph_dimacs_flow, 568

719

Index

write_graph_dot, 576
write_graph_edgelist, 563
write_graph_gml, 572
write_graph_graphml, 570
write_graph_leda, 577
write_graph_lgl, 567
write_graph_ncol, 565
write_graph_pajek, 575

720

